Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(21): 13950-13965, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38751197

RESUMEN

Manipulating the expression of cellular genes through efficient CRISPR/Cas9 delivery is rapidly evolving into a desirable tumor therapeutics. The exposure of CRISPR/Cas9 to a complex external environment poses challenges for conventional delivery carriers in achieving responsive and accurate release. Here, we report a Trojan horse-like nanocapsule for the on-demand delivery of CRISPR/Cas9 in a microRNA-responsive manner, enabling precise tumor therapy. The nanocapsule comprises a nanoassembled, engineered DNAzyme shell encasing a Cas9/sgRNA complex core. The DNAzyme, functioning as a catalytic unit, undergoes a conformational change in the presence of tumor-associated microRNA, followed by activating a positive feedback-driven autonomous catabolic cycle of the nanocapsule shell. This catabolic cycle is accomplished through chain reactions of DNAzyme "cleavage-hybridization-cleavage", which ensures sensitivity in microRNA recognition and effective release of Cas9/sgRNA. Utilizing this Trojan horse-like nanocapsule, as low as 1.7 pM microRNA-21 can trigger the on-demand release of Cas9/sgRNA, enabling the specific editing of the protumorigenic microRNA coding gene. The resulting upregulation of tumor suppressor genes induces apoptosis in tumor cells, leading to significant inhibition of tumor growth by up to 75.94%. The Trojan horse-like nanocapsule, with superior programmability and biocompatibility, is anticipated to serve as a promising carrier for tailoring responsive gene editing systems, achieving enhanced antitumor specificity and efficacy.


Asunto(s)
Sistemas CRISPR-Cas , ADN Catalítico , MicroARNs , Nanocápsulas , Sistemas CRISPR-Cas/genética , ADN Catalítico/química , ADN Catalítico/metabolismo , Humanos , Nanocápsulas/química , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Edición Génica , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/química
2.
Small ; 20(24): e2310732, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38299771

RESUMEN

Spherical nucleic acids (SNAs) with exceptional colloidal stability, multiple modularity, and programmability are excellent candidates to address common molecular delivery-related issues. Based on this, the higher targeting accuracy and enhanced controllability of stimuli-responsive SNAs render them precise nanoplatforms with inestimable prospects for diverse biomedical applications. Therefore, tailored diagnosis and treatment with stimuli-responsive SNAs may be a robust strategy to break through the bottlenecks associated with traditional nanocarriers. Various stimuli-responsive SNAs are engineered through the incorporation of multifunctional modifications to meet biomedical demands with the development of nucleic acid functionalization. This review provides a comprehensive overview of prominent research in this area and recent advancements in the utilization of stimuli-responsive SNAs in biosensing, bioimaging, and therapeutics. For each aspect, SNA nanoplatforms that exhibit responsive behavior to both internal stimuli (including sequence, enzyme, redox reactions, and pH) and external stimuli (such as light and temperature) are highlighted. This review is expected to offer inspiration and guidance strategies for the rational design and development of stimuli-responsive SNAs in the field of biomedicine.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Técnicas Biosensibles/métodos , Ácidos Nucleicos/química , Humanos , Animales
3.
Adv Sci (Weinh) ; 11(10): e2307188, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38145350

RESUMEN

Without coordinated strategies to balance the population and activity of tumor cells and polarized macrophages, antitumor immunotherapy generally offers limited clinical benefits. Inspired by the "eat me" signal, a smart tumor cell-derived proximity anchored non-linear hybridization chain reaction (Panel-HCR) strategy is established for on-demand regulation of tumor-associated macrophages (TAMs). The Panel-HCR is composed of a recognition-then-assembly module and a release-then-regulation module. Upon recognizing tumor cells, a DNA nano-tree is assembled on the tumor cell surface and byproduct strands loaded with CpG oligodeoxynucleotides (CpG-ODNs) are released depending on the tumor cell concentration. The on-demand release of CpG-ODNs can achieve efficient regulation of M2 TAMs into the M1 phenotype. Throughout the recognition-then-assembly process, tumor cell-targeted bioimaging is implemented in single cells, fixed tissues, and living mice. Afterward, the on-demand release of CpG-ODNs regulate the transformation of M2 TAMs into the M1 phenotype by stimulating toll-like receptor 9 to activate the NF-κB pathway and increasing inflammatory cytokines. This release-then-regulation process is verified to induce strong antitumor immune responses both in vitro and in vivo. Altogether, this proposed strategy holds tremendous promise for on-demand antitumor immunotherapy.


Asunto(s)
Macrófagos , Neoplasias , Ratones , Animales , Macrófagos/metabolismo , Citocinas/metabolismo , Neoplasias/patología , ADN/metabolismo , Inmunoterapia
4.
ACS Appl Mater Interfaces ; 15(19): 23662-23670, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37140536

RESUMEN

Bioactive small molecules serve as invaluable biomarkers for recognizing modulated organismal metabolism in correlation with numerous diseases. Therefore, sensitive and specific molecular biosensing and imaging in vitro and in vivo are particularly critical for the diagnosis and treatment of a large group of diseases. Herein, a modular DNA tetrahedron-based nanomachine was engineered for the ultrasensitive detection of intracellular small molecules. The nanomachine was composed of three self-assembled modules: an aptamer for target recognition, an entropy-driven unit for signal reporting, and a tetrahedral oligonucleotide for the transportation of the cargo (e.g., the nanomachine and fluorescent markers). Adenosine triphosphate (ATP) was used as the molecular model. Once the target ATP bonded with the aptamer module, an initiator was released from the aptamer module to activate the entropy-driven module, ultimately activating the ATP-responsive signal output and subsequent signal amplification. The performance of the nanomachine was validated by delivering it to living cells with the aid of the tetrahedral module to demonstrate the possibility of executing intracellular ATP imaging. This innovative nanomachine displays a linear response to ATP in the 1 pM to 10 nM concentration range and demonstrates high sensitivity with a low detection limit of 0.40 pM. Remarkably, our nanomachine successfully executes endogenous ATP imaging and is able to distinguish tumor cells from normal ones based on the ATP level. Overall, the proposed strategy opens up a promising avenue for bioactive small molecule-based detection/diagnostic assays.


Asunto(s)
Técnicas Biosensibles , ADN , Oligonucleótidos , Adenosina Trifosfato , Técnicas Biosensibles/métodos , Límite de Detección
5.
Trends Biotechnol ; 41(5): 653-668, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36117022

RESUMEN

DNA nanoflowers (DNFs) are topological flower-like nanostructures based on ultralong-strand DNA and inorganic metal-ion frameworks. Because of their programmability, biocompatibility, and controllable assembly size for specific responses to molecular recognition stimuli, DNFs are powerful biosensing tools for detecting biomolecules. Here, we review the current state of DNF-based biosensing strategies for in vivo and in vitro detection, with a view of how the field has evolved towards molecular diagnostics. We also provide a detailed classification of DNF-based biosensing strategies and propose their future utility. Particularly as transduction elements, DNFs can accelerate biosensing engineering by signal amplification. Finally, we discuss the key challenges and further prospects of DNF-based biosensing technologies in developing applications of a broader scope.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Patología Molecular , ADN/química , Nanoestructuras/química , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...