Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Graph Model ; 130: 108786, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710130

RESUMEN

In this research, the wetting behavior of SiO2 modified with dodecyltrimethoxysilane (DTMS) was explored using both experimental and molecular dynamics (MD) simulation approaches. The experimental results reveal that DTMS can chemically bond to the SiO2 surface, and the contact angle (CA) reaches the maximum value of 157.7° when the mass of DTMS is twice that of SiO2. The different wetting behaviors caused by DTMS grafting were analyzed by CA fitting, ionic pairs, concentration distribution, molecule orientation, and interfacial interaction energy. The results demonstrate that a 25 % DTMS grafting rate resulted in a maximum CA of 158.2°, which is ascribed to the disruption of interfacial hydrogen bonding and changes in the hydration structure caused by DTMS grafting. Moreover, the above hydrophobic SiO2 model shows a slight decrease in CA as the water temperature increases, which is consistent with the experimental findings. In contrast, an opposite change was observed for the pristine SiO2 model. Although the higher water temperature enhances the diffusion capacity of water molecules in both models, the difference in interfacial interactions is responsible for the change in CA. We hope this finding will contribute to a deeper understanding of the wetting adjustment of SiO2.


Asunto(s)
Enlace de Hidrógeno , Simulación de Dinámica Molecular , Silanos , Dióxido de Silicio , Humectabilidad , Dióxido de Silicio/química , Silanos/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Temperatura , Propiedades de Superficie
2.
Biomed Pharmacother ; 174: 116579, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631145

RESUMEN

BACKGROUND AND AIM: Diabetes-associated cognitive impairment (DCI) is a prevalent complication of diabetes. However, there is a lack of viable strategies for preventing and treating DCI. This study aims to explore the efficacy of baicalin (Bai) in attenuating DCI and elucidating the underlying mechanisms. EXPERIMENTAL PROCEDURE: GK rats fed a high-fat and high-glucose diet were utilized to investigate the therapeutic potential of Bai. Cognitive function was assessed using the Morris water maze and novel object recognition tests. To gain insight into the molecular mechanisms underlying Bai's neuro-protective effects, co-cultured BV2/HT22 cells were established under high-glucose (HG) stimulation. The modes of action of Bai were subsequently confirmed in vivo using the DCI model in db/db mice. KEY RESULTS: Bai restored cognitive and spatial memory and attenuated neuron loss, along with reducing expressions of Aß and phosphorylated Tau protein in diabetic GK rats. At the cellular level, Bai exhibited potent antioxidant and anti-inflammatory effects against HG stimulation. These effects were associated with the upregulation of Nrf2 and supressed Keap1 levels. Consistent with these in vitro findings, similar mechanisms were observed in db/db mice. The significant neuroprotective effects of Bai were abolished when co-administered with ATRA, a Nrf2 blocker, in db/db mice, confirming that KEAP1-Nrf2 signaling pathway was responsible for the observed effect. CONCLUSIONS AND IMPLICATIONS: Bai demonstrates a great therapeutic potential for attenuating DCI. The antioxidant defense and anti-inflammatory actions of Bai were mediated through the KEAP1-Nrf2 axis. These findings advance our understanding of potential treatment approaches for DCI, a common complication associated with diabetes.


Asunto(s)
Disfunción Cognitiva , Flavonoides , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Transducción de Señal , Regulación hacia Arriba , Animales , Masculino , Ratones , Ratas , Antioxidantes/farmacología , Línea Celular , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
3.
ACS Appl Mater Interfaces ; 16(10): 12612-12623, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427784

RESUMEN

Silicon microparticles (SiMPs) have gained significant attention as a lithium-ion battery anode material due to their 10 times higher theoretical capacity compared to conventional graphite anodes as well as their much lower production cost than silicon nanoparticles (SiNPs). However, SiMPs have suffered from poorer cycle life relative to SiNPs because their larger size makes them more susceptible to volume changes during charging and discharging. Creating a wrapping structure in which SiMPs are enveloped by carbon layers has proven to be an effective strategy to significantly improve the cycling performance of SiMPs. However, the synthesis processes are complex and time-/energy-consuming and therefore not scalable. In this study, a wrapping structure is created by using a simple, rapid, and scalable "modified reprecipitation method". Graphene oxide (GO) and SiMP dispersion in tetrahydrofuran is injected into n-hexane, in which GO and SiMP by themselves cannot disperse. GO and SiMP therefore aggregate and precipitate immediately after injection to form a wrapping structure. The resulting SiMP/GO film is laser scribed to reduce GO to a laser-scribed graphene (LSG). Simultaneously, SiOx and SiC protection layers form on the SiMPs through the laser process, which alleviates severe volume change. Owing to these desirable characteristics, the modified reprecipitation method successfully doubles the cycle life of SiMP/graphene composites compared to the simple physically mixing method (50.2% vs. 24.0% retention at the 100th cycle). The modified reprecipitation method opens a new synthetic strategy for SiMP/carbon composites.

4.
Small ; 20(28): e2305921, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342674

RESUMEN

Silicon has gained significant attention as a lithium-ion battery anode material due to its high theoretical capacity compared to conventional graphite. Unfortunately, silicon anodes suffer from poor cycling performance caused by their extreme volume change during lithiation and de-lithiation. Compositing silicon particles with 2D carbon materials, such as graphene, can help mitigate this problem. However, an unaddressed challenge remains: a simple, inexpensive synthesis of Si/graphene composites. Here, a one-step laser-scribing method is proposed as a straightforward, rapid (≈3 min), scalable, and less-energy-consuming (≈5 W for a few minutes under air) process to prepare Si/laser-scribed graphene (LSG) composites. In this research, two types of Si particles, Si nanoparticles (SiNPs) and Si microparticles (SiMPs), are used. The rate performance is improved after laser scribing: SiNP/LSG retains 827.6 mAh g-1 at 2.0 A gSi+C -1, while SiNP/GO (before laser scribing) retains only 463.8 mAh g-1. This can be attributed to the fast ion transport within the well-exfoliated 3D graphene network formed by laser scribing. The cyclability is also improved: SiNP/LSG retains 88.3% capacity after 100 cycles at 2.0 A gSi+C -1, while SiNP/GO retains only 57.0%. The same trend is found for SiMPs: the SiMP/LSG shows better rate and cycling performance than SiMP/GO composites.

5.
Adv Mater ; 36(3): e2306145, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37903216

RESUMEN

Rechargeability in zinc (Zn) batteries is limited by anode irreversibility. The practical lean electrolytes exacerbate the issue, compromising the cost benefits of zinc batteries for large-scale energy storage. In this study, a zinc-coordinated interphase is developed to avoid chemical corrosion and stabilize zinc anodes. The interphase promotes Zn2+ ions to selectively bind with histidine and carboxylate ligands, creating a coordination environment with high affinity and fast diffusion due to thermodynamic stability and kinetic lability. Experiments and simulations indicate that interphase regulates dendrite-free electrodeposition and reduces side reactions. Implementing such labile coordination interphase results in increased cycling at 20 mA cm-2 and high reversibility of dendrite-free zinc plating/stripping for over 200 hours. A Zn||LiMn2 O4 cell with 74.7 mWh g-1 energy density and 99.7% Coulombic efficiency after 500 cycles realized enhanced reversibility using the labile coordination interphase. A lean-electrolyte full cell using only 10 µL mAh-1 electrolyte is also demonstrated with an elongated lifespan of 100 cycles, five times longer than bare Zn anodes. The cell offers a higher energy density than most existing aqueous batteries. This study presents a proof-of-concept design for low-electrolyte, high-energy-density batteries by modulating coordination interphases on Zn anodes.

6.
Macromol Rapid Commun ; 45(1): e2300237, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37232260

RESUMEN

Conducting polymers like polyaniline (PANI) are promising pseudocapacitive electrode materials, yet experience instability in cycling performance. Since polymers often degrade into oligomers, short chain length anilines have been developed to improve the cycling stability of PANI-based supercapacitors. However, the capacitance degradation mechanisms of aniline oligomer-based materials have not been systematically investigated and are little understood. Herein, two composite electrodes based on aniline trimers (AT) and carbon nanotubes (CNTs) are studied as model systems and evaluated at both pre-cycling and post-cycling states through physicochemical and electrochemical characterizations. The favorable effect of covalent bonding between AT and CNTs is confirmed to enhance cycling stability by preventing the detachment of aniline trimer and preserving the electrode microstructure throughout the charge/discharge cycling process. In addition, higher porosity has a positive effect on electron/ion transfer and the adaptation to volumetric changes, resulting in higher conductivity and extended cycle life. This work provides insights into the mechanism of enhanced cycling stability of aniline oligomers, indicating design features for aniline oligomer electrode materials to improve their electrochemical performance.


Asunto(s)
Nanotubos de Carbono , Polímeros , Polímeros/química , Nanotubos de Carbono/química , Compuestos de Anilina/química
7.
Mater Horiz ; 11(3): 688-699, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-37990914

RESUMEN

The development of potent pseudocapacitive charge storage materials has emerged as an effective solution for closing the gap between high-energy density batteries and high-power density and long-lasting electrical double-layer capacitors. Sulfonyl compounds are ideal candidates owing to their rapid and reversible redox reactions. However, structural instability and low electrical conductivity hinder their practical application as electrode materials. This work addresses these challenges using a fast and clean laser process to interconnect sulfonated carbon nanodots into functionalized porous carbon frameworks. In this bottom-up approach, the resulting laser-converted three-dimensional (3D) turbostratic carbon foams serve as high-surface-area, conductive scaffolds for redox-active sulfonyl groups. This design enables efficient faradaic processes using pendant sulfonyl groups, leading to a high specific capacitance of 157.6 F g-1 due to the fast reversible redox reactions of sulfonyl moieties. Even at 20 A g-1, the capacitance remained at 78.4% due to the uniform distribution of redox-active sites on the graphitic domains. Additionally, the 3D-tsSC300 electrode showed remarkable cycling stability of >15 000 cycles. The dominant capacitive processes and kinetics were analysed using extensive electrochemical characterizations. Furthermore, we successfully used 3D-tsSC300 in flexible solid-state supercapacitors, achieving a high specific capacitance of up to 17.4 mF cm-2 and retaining 91.6% of the initial capacitance after 20 000 cycles of charge and discharge coupled with 90° bending tests. Additionally, an as-assembled flexible all-solid-state symmetric supercapacitor exhibits a high energy density of 12.6 mW h cm-3 at a high power density of 766.2 W cm-3, both normalized by the volumes of the full device, which is comparable or better than state-of-the-art commercial pseudocapacitors and hybrid capacitors. The integrated supercapacitor provides a wide potential window of 2.0 V using a serial circuit, showing great promise for metal-free energy storage devices.

8.
J Mol Graph Model ; 126: 108626, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734168

RESUMEN

Recently, superhydrophobic surfaces have received increasing interest in metal corrosion protection due to their excellent waterproofing characteristics. However, little attention has been paid to the related anti-corrosion mechanism at the molecular level. In this work, the protection behaviors provided by the superhydrophobic dodecyltrimethoxysilane for mild steel were first explored using molecular dynamics (MD) simulation in terms of silane absorption orientations and water cluster wetting behaviors. The results show that the conformations of dodecyltrihydroxysilane (DTHS) on the Fe substrate are greatly dependent on the solvent environment. Typically, the DTHS molecule adopts a "standing" orientation with the hydrophilic head attached to the Fe surface and the hydrophobic tail remaining in the polar phase, which is conducting to generate a good repulsive effect on the water droplet. Based on this, the diffusion performance of corrosive species in the superhydrophobic DTHS film was further investigated. The computational results indicate that the corrosive species are confined to specific regions of the film, which results in a decreased diffusion coefficient. Additionally, the weak movement of DTHS molecules also increases the transport resistance of the corrosive medium through the superhydrophobic DTHS film, thereby improving the corrosion protection of the underlying metal substrate. The results obtained in this work will deepen our understanding of the anticorrosion mechanism of superhydrophobic silane films.


Asunto(s)
Cáusticos , Acero , Propiedades de Superficie , Corrosión , Simulación de Dinámica Molecular , Silanos , Interacciones Hidrofóbicas e Hidrofílicas , Agua
9.
J Pharm Pharmacol ; 76(2): 115-121, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150242

RESUMEN

AIM: Our study is to investigate the effects of triazole antifungal drugs on the pharmacokinetics of lorlatinib in rats. METHODS: The samples were precipitated with methanol. Chromatographic separation was performed on a ultra-performance liquid chromatography (UPLC) system using a BEH C18 column. The mobile phase consisted of 0.1% formic acid water and methanol. Lorlatinib and crizotinib (internal standard) were detected in multiple reaction monitoring mode. The fragment ions were 407.3-228.07 for lorlatinib and m/z 450.3-260.0 for crizotinib. Lorlatinib and different triazole antifungal drugs were given to Sprague Dawley rats by gavage, and blood was collected from the tail vein at a certain time point. The validated UPLC-MS/MS method was applied to a drug interaction study of ketoconazole, voriconazole, itraconazole, and posaconazole with lorlatinib in rats. RESULTS: Ketoconazole and voriconazole significantly inhibited lorlatinib metabolism. When administration with ketoconazole and voriconazole, the area under the curve from time zero to infinity of lorlatinib increased by 49.0% and 104.3%, respectively; the clearance decreased by 40.0% and 40.0%, respectively. While itraconazole and posaconazole did not affect lorlatinib pharmacokinetics. CONCLUSION: The UPLC-MS/MS-based assay is helpful to further understand the pharmacokinetics of lorlatinib in rats, and confirmed the findings that the combination of lorlatinib with CYP3A inhibitors should be avoided as predicted by our pre-clinical studies.


Asunto(s)
Aminopiridinas , Antifúngicos , Itraconazol , Lactamas , Pirazoles , Ratas , Animales , Voriconazol/farmacocinética , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Ratas Sprague-Dawley , Cetoconazol , Crizotinib , Metanol , Triazoles , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados
10.
Artículo en Inglés | MEDLINE | ID: mdl-37999452

RESUMEN

OBJECTIVE: This article examined the cost-effectiveness of zanubrutinib and ibrutinib for managing relapsed and refractory chronic lymphocytic leukemia from the viewpoint of payers in China and the US. METHODS: Markov models were employed to conduct comparisons. Baseline characteristics and clinical data were extracted from the ALPINE study. The cost-effectiveness outcome indicators encompassed cost, quality-adjusted life years, and the incremental cost-effectiveness ratio. RESULTS: The Markov model analysis revealed that the zanubrutinib group incurred an incremental cost per patient of $-24,586.53 compared to the ibrutinib group. The zanubrutinib group exhibited an incremental utility per capita of 0.28 quality-adjusted life years, resulting in an incremental cost-effectiveness ratio of $-88,068.16 per quality-adjusted life year, which is lower than the payment threshold in China. The willingness-to-pay value in China for 2022 was three times the country's gross domestic product per capita. In the US, patients in the zanubrutinib group experienced per capita incremental costs of $-79,421.56, per capita incremental utility of 0.28 quality-adjusted life years, and an incremental cost-effectiveness ratio of $-284,485.45 per quality-adjusted life year. CONCLUSION: For Chinese payers, zanubrutinib exhibited superior cost-effectiveness compared to ibrutinib. Zanubrutinib proved to be a more affordable option for US payers when considering the payment threshold.

11.
Heliyon ; 9(11): e22007, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034607

RESUMEN

Dendrobium mixture (DM) is a patented Chinese herbal medicine which has been shown to ameliorate type 2 diabetes mellitus (T2DM) with non-alcoholic fatty liver disease (NAFLD) in vivo and in vitro. We aimed to investigate the underlying mechanism of DM as a therapeutic agent in attenuating liver steatosis in relation to type 2 diabetes mellitus (T2DM). DM (16.2 g/kg/d) was administered to db/db mice for 4 weeks. The db/m mice and db/db mice in the control and model groups were given normal saline. Additionally, DM (11.25 g/kg/d) was administered to Sprague-Dawley (SD) rats, and the serum was collected and used in an experiment involving palmitic acid (PA)-induced human liver HepG2 cells with abnormal lipid and glucose metabolism. In db/db mice, the administration of DM significantly alleviated liver steatosis, including histological damage and cell apoptosis. DM was found to prevent the upregulation of the RAGE and AKT1 proteins in liver tissues. The underlying mechanism of DM was further studied in PA-induced HepG2 cells. Post-DM administration serum from SD rats reduced lipid accumulation and regulated glucose metabolism in HepG2 cells. Consequently, it inhibited RAGE/AKT signaling and restored autophagy activity. The upregulated autophagy was associated with the mTOR-AMPK signaling pathway. Furthermore, post-DM administration serum reduced apoptosis of hepatocytes in PA-induced HepG2 cells. Our study supports the potential use of DM as a therapeutic agent for the treatment of NAFLD in T2DM. The mechanism underlying this therapeutic potential is associated with the downregulation of the AGE/RAGE/Akt signaling pathway.

12.
Phytother Res ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697721

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the main cause of chronic liver disease. Baicalin (Bai), a bioactive molecule found in Scutellaria baicalensis Georgi, possesses antioxidant and antiinflammatory properties. These activities suggest Bai could be a promising therapeutic agent against NAFLD; however, its specific effects and underlying mechanism are still not clear. This study aims to explore the effect of Bai to attenuate MAFLD and associated molecular mechanisms. Bai (50, 100 or 200 mg/kg) was orally administered to db/db mice with MAFLD for 4 weeks or db/m mice as the normal control. Bai markedly attenuated lipid accumulation, cirrhosis and hepatocytes apoptosis in the liver tissues of MAFLD mice, suggesting strong ability to attenuate MAFLD. Bai significantly reduced proinflammatory biomarkers and enhanced antioxidant enzymes, which appeared to be modulated by the upregulated p62-Keap1-Nrf2 signalling cascade; furthermore, cotreatment of Bai and all-trans-retinoic acid (Nrf2 inhibitor) demonstrated markedly weakened liver protective effects by Bai and its induced antioxidant and antiinflammatory responses. The present study supported the use of Bai in attenuating MAFLD as a promising therapeutic agent, and its strong mechanism of action in association with the upregulating the p62-keap1-Nrf2 pathway.

13.
Biomed Pharmacother ; 165: 115279, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544281

RESUMEN

Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease that has no viable treatment. Curcumin (Cur) and resveratrol (Res) are two natural products that have been studied for their potential to ameliorate MAFLD. However, while these compounds have been investigated individually, their combined use and the potential for a synergistic or augmented effect remain unexplored. This study aims to investigate the effect of curcumin (Cur) and resveratrol (Res) as a potential combination therapy on MAFLD. Cur, Res and Cur+Res were tested in palmitic acid (PA)-induced-HepG2 cells. MAFLD model was established using Goto-Kakizaki rats. The animals were treated with vehicle control (model group), Cur (150 mg/kg), Res (150 mg/kg), Cur+Res (150 mg/kg, 8:2, w/w), or metformin (Met, positive control, 400 mg/kg/day) via oral gavage for 4 weeks. Wistar rats were used as the control group. Network pharmacology was conducted to elucidate the molecular actions of Cur and Res, followed by q-PCR and immunoblotting in vivo. Cur+Res exhibited synergistic effects in reducing triglyceride, total cholesterol and lipid accumulation in PA-induced HepG2 cells. The combination also markedly attenuated hepatic steatosis in the MAFLD rats. Network pharmacology illustrated that the interaction of Cur and Res was associated with the modulation of multiple molecular targets associated with the PI3K/AKT/mTOR and HIF-1 signaling pathways. Experimental results confirmed that Cur+Res nomalised the gene targets and protein expressions in the PI3K/AKT/mTOR and HIF-1 signaling pathways, including PI3K, mTOR, STAT-3, HIF-1α, and VEGF. The present study demonstrated an advanced effect of Cur and Res in combination to attenuate MAFLD, and the mechanism is at least partly associated with the modulation of the PI3K/AKT/mTOR and HIF-1 signaling pathways.


Asunto(s)
Curcumina , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Resveratrol/farmacología , Resveratrol/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ratas Wistar , Serina-Treonina Quinasas TOR/metabolismo
14.
Front Med (Lausanne) ; 9: 1022595, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388937

RESUMEN

Objective: Establishing a risk model of the survival situation of appendix cancer for accurately identifying high-risk patients and developing individualized treatment plans. Methods: A total of 4,691 patients who were diagnosed with primary appendix cancer from 2010 to 2016 were extracted using Surveillance, Epidemiology, and End Results (SEER) * Stat software. The total sample size was divided into 3,283 cases in the modeling set and 1,408 cases in the validation set at a ratio of 7:3. A nomogram model based on independent risk factors that affect the prognosis of appendix cancer was established. Single-factor Cox risk regression, Lasso regression, and multifactor Cox risk regression were used for analyzing the risk factors that affect overall survival (OS) in appendectomy patients. A nomogram model was established based on the independent risk factors that affect appendix cancer prognosis, and the receiver operating characteristic curve (ROC) curve and calibration curve were used for evaluating the model. Survival differences between the high- and low-risk groups were analyzed through Kaplan-Meier survival analysis and the log-rank test. Single-factor Cox risk regression analysis found age, ethnicity, pathological type, pathological stage, surgery, radiotherapy, chemotherapy, number of lymph nodes removed, T stage, N stage, M stage, tumor size, and CEA all to be risk factors for appendiceal OS. At the same time, multifactor Cox risk regression analysis found age, tumor stage, surgery, lymph node removal, T stage, N stage, M stage, and CEA to be independent risk factors for appendiceal OS. A nomogram model was established for the multifactor statistically significant indicators. Further stratified with corresponding probability values based on multifactorial Cox risk regression, Kaplan-Meier survival analysis found the low-risk group of the modeling and validation sets to have a significantly better prognosis than the high-risk group (p < 0.001). Conclusion: The established appendix cancer survival model can be used for the prediction of 1-, 3-, and 5-year OS and for the development of personalized treatment options through the identification of high-risk patients.

15.
Front Endocrinol (Lausanne) ; 13: 953305, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060932

RESUMEN

Endothelial dysfunction is an early pathological event in diabetic angiopathy which is the most common complication of diabetes. This study aims to investigate individual and combined actions of Curcumin (Cur) and Baicalein (Bai) in protecting vascular function. The cellular protective effects of Cur, Bai and Cur+Bai (1:1, w/w) were tested in H2O2 (2.5 mM) impaired EA. hy926 cells. Wistar rats were treated with vehicle control as the control group, Goto-Kakizaki rats (n=5 each group) were treated with vehicle control (model group), Cur (150 mg/kg), Bai (150 mg/kg), or Cur+Bai (75 mg/kg Cur + 75 mg/kg Bai, OG) for 4 weeks after a four-week high-fat diet to investigate the changes on blood vessel against diabetic angiopathy. Our results showed that Cur+Bai synergistically restored the endothelial cell survival and exhibited greater effects on lowering the fasting blood glucose and blood lipids in rats comparing to individual compounds. Cur+Bai repaired the blood vessel structure in the aortic arch and mid thoracic aorta. The network pharmacology analysis showed that Nrf2 and MAPK/JNK kinase were highly relevant to the multi-targeted action of Cur+Bai which has been confirmed in the in vitro and in vivo studies. In conclusion, Cur+Bai demonstrated an enhanced activity in attenuating endothelial dysfunction against oxidative damage and effectively protected vascular function in diabetic angiopathy rats.


Asunto(s)
Curcumina , Diabetes Mellitus , Angiopatías Diabéticas , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Angiopatías Diabéticas/tratamiento farmacológico , Angiopatías Diabéticas/prevención & control , Flavanonas , Peróxido de Hidrógeno , Ratas , Ratas Wistar
16.
Front Pharmacol ; 13: 890444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899118

RESUMEN

Diabetes-induced cognitive impairment (DCI) presents a major public health risk among the aging population. Previous clinical attempts on known therapeutic targets for DCI, such as depleted insulin secretion, insulin resistance, and hyperglycaemia have delivered poor patient outcomes. However, recent evidence has demonstrated that the gut microbiome plays an important role in DCI by modulating cognitive function through the gut-brain crosstalk. The bioactive compound tanshinone IIA (TAN) has shown to improve cognitive and memory function in diabetes mellitus models, though the pharmacological actions are not fully understood. This study aims to investigate the effect and underlying mechanism of TAN in attenuating DCI in relation to regulating the gut microbiome. Metagenomic sequencing analyses were performed on a group of control rats, rats with diabetes induced by a high-fat/high-glucose diet (HFD) and streptozotocin (STZ) (model group) and TAN-treated diabetic rats (TAN group). Cognitive and memory function were assessed by the Morris water maze test, histopathological assessment of brain tissues, and immunoblotting of neurological biomarkers. The fasting blood glucose (FBG) level was monitored throughout the experiments. The levels of serum lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunoassays to reflect the circulatory inflammation level. The morphology of the colon barrier was observed by histopathological staining. Our study confirmed that TAN reduced the FBG level and improved the cognitive and memory function against HFD- and STZ-induced diabetes. TAN protected the endothelial tight junction in the hippocampus and colon, regulated neuronal biomarkers, and lowered the serum levels of LPS and TNF-α. TAN corrected the reduced abundance of Bacteroidetes in diabetic rats. At the species level, TAN regulated the abundance of B. dorei, Lachnoclostridium sp. YL32 and Clostridiodes difficile. TAN modulated the lipid metabolism and biosynthesis of fatty acids in related pathways as the main functional components. TAN significantly restored the reduced levels of isobutyric acid and butyric acid. Our results supported the use of TAN as a promising therapeutic agent for DCI, in which the underlying mechanism may be associated with gut microbiome regulation.

17.
J Cell Mol Med ; 26(16): 4492-4505, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35855570

RESUMEN

Crizotinib (CRIZO) has been widely employed to treat non-small-cell lung cancer. However, hepatic inflammatory injury is the major toxicity of CRIZO, which limits its clinical application, and the underlying mechanism of CRIZO-induced hepatotoxicity has not been fully explored. Herein, we used cell counting kit-8 assay and flow cytometry to detect CRIZO-induced cytotoxicity on human hepatocytes (HL-7702). CRIZO significantly reduced the survival rate of hepatocytes in a dose-dependent manner. Furthermore, the reactive oxygen species (ROS) assay kit showed that CRIZO treatment strongly increased the level of ROS. In addition, CRIZO treatment caused the appearance of balloon-like bubbles and autophagosomes in HL-7702 cells. Subsequently, Western blotting, quantitative real-time PCR and ELISA assays revealed that ROS-mediated pyroptosis and autophagy contributed to CRIZO-induced hepatic injury. Based on the role of ROS in CRIZO-induced hepatotoxicity, magnesium isoglycyrrhizinate (MgIG) was used as an intervention drug. MgIG activated the Nrf2/HO-1 signalling pathway and reduced ROS level. Additionally, MgIG suppressed hepatic inflammation by inhibiting NF-κB activity, thereby reducing CRIZO-induced hepatotoxicity. In conclusion, CRIZO promoted autophagy activation and pyroptosis via the accumulation of ROS in HL-7702 cells. MgIG exerts therapeutic effects on CRIZO-induced hepatotoxicity by decreasing the level of ROS.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Enfermedad Hepática Inducida por Sustancias y Drogas , Neoplasias Pulmonares , Autofagia , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Crizotinib/farmacología , Humanos , Piroptosis , Especies Reactivas de Oxígeno/metabolismo , Saponinas , Triterpenos
18.
Biomed Pharmacother ; 149: 112891, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367768

RESUMEN

Dendrobium mixture (DM) is a patent Chinese herbal formulation consisting of Dendrobii Caulis, Astragali Radix, Rehmanniae Radix as the main ingredients. DM has been shown to alleviate diabetic related symptoms attributed to its anti-hyperglycaemic and anti-inflammatory activities. However, the effect on diabetic induced cognitive dysfunction has not been investigated. This study aims to investigate the effect of DM in improving diabetic cognitive impairment and associated mechanisms. Our study confirmed the anti-hyperglycaemic effect of DM and showed its capacity to restore the cognitive and memory function in high fat/high glucose and streptozotocin-induced diabetic rats. The neuroprotective effect was manifested as improved learning and memory behaviours, restored blood-brain barrier tight junction, and enhanced expressions of neuronal survival related biomarkers. DM protected the colon tight junction, and effectively lowered the circulated proinflammatory mediators including tumour necrosis factor-α, interleukin-6 and lipopolysaccharides. In the gut microbiota, DM corrected the increase in the abundance of Firmicutes, the increase in the ratio of Firmicutes/Bacteroidetes, and the decrease in the abundance of Bacteroidetes in diabetic rats. It also reversed the abundance of Lactobacillus, Ruminococcus and Allobaculum genera. Short chain fatty acids, isobutyric acid and ethylmethylacetic acid, were negatively and significantly correlated to Ruminococcus and Allobaculum. Isovaleric acid was positively and significantly correlated with Lactobacillus, which all contributing to the improvement in glucose level, systemic inflammation and cognitive function in diabetic rats. Our results demonstrated the potential of DM as a promising therapeutic agent in treating diabetic cognitive impairment and the underlying mechanism may be associated with regulating gut microbiota.


Asunto(s)
Disfunción Cognitiva , Dendrobium , Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Animales , Disfunción Cognitiva/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa/metabolismo , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Lactobacillus , Ratas
19.
Drug Des Devel Ther ; 15: 2171-2178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079220

RESUMEN

BACKGROUND AND AIM: Dasatinib is approved for the treatment of leukaemia worldwide. Triazole agents such as posaconazole may be used for the control of secondary fungal infection with leukaemia. This work aimed to develop a bioanalytical method to study the potential interaction between dasatinib and posaconazole. METHODS: An ultrahigh-performance liquid chromatography-tandem mass spectrometry method was established to measure the plasma concentrations of dasatinib and posaconazole in rats simultaneously. Simple protein precipitation with acetonitrile was applied to extract dasatinib and posaconazole in samples. The chromatographic separation of analytes was conducted on an UPLC BEH C18 column using a mobile phase consisting of 0.1% aqueous formic acid and acetonitrile. Dasatinib and posaconazole were monitored in positive ion mode with the following mass transition pairs: m/z 488.2→401.1 for dasatinib and m/z 701.3→683.4 for posaconazole. The method was successfully applied for pharmacokinetic interaction between dasatinib and posaconazole. RESULTS: The established method expressed good linearity in 1-1000 ng/mL of dasatinib and 5-5000 ng/mL of posaconazole, with limit of detection was 1 ng/mL and 5 ng/mL, respectively. Methodology validations, including accuracy, precision, matrix effect, recovery, and stability, met the US Food and Drug Administration (FDA) acceptance criteria for bioanalytical method validation. Dasatinib strongly inhibited the clearance of posaconazole in vivo, while posaconazole expressed no significant effect on the pharmacokinetics of dasatinib. CONCLUSION: Dasatinib alters the pharmacokinetics of posaconazole. Attention should be paid to the unexpected risk of adverse clinical outcomes when posaconazole is co-administered with dasatinib.


Asunto(s)
Dasatinib/farmacocinética , Triazoles/farmacocinética , Animales , Cromatografía Líquida de Alta Presión , Dasatinib/química , Diseño de Equipo , Masculino , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Triazoles/química
20.
Small ; 17(48): e2006875, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34048633

RESUMEN

Technological breakthroughs in energy storage are being driven by the development of next-generation supercapacitors with favorable features besides high-power density and cycling stability. In this innovation, graphene and its derived materials play an active role. Here, the research status of graphene supercapacitors is analyzed. Recent progress is outlined in graphene assembly, exfoliation, and processing techniques. In addition, electrochemical and electrical attributes that are increasingly valued in next-generation supercapacitors are highlighted along with a summary of the latest research addressing chemical modification of graphene and its derivatives for future supercapacitors. The challenges and solutions discussed in the review hopefully will shed light on the commercialization of graphene and a broader genre of 2D materials in energy storage applications.


Asunto(s)
Grafito , Electricidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...