Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Traffic ; 24(12): 576-586, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37658794

RESUMEN

To combat microbial infections, mammalian cells use a variety of innate immune response pathways to induce synthesis of anti-microbial proteins. The cGAS/STING pathway recognizes cytoplasmic viral or cellular DNA to elicit signals that lead to type I interferon and other cytokine synthesis. cGAMP, synthesized by DNA-activated cGAS, activates the ER-associated protein, STING, which oligomerizes and translocates to other intracellular membrane compartments to trigger different branches of signaling. We have reported that, in the ER, EGFR-mediated phosphorylation of Tyr245 of STING is required for its transit to the late endosomes, where it recruits and activates the transcription factor IRF3 required for IFN induction. In the current study, we inquired whether STING Tyr245 phosphorylation per se or STING's location in the late endosomes was critical for its ability to recruit IRF3 and induce IFN. Using pharmacological inhibitors or genetic ablation of proteins that are essential for specific steps of STING trafficking, we demonstrated that the presence of STING in the late endosomal membranes, even without Tyr245 phosphorylation, was sufficient for IRF3-mediated IFN induction.


Asunto(s)
Interferones , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Serina-Treonina Quinasas/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Inmunidad Innata/genética , ADN , Endosomas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
2.
Cell Rep Med ; 4(4): 101012, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37075705

RESUMEN

Loss of function of inhibitory immune checkpoints, unleashing pathogenic immune responses, is a potential risk factor for autoimmune disease. Here, we report that patients with the autoimmune vasculitis giant cell arteritis (GCA) have a defective CD155-CD96 immune checkpoint. Macrophages from patients with GCA retain the checkpoint ligand CD155 in the endoplasmic reticulum (ER) and fail to bring it to the cell surface. CD155low antigen-presenting cells induce expansion of CD4+CD96+ T cells, which become tissue invasive, accumulate in the blood vessel wall, and release the effector cytokine interleukin-9 (IL-9). In a humanized mouse model of GCA, recombinant human IL-9 causes vessel wall destruction, whereas anti-IL-9 antibodies efficiently suppress innate and adaptive immunity in the vasculitic lesions. Thus, defective surface translocation of CD155 creates antigen-presenting cells that deviate T cell differentiation toward Th9 lineage commitment and results in the expansion of vasculitogenic effector T cells.


Asunto(s)
Arteritis de Células Gigantes , Ratones , Animales , Humanos , Arteritis de Células Gigantes/metabolismo , Arteritis de Células Gigantes/patología , Citocinas/metabolismo , Linfocitos T , Inmunidad Adaptativa , Antígenos CD/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(16): e2216953120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036972

RESUMEN

In cancer cells, endogenous or therapy-induced DNA damage leads to the abnormal presence of DNA in the cytoplasm, which triggers the activation of cGAS (cyclic GMP-AMP synthase) and STING (stimulator of interferon genes). STAT2 suppresses the cGAMP-induced expression of IRF3-dependent genes by binding to STING, blocking its intracellular trafficking, which is essential for the full response to STING activation. STAT2 reshapes STING signaling by inhibiting the induction of IRF3-dependent, but not NF-κB-dependent genes. This noncanonical activity of STAT2 is regulated independently of its tyrosine phosphorylation but does depend on the phosphorylation of threonine 404, which promotes the formation of a STAT2:STING complex that keeps STING bound to the endoplasmic reticulum (ER) and increases resistance to DNA damage. We conclude that STAT2 is a key negative intracellular regulator of STING, a function that is quite distinct from its function as a transcription factor.


Asunto(s)
Proteínas de la Membrana , Nucleotidiltransferasas , Proteínas Serina-Treonina Quinasas , Factor de Transcripción STAT2 , ADN/metabolismo , Daño del ADN , Nucleotidiltransferasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factor de Transcripción STAT2/metabolismo , Proteínas de la Membrana/metabolismo
4.
Nat Aging ; 3(5): 600-616, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37118554

RESUMEN

Chronic systemic inflammation is one of the hallmarks of the aging immune system. Here we show that activated T cells from older adults contribute to inflammaging by releasing mitochondrial DNA (mtDNA) into their environment due to an increased expression of the cytokine-inducible SH2-containing protein (CISH). CISH targets ATP6V1A, an essential component of the proton pump V-ATPase, for proteasomal degradation, thereby impairing lysosomal function. Impaired lysosomal activity caused intracellular accumulation of multivesicular bodies and amphisomes and the export of their cargos, including mtDNA. CISH silencing in T cells from older adults restored lysosomal activity and prevented amphisomal release. In antigen-specific responses in vivo, CISH-deficient CD4+ T cells released less mtDNA and induced fewer inflammatory cytokines. Attenuating CISH expression may present a promising strategy to reduce inflammation in an immune response of older individuals.


Asunto(s)
Citocinas , ADN Mitocondrial , Anciano , Humanos , Citocinas/metabolismo , ADN Mitocondrial/genética , Inflamación/genética , Lisosomas/metabolismo
5.
J Clin Invest ; 133(2)2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36647826

RESUMEN

Prostate cancer is highly dependent on androgens and the androgen receptor (AR). Hormonal therapies inhibit gonadal testosterone production, block extragonadal androgen biosynthesis, or directly antagonize AR. Resistance to medical castration occurs as castration-resistant prostate cancer (CRPC) and is driven by reactivation of the androgen-AR axis. 3ß-hydroxysteroid dehydrogenase-1 (3ßHSD1) serves as the rate-limiting step for potent androgen synthesis from extragonadal precursors, thereby stimulating CRPC. Genetic evidence in men demonstrates the role of 3ßHSD1 in driving CRPC. In postmenopausal women, 3ßHSD1 is required for synthesis of aromatase substrates and plays an essential role in breast cancer. Therefore, 3ßHSD1 lies at a critical junction for the synthesis of androgens and estrogens, and this metabolic flux is regulated through germline-inherited mechanisms. We show that phosphorylation of tyrosine 344 (Y344) occurs and is required for 3ßHSD1 cellular activity and generation of Δ4, 3-keto-substrates of 5α-reductase and aromatase, including in patient tissues. BMX directly interacts with 3ßHSD1 and is necessary for enzyme phosphorylation and androgen biosynthesis. In vivo blockade of 3ßHSD1 Y344 phosphorylation inhibits CRPC. These findings identify what we believe to be new hormonal therapy pharmacologic vulnerabilities for sex-steroid dependent cancers.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Andrógenos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Aromatasa/uso terapéutico , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata/metabolismo , Testosterona/uso terapéutico , Proteínas Tirosina Quinasas
7.
Acta Pharmacol Sin ; 44(3): 538-545, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36127507

RESUMEN

Aversive emotion of opioid withdrawal generates motivational state leading to compulsive drug seeking and taking. Kappa opioid receptor (KOR) and its endogenous ligand dynorphin have been shown to participate in the regulation of aversive emotion. In the present study, we investigated the role of dynorphin/KOR system in the aversive emotion following opioid withdrawal in acute morphine-dependent mice. We found that blockade of KORs before pairing by intracerebroventricular injection of KOR antagonist norBNI (20, 40 µg) attenuated the development of morphine withdrawal-induced conditioned place aversion (CPA) behavior. We further found that morphine withdrawal increased dynorphin A expression in the dorsal hippocampus, but not in the amygdala, prefrontal cortex, nucleus accumbens, and thalamus. Microinjection of norBNI (20 µg) into the dorsal hippocampus significantly decreased morphine withdrawal-induced CPA behavior. We further found that p38 MAPK was significantly activated in the dorsal hippocampus after morphine withdrawal, and the activation of p38 MAPK was blocked by pretreatment with norBNI. Accordingly, microinjection of p38 MAPK inhibitor SB203580 (5 µg) into the dorsal hippocampus significantly decreased morphine withdrawal-produced CPA behavior. This study demonstrates that upregulation of dynorphin/KOR system in the dorsal hippocampus plays a critical role in the formation of aversive emotion associated with morphine withdrawal, suggesting that KOR antagonists may have therapeutic value for the treatment of opioid withdrawal-induced mood-related disorders.


Asunto(s)
Dinorfinas , Síndrome de Abstinencia a Sustancias , Ratones , Animales , Dinorfinas/metabolismo , Receptores Opioides kappa , Morfina , Analgésicos Opioides/farmacología , Regulación hacia Arriba , Antagonistas de Narcóticos/farmacología , Hipocampo/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
BMJ Open ; 12(12): e063381, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456023

RESUMEN

INTRODUCTION: Varicocele (VC) is a common clinical disease in andrology. Among a number of ways for VC treatment, surgery is the most common one, but the measurable benefit of surgical repair was slight. A growing exploration of complementary therapies has been conducted in clinical research on acupuncture for VC, but there is no relevant systematic review and meta-analysis to assess the efficacy and safety of acupuncture for VC. METHODS AND ANALYSIS: All relevant publications published from database inception through August 2022 will be searched in three English-language databases (Embase, CENTRAL, MEDLINE) and four Chinese-language databases (China National Knowledge Infrastructure, China Science and Technology Journal Database, Chinese Biomedical Literature Database and Wanfang Data). Randomised controlled trials in English and Chinese concerned with acupuncture for patients with VC will be included. The input clinical data will be processed by the Review Manager software (RevMan). The literature will be appraised with the Cochrane Collaboration risk of bias tool. The Grading of Recommendations Assessment, Development and Evaluation system (GRADE system) will be used to evaluate the quality of evidence. ETHICS AND DISSEMINATION: This study is a secondary study based on clinical studies so it does not relate to any individual patient information or infringe the rights of participants. Hence no ethical approval is required. The results will be reported in peer-reviewed journals or disseminated at relevant conferences. PROSPERO REGISTRATION NUMBER: CRD42022316005.


Asunto(s)
Terapia por Acupuntura , Infertilidad Masculina , Varicocele , Humanos , Masculino , Pueblo Asiatico , Bases de Datos Factuales , Infertilidad Masculina/etiología , Infertilidad Masculina/terapia , Varicocele/complicaciones , Varicocele/terapia , Revisiones Sistemáticas como Asunto
9.
Front Robot AI ; 9: 1060933, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569593

RESUMEN

Flapping wing micro aerial vehicles (FWMAVs) are known for their flight agility and maneuverability. These bio-inspired and lightweight flying robots still present limitations in their ability to fly in direct wind and gusts, as their stability is severely compromised in contrast with their biological counterparts. To this end, this work aims at making in-gust flight of flapping wing drones possible using an embodied airflow sensing approach combined with an adaptive control framework at the velocity and position control loops. At first, an extensive experimental campaign is conducted on a real FWMAV to generate a reliable and accurate model of the in-gust flight dynamics, which informs the design of the adaptive position and velocity controllers. With an extended experimental validation, this embodied airflow-sensing approach integrated with the adaptive controller reduces the root-mean-square errors along the wind direction by 25.15% when the drone is subject to frontal wind gusts of alternating speeds up to 2.4 m/s, compared to the case with a standard cascaded PID controller. The proposed sensing and control framework improve flight performance reliably and serve as the basis of future progress in the field of in-gust flight of lightweight FWMAVs.

10.
Front Neurol ; 13: 931551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119704

RESUMEN

Objective: Hemifacial spasm (HFS) is a common neurological disorder of the brain, which is difficult to treat. Most patients are distracted by it and are unable to work or study normally, which seriously affects their physical and mental health. However, there are a few bibliometric studies on it. This paper searched the articles on HFS using a bibliometric approach. Method: Articles about HFS were retrieved from the Web of Science (WoS) Core Collection database. We employed the Visualization of Similarities (VOS)viewer to analyze these publications. Results: A total of 645 reviews or articles in English were retrieved from WoS. In this study, we found that the number of publications showed a rising trend and China is the most active in searching the treatment of HFS. About keywords, neurosciences and neurology was searched (422 times) keyword, followed by hemifacial spasm (420 times) and surgery (320 times). By assessing the organizations, Shanghai Jiao Tong University published the most papers (8.68%), followed by Sungkyunkwan University (3.26%) and Baylor College Medicine (2.64%). A total of 247 journals have delivered publications on the treatment of HFS, World Neurosurgery (44 papers) published the largest number of articles. Conclusion: The annual publications have increased with a fluctuating tendency. More researchers were taking an interest in HFS. This study helped us find out the hotspot and trend in research about facial spasm treatment.

11.
J Biol Chem ; 298(4): 101805, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35259395

RESUMEN

HIV-1 encodes accessory proteins that neutralize antiviral restriction factors to ensure its successful replication. One accessory protein, the HIV-1 viral infectivity factor (Vif), is known to promote ubiquitination and proteasomal degradation of the antiviral restriction factor apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G), a cytosine deaminase that leads to hypermutations in the viral DNA and subsequent aberrant viral replication. We have previously demonstrated that the HIV-1 viral transcription mediator Tat activates the host progrowth PI-3-AKT pathway, which in turn promotes HIV-1 replication. Because the HIV-1 Vif protein contains the putative AKT phosphorylation motif RMRINT, here we investigated whether AKT directly phosphorylates HIV-1 Vif to regulate its function. Coimmunoprecipitation experiments showed that AKT and Vif interact with each other, supporting this hypothesis. Using in vitro kinase assays, we further showed that AKT phosphorylates Vif at threonine 20, which promotes its stability, as Vif becomes destabilized after this residue is mutated to alanine. Moreover, expression of dominant-negative kinase-deficient AKT as well as treatment with a chemical inhibitor of AKT increased K48-ubiquitination and proteasomal degradation of HIV-1 Vif. In contrast, constitutively active AKT (Myr-AKT) reduced K48-ubiquitination of Vif to promote its stability. Finally, inhibition of AKT function restored APOBEC3G levels, which subsequently reduced HIV-1 infectivity. Thus, our results establish a novel mechanism of HIV-1 Vif stabilization through AKT-mediated phosphorylation at threonine 20, which reduces APOBEC3G levels and potentiates HIV-1 infectivity.


Asunto(s)
Desaminasa APOBEC-3G , Infecciones por VIH , VIH-1 , Productos del Gen vif del Virus de la Inmunodeficiencia Humana , Desaminasa APOBEC-3G/genética , Desaminasa APOBEC-3G/metabolismo , Infecciones por VIH/fisiopatología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/patogenicidad , Humanos , Fosforilación , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Treonina/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo
12.
Transl Psychiatry ; 12(1): 84, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35220405

RESUMEN

Several large-scale whole-exome sequencing studies in patients with schizophrenia (SCZ) and autism spectrum disorder (ASD) have identified rare variants with modest or strong effect size as genetic risk factors. Dysregulation of cellular calcium homeostasis might be involved in SCZ/ASD pathogenesis, and genes encoding L-type voltage-gated calcium channel (VGCC) subunits Cav1.1 (CACNA1S), Cav1.2 (CACNA1C), Cav1.3 (CACNA1D), and T-type VGCC subunit Cav3.3 (CACNA1I) recently were identified as risk loci for psychiatric disorders. We performed a screening study, using the Ion Torrent Personal Genome Machine (PGM), of exon regions of these four candidate genes (CACNA1C, CACNA1D, CACNA1S, CACNA1I) in 370 Japanese patients with SCZ and 192 with ASD. Variant filtering was applied to identify biologically relevant mutations that were not registered in the dbSNP database or that have a minor allele frequency of less than 1% in East-Asian samples from databases; and are potentially disruptive, including nonsense, frameshift, canonical splicing site single nucleotide variants (SNVs), and non-synonymous SNVs predicted as damaging by five different in silico analyses. Each of these filtered mutations were confirmed by Sanger sequencing. If parental samples were available, segregation analysis was employed for measuring the inheritance pattern. Using our filter, we discovered one nonsense SNV (p.C1451* in CACNA1D), one de novo SNV (p.A36V in CACNA1C), one rare short deletion (p.E1675del in CACNA1D), and 14 NSstrict SNVs (non-synonymous SNV predicted as damaging by all of five in silico analyses). Neither p.A36V in CACNA1C nor p.C1451* in CACNA1D were found in 1871 SCZ cases, 380 ASD cases, or 1916 healthy controls in the independent sample set, suggesting that these SNVs might be ultra-rare SNVs in the Japanese population. The neuronal splicing isoform of Cav1.2 with the p.A36V mutation, discovered in the present study, showed reduced Ca2+-dependent inhibition, resulting in excessive Ca2+ entry through the mutant channel. These results suggested that this de novo SNV in CACNA1C might predispose to SCZ by affecting Ca2+ homeostasis. Thus, our analysis successfully identified several ultra-rare and potentially disruptive gene variants, lending partial support to the hypothesis that VGCC-encoding genes may contribute to the risk of SCZ/ASD.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Pueblo Asiatico/genética , Trastorno del Espectro Autista/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Japón , Esquizofrenia/genética
13.
Acta Pharmacol Sin ; 43(3): 577-587, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34035484

RESUMEN

Major depression disorder is a severe and recurrent neuropsychological disorder characterized by lowered mood and social activity and cognitive impairment. Owing to unclear molecular mechanisms of depression, limited interventions are available in clinic. In this study we investigated the role of dynorphin/κ opioid receptor system in the development of depression. Mice were subjected to chronic social defeat stress for 14 days. Chronic social defeat stress induced significant social avoidance in mice characterized by decreased time duration in the interaction zone and increased time duration in the corner zone. Pre-administration of a κ opioid receptor antagonist norBNI (10 mg/kg, i.p.) could prevent the development of social avoidance induced by chronic social defeat stress. Social avoidance was not observed in κ opioid receptor knockout mice subjected to chronic social defeat stress. We further revealed that social defeat stress activated c-fos and ERK signaling in the amygdala without affecting the NAc, hippocampus and hypothalamus, and ERK activation was blocked by systemic injection of norBNI. Finally, the expression of dynorphin A, the endogenous ligand of κ opioid receptor, was significantly increased in the amygdala following social defeat stress; microinjection of norBNI into the amygdala prevented the development of depressive-like behaviors caused by social defeat stress. The present study demonstrates that upregulated dynorphin/κ opioid receptor system in the amygdala leads to the emergence of depression following chronic social defeat stress, and sheds light on κ opioid receptor antagonists as potential therapeutic agents for the prevention and treatment of depression following chronic stress.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Trastorno Depresivo Mayor/patología , Dinorfinas/metabolismo , Receptores Opioides kappa/antagonistas & inhibidores , Conducta Social , Derrota Social , Animales , Conducta Animal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Naltrexona/análogos & derivados , Naltrexona/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo
14.
mBio ; 12(6): e0322821, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34933455

RESUMEN

The nature and the intensity of innate immune response to virus infection determine the course of pathogenesis in the host. Among the many pathogen-associated molecular pattern recognition receptors, STING, an endoplasmic reticulum (ER)-associated protein, plays a pivotal role in triggering responses to microbial or cellular cytoplasmic DNA. Herpes simplex virus 1 (HSV-1), a common human pathogen, activates STING signaling, and the resultant induction of type I interferon causes inhibition of virus replication. In this context, we have observed that phosphorylation of Tyr245 of STING by epidermal growth factor receptor kinase is necessary for interferon induction. Here, we report that phosphorylation of Tyr240 by the tyrosine kinase Syk is essential for all signaling activities of STING. Our analysis showed that upon ligand-binding, STING dimerizes and interacts with membrane-bound EGFR, which autophosphorylates and provides the platform for the recruitment of cytoplasmic Syk to the signaling complex and its activation. Activated Syk phosphorylates Tyr240 of STING, followed by phosphorylation of Tyr245 by epidermal growth factor receptor (EGFR). Pharmacological or genetic ablation of Syk activity resulted in an arrest of STING in the ER compartment and a complete block of gene induction. Consequently, in the absence of Syk, HSV-1 could not induce interferon, and it replicated more robustly. IMPORTANCE The innate immune response to virus infection leads to interferon production and inhibition of viral replication. STING, an ER-bound protein, mediates such a response to cytoplasmic cellular or microbial DNA. HSV-1, a DNA virus, activates STING, and it replicates more efficiently in the absence of STING signaling. We demonstrate that phosphorylation of Tyr240 of STING by the protein tyrosine kinase Syk is essential for STING-mediated gene induction. To signal, ligand-activated STING recruits two kinases, Syk and EGFR, which phosphorylate Tyr240 and Tyr245, respectively. The dependence of STING signaling on Syk has broad significance, because STING plays a major role in many microbial, mitochondrial, and autoimmune diseases as well as in cancer development and therapy.


Asunto(s)
Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Interferón beta/metabolismo , Proteínas de la Membrana/metabolismo , Quinasa Syk/metabolismo , Secuencias de Aminoácidos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Herpes Simple/genética , Herpes Simple/virología , Herpesvirus Humano 1/genética , Humanos , Interferón beta/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Fosforilación , Quinasa Syk/genética , Replicación Viral
15.
PLoS Pathog ; 17(9): e1009950, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34591940

RESUMEN

STING is a nodal point for cellular innate immune response to microbial infections, autoimmunity and cancer; it triggers the synthesis of the antiviral proteins, type I interferons. Many DNA viruses, including Herpes Simplex Virus 1 (HSV1), trigger STING signaling causing inhibition of virus replication. Here, we report that HSV1 evades this antiviral immune response by inducing a cellular microRNA, miR-24, which binds to the 3' untranslated region of STING mRNA and inhibits its translation. Expression of the gene encoding miR-24 is induced by the transcription factor AP1 and activated by MAP kinases in HSV1-infected cells. Introduction of exogenous miR-24 or prior activation of MAPKs, causes further enhancement of HSV1 replication in STING-expressing cells. Conversely, transfection of antimiR-24 inhibits virus replication in those cells. HSV1 infection of mice causes neuropathy and death; using two routes of infection, we demonstrated that intracranial injection of antimiR-24 alleviates both morbidity and mortality of the infected mice. Our studies reveal a new immune evasion strategy adopted by HSV1 through the regulation of STING and demonstrates that it can be exploited to enhance STING's antiviral action.


Asunto(s)
Herpes Simple/inmunología , Evasión Inmune/inmunología , Proteínas de la Membrana/inmunología , MicroARNs/inmunología , Animales , Regulación de la Expresión Génica/inmunología , Herpes Simple/metabolismo , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Celular/inmunología , Proteínas de la Membrana/metabolismo , Ratones
16.
EMBO J ; 40(16): e107403, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34223653

RESUMEN

Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.


Asunto(s)
Autoantígenos/metabolismo , Colágeno/antagonistas & inhibidores , Cirrosis Hepática/prevención & control , Fibrosis Pulmonar/prevención & control , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Bleomicina , Tetracloruro de Carbono , Células Cultivadas , Colágeno/biosíntesis , Colágeno/genética , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Membranas Intracelulares/metabolismo , Isoproterenol , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Transgénicos , Miocardio/metabolismo , Miocardio/patología , Unión Proteica , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Receptores Inmunológicos/genética , Receptores de Prostaglandina/genética , Antígeno SS-B
17.
Transl Psychiatry ; 11(1): 116, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558464

RESUMEN

Depression, cognitive deficits, and sleep disturbances are common and often severe in menopausal women. Hormone replacement cannot effectively alleviate these symptoms and sometimes elicits life-threatening adverse reactions. Exploring effective therapies to target psychological problems is urgently needed. In this work, we developed a mouse model of menopause by bilateral ovariectomies (OVXs) and investigated whether menopausal mental symptoms can be ameliorated by psychostimulant modafinil (MOD) as well as explored the underlying mechanisms. At ~3 weeks after OVXs, mice got daily intraperitoneal administrations of MOD at the beginning of the active phase. Several behavioral tests and electroencephalogram (EEG) recordings were conducted. Electrophysiological and immunohistochemical experiments were carried out to evaluate the synaptic plasticity and neurogenesis, respectively. We found that chronic MOD administration in OVX mice significantly decreased immobility time. The spatial memory performance of OVX mice improved significantly in response to MOD administration in the Morris water-maze test. The OVX mice were characterized by an attenuation of hippocampal synaptic transmission and synaptic long-term potentiation and had fewer 5-ethynyl-2'-deoxyuridine-labeled cells in the dentate gyrus, which were restored after MOD administration. Antagonists of dopamine D1 and D2 receptors and GABAA receptor agonists were involved in MOD-exerted anti-depressant actions and augments of hippocampal neurogenesis in OVX mice. Moreover, night-dosed MOD therapy significantly promoted the night-time delta-band EEG power during wakefulness and the day-time rapid eye movement sleep amount, which were significantly reduced by OVXs. Collectively, these findings suggest that MOD is a promising therapeutic candidate for menopausal women.


Asunto(s)
Hipocampo , Memoria Espacial , Animales , Femenino , Menopausia , Ratones , Modafinilo , Plasticidad Neuronal , Sueño REM , Conducta Espacial
18.
Cell Res ; 31(2): 206-218, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32759968

RESUMEN

Type I interferons (IFN-I) protect us from viral infections. Signal transducer and activator of transcription 2 (STAT2) is a key component of interferon-stimulated gene factor 3 (ISGF3), which drives gene expression in response to IFN-I. Using electron microscopy, we found that, in naive cells, U-STAT2, lacking the activating tyrosine phosphorylation, forms a heterodimer with U-STAT1 in an inactive, anti-parallel conformation. A novel phosphorylation of STAT2 on T404 promotes IFN-I signaling by disrupting the U-STAT1-U-STAT2 dimer, facilitating the tyrosine phosphorylation of STATs 1 and 2 and enhancing the DNA-binding ability of ISGF3. IKK-ε, activated by virus infection, phosphorylates T404 directly. Mice with a T-A mutation at the corresponding residue (T403) are highly susceptible to virus infections. We conclude that T404 phosphorylation drives a critical conformational switch that, by boosting the response to IFN-I in infected cells, enables a swift and efficient antiviral defense.


Asunto(s)
Herpes Simple/metabolismo , Multimerización de Proteína/genética , Infecciones por Rhabdoviridae/metabolismo , Factor de Transcripción STAT1/química , Factor de Transcripción STAT2/química , Transducción de Señal/genética , Simplexvirus/metabolismo , Virus de la Estomatitis Vesicular Indiana/metabolismo , Animales , Chlorocebus aethiops , Fibroblastos/metabolismo , Fibroblastos/virología , Células HEK293 , Células HeLa , Herpes Simple/virología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación/genética , Conformación Proteica , Interferencia de ARN , Infecciones por Rhabdoviridae/virología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Células Vero
19.
Nat Sci Sleep ; 12: 1215-1223, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33380853

RESUMEN

The rostromedial tegmental nucleus (RMTg), a brake of the dopamine system, is specifically activated by aversive stimuli, such as foot shock. It is principally composed of gamma-aminobutyric acid neurons. However, there is no exact location of the RMTg on the brain stereotaxic atlas. The RMTg can be defined by c-Fos staining elicited by psychostimulants, the position of retrograde-labeled neurons stained by injections into the ventral tegmental area (VTA), the terminal field formed by axons from the lateral habenula, and some molecular markers identified as specifically expressed in the RMTg such as FoxP1. The RMTg receives a broad range of inputs and produces diverse outputs, which indicates that the RMTg has multiple functions. First, the RMTg plays an essential role for non-rapid eye movement sleep. Additionally, the RMTg serves a vital role in response to addiction. Opiates increase the firing rates of dopaminergic neurons in the VTA by acting on µ-opioid receptors on RMTg neurons and their terminals inside the VTA. In this review, we summarize the recent research advances on the anatomical location of the RMTg in rats and mice, its projections, and its regulation of sleep-wake behavior and addiction.

20.
EMBO J ; 39(22): e104106, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32926474

RESUMEN

STING (STimulator of INterferon Genes) mediates protective cellular response to microbial infection and tissue damage, but its aberrant activation can lead to autoinflammatory diseases. Upon ligand stimulation, the endoplasmic reticulum (ER) protein STING translocates to endosomes for induction of interferon production, while an alternate trafficking route delivers it directly to the autophagosomes. Here, we report that phosphorylation of a specific tyrosine residue in STING by the epidermal growth factor receptor (EGFR) is required for directing STING to endosomes, where it interacts with its downstream effector IRF3. In the absence of EGFR-mediated phosphorylation, STING rapidly transits into autophagosomes, and IRF3 activation, interferon production, and antiviral activity are compromised in cell cultures and mice, while autophagic activity is enhanced. Our observations illuminate a new connection between the tyrosine kinase activity of EGFR and innate immune functions of STING and suggest new experimental and therapeutic approaches for selective regulation of STING functions.


Asunto(s)
Receptores ErbB/metabolismo , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Tirosina/metabolismo , Animales , Línea Celular , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Receptores ErbB/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Fosforilación , Células RAW 264.7 , Transducción de Señal , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...