Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Plant Physiol ; 256: 153308, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33190018

RESUMEN

Cytokinin oxidase/dehydrogenases (CKXs) play a key role in the irreversible degradation of phytohormone cytokinin that is necessary for various plant growth and development processes. However, thus far, detailed investigations of the CKX gene family in the model legume Medicago truncatula are limited. In this study, we identified 9 putative CKX homologues with conserved FAD- and cytokinin-binding domains in the M. truncatula genome. We analyzed their phylogenetic relationship, gene structure, conserved domain, expression pattern, protein subcellular locations and other properties. The tissue-specific expression profiles of the MtCKX genes are different among different members and these MtCKXs also displayed different patterns in response to synthetic cytokinin 6-benzylaminopurine (6-BA) and indole-3-acetic acid (IAA), suggesting their diverse roles in M. truncatula development. To further understand the biological function of MtCKXs, we identified and characterized mutants of each MtCKX by taking advantage of the Tnt1 mutant population in M. truncatula. Results indicated that M. truncatula plants harboring Tnt1 insertions in each single MtCKX genes showed no morphological changes in aerial parts, suggesting functional redundancy of MtCKXs in M. truncatula shoot development. However, disruption of Medtr4g126160, which is predominantly expressed in roots, leads to an obvious reduced primary root length and increased lateral root number, indicating the specific roles of cytokinin in regulating root architecture. We systematically analyzed the MtCKX gene family at the genome-wide level and revealed their possible roles in M. truncatula shoot and root development, which shed lights on understanding the biological function of CKX family genes in related legume plants.


Asunto(s)
Citocininas/genética , Citocininas/metabolismo , Genes de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Filogenia
3.
New Phytol ; 229(6): 3330-3344, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33222243

RESUMEN

Patterned leaf coloration in plants generates remarkable diversity in nature, but the underlying mechanisms remain largely unclear. Here, using Medicago truncatula leaf marking as a model, we show that the classic M. truncatula leaf anthocyanin spot trait depends on two R2R3 MYB paralogous regulators, RED HEART1 (RH1) and RH2. RH1 mainly functions as an anthocyanin biosynthesis activator that specifically determines leaf marking formation depending on its C-terminal activation motif. RH1 physically interacts with the M. truncatula bHLH protein MtTT8 and the WDR family member MtWD40-1, and this interaction facilitates RH1 function in leaf anthocyanin marking formation. RH2 has lost transcriptional activation activity, due to a divergent C-terminal domain, but retains the ability to interact with the same partners, MtTT8 and MtWD40-1, as RH1, thereby acting as a competitor in the regulatory complex and exerting opposite effects. Moreover, our results demonstrate that RH1 can activate its own expression and that RH2-mediated competition can repress RH1 expression. Our findings reveal the molecular mechanism of the antagonistic gene paralogs RH1 and RH2 in determining anthocyanin leaf markings in M. truncatula, providing a multidimensional paralogous-antagonistic regulatory paradigm for fine-tuning patterned pigmentation.


Asunto(s)
Medicago truncatula , Antocianinas , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Plant Cell ; 31(11): 2751-2767, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31530734

RESUMEN

Carotenoids are a group of natural tetraterpenoid pigments with indispensable roles in the plant life cycle and the human diet. Although the carotenoid biosynthetic pathway has been well characterized, the regulatory mechanisms that control carotenoid metabolism, especially in floral organs, remain poorly understood. In this study, we identified an anthocyanin-related R2R3-MYB protein, WHITE PETAL1 (WP1), that plays a critical role in regulating floral carotenoid pigmentation in Medicago truncatula Carotenoid analyses showed that the yellow petals of the wild-type M. truncatula contained high concentrations of carotenoids that largely consisted of esterified lutein and that disruption of WP1 function via Tnt1 insertion led to substantially reduced lutein accumulation. WP1 mainly functions as a transcriptional activator and directly regulates the expression of carotenoid biosynthetic genes including MtLYCe and MtLYCb through its C-terminal acidic activation motif. Further molecular and genetic analyses revealed that WP1 physically interacts with MtTT8 and MtWD40-1 proteins and that this interaction facilitates WP1's function in the transcriptional activation of both carotenoid and anthocyanin biosynthetic genes. Our findings demonstrate the molecular mechanism of WP1-mediated regulation of floral carotenoid pigmentation and suggest that the conserved MYB-basic-helix-loop-helix-WD40 regulatory module functions in carotenoid biosynthesis in M. truncatula, with specificity imposed by the MYB partner.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flores/metabolismo , Medicago truncatula/metabolismo , Pigmentación/fisiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Proteínas de Arabidopsis , Secuencia de Bases , Vías Biosintéticas , Carotenoides/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Medicago truncatula/genética , Fenotipo , Pigmentación/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/genética
5.
PLoS One ; 7(10): e47127, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071733

RESUMEN

Brassica napus (AACC, 2n = 38), an oil crop of world-wide importance, originated from interspecific hybridization of B. rapa (AA, 2n = 20) and B. oleracea (CC, 2n = 18), and has six FLOWERING LOCUS T (FT) paralogues. Two located on the homeologous chromosomes A2 and C2 arose from a lineage distinct from four located on A7 and C6. A set of three conserved blocks A, B and C, which were found to be essential for FT activation by CONSTANS (CO) in Arabidopsis, was identified within the FT upstream region in B. napus and its progenitor diploids. However, on chromosome C2, insertion of a DNA transposable element (TE) and a retro-element in FT upstream blocks A and B contributed to significant structural divergence between the A and C genome orthologues. Phylogenetic analysis of upstream block A indicated the conserved evolutionary relationships of distinct FT genes within Brassicaceae. We conclude that the ancient At-α whole genome duplication contributed to distinct ancestral lineages for this key adaptive gene, which co-exist within the same genus. FT-A2 was found to be transcribed in all leaf samples from different developmental stages in both B. rapa and B. napus, whereas FT-C2 was not transcribed in either B. napus or B. oleracea. Silencing of FT-C2 appeared to result from TE insertion and consequent high levels of cytosine methylation in TE sequences within upstream block A. Interestingly, FT-A7/C6 paralogues were specifically silenced in winter type B. napus but abundantly expressed in spring type cultivars under vernalization-free conditions. Motif prediction indicated the presence of two CO protein binding sites within all Brassica block A and additional sites for FT activation in block C. We propose that the ancestral whole genome duplications have contributed to more complex mechanisms of floral regulation and niche adaptation in Brassica compared to Arabidopsis.


Asunto(s)
Brassicaceae/genética , Evolución Molecular , Flores/genética , Variación Genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Arabidopsis/genética , Secuencia de Bases , Sitios de Unión , Brassica napus/genética , Cromosomas de las Plantas , Secuencia Conservada , Metilación de ADN , Diploidia , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/metabolismo , Tetraploidía
6.
Plant Methods ; 7: 39, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22132777

RESUMEN

Accurate analysis of DNA methylation by bisulphite sequencing depends on the complete conversion of all cytosines into uracil. Until now there has been no standard or universal gene identified as an endogenous control to monitor the conversion frequency in plants. Here, we report the development of PCR based assays for one nuclear gene IND (INDEHISCENT) and two mitochondrial genes, NAD (NICOTINAMIDE ADENINE DINUCLEOTIDE) and ATP1 (ATPase SUBUNIT 1). We demonstrated their efficacy as bisulphite conversion controls in Brassica and other plant taxa. The target regions amplified by four primer pairs were found to be consistently free from DNA methylation. Primer pairs for IND.a and NAD were effective within Brassica species, whereas two primer pairs for ATP1 provided reliable controls across a representative range of dicot and monocot angiosperm species. These primer sets may therefore be adopted as controls in plant methylation analysis for a wide range of studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...