Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 344: 118396, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331316

RESUMEN

Antibiotic resistance in drinking water has received increasing attention in recent years. In this study, the occurrence and abundance of antibiotic resistance genes (ARGs) in a drinking water treatment plant (DWTP) was comprehensively investigated using metagenomics. Bioinformatics analysis showed that 381 ARG subtypes belonging to 15 ARG types were detected, and bacitracin had the highest abundance (from 0.26 × 10-2 to 0.86 copies/cell), followed by multidrug (from 0.57 × 10-1 to 0.47 copies/cell) and sulfonamide (from 0.83 × 10-2 to 0.35 copies/cell). Additionally, 933 ARG-carrying contigs (ACCs) were obtained from the metagenomic data, among which 153 contigs were annotated as pathogens. The most abundant putative ARG host was Staphylococcus (7.9%), which most frequently carried multidrug ARGs (43.2%). Additionally, 38 high-quality metagenome-assembled genomes (MAGs) were recovered, one of which was identified as Staphylococcus aureus (Bin.624) and harboured the largest number of ARGs (n = 16). Using the cultivation technique, 60 isolates were obtained from DWTP samples, and Staphylococcus spp. (n = 11) were found to be dominant in all isolates, followed by Bacillus spp. (n = 17). Antimicrobial susceptibility testing showed that most Staphylococcus spp. were multidrug resistant (MDR). These results deepen our understanding of the distribution profiles of ARGs and antibiotic resistant bacteria (ARB) in DWTPs for potential health risk evaluation. Our study also highlights the need for new and efficient water purification technologies that can be introduced and applied in DWTPs.


Asunto(s)
Agua Potable , Purificación del Agua , Antibacterianos/farmacología , Genes Bacterianos , Farmacorresistencia Bacteriana/genética , Prevalencia , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Purificación del Agua/métodos
2.
Front Microbiol ; 13: 928154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814691

RESUMEN

Accurate serotyping is essential for effective infection control. Pseudomonas aeruginosa serogroup G is one of the most common serogroups found in water. Conventional serotyping methods are not standardized and have several shortcomings. Therefore, a robust method for rapidly identifying P. aeruginosa serotypes is required. This study established a real-time PCR method for identifying P. aeruginosa serogroup G strains using novel target gene primers based on comparative genomic analysis. A total of 343 genome sequences, including 16 P. aeruginosa serogroups and 67 other species, were analyzed. Target genes identified were amplified using real-time PCR for detecting P. aeruginosa serogroup G strains. Eight serogroup G genes, PA59_01276, PA59_01887, PA59_01888, PA59_01891, PA59_01894, PA59_04268, PA59_01892, and PA59_01896, were analyzed to determine specific targets. A real-time fluorescence quantitative PCR method, based on the novel target PA59_01276, was established to detect and identify serogroup G strains. The specificity of this method was confirmed using P. aeruginosa serogroups and non-P. aeruginosa species. The sensitivity of this real-time PCR method was 4 × 102 CFU/mL, and it could differentiate and detect P. aeruginosa serogroup G in the range of 4.0 × 103-4.0 × 108 CFU/mL in artificially contaminated drinking water samples without enrichment. The sensitivity of these detection limits was higher by 1-3 folds compared to that of the previously reported PCR methods. In addition, the G serum group was accurately detected using this real-time PCR method without interference by high concentrations of artificially contaminated serum groups F and D. These results indicate that this method has high sensitivity and accuracy and is promising for identifying and rapidly detecting P. aeruginosa serogroup G in water samples. Moreover, this research will contribute to the development of effective vaccines and therapies for infections caused by multidrug-resistant P. aeruginosa.

3.
Front Microbiol ; 13: 820431, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602063

RESUMEN

Mining novel specific molecular targets and establishing efficient identification methods are significant for detecting Pseudomonas aeruginosa, which can enable P. aeruginosa tracing in food and water. Pangenome analysis was used to analyze the whole genomic sequences of 2017 strains (including 1,000 P. aeruginosa strains and 1,017 other common foodborne pathogen strains) downloaded from gene databases to obtain novel species-specific genes, yielding a total of 11 such genes. Four novel target genes, UCBPP-PA14_00095, UCBPP-PA14_03237, UCBPP-PA14_04976, and UCBPP-PA14_03627, were selected for use, which had 100% coverage in the target strain and were not present in nontarget bacteria. PCR primers (PA1, PA2, PA3, and PA4) and qPCR primers (PA12, PA13, PA14, and PA15) were designed based on these target genes to establish detection methods. For the PCR primer set, the minimum detection limit for DNA was 65.4 fg/µl, which was observed for primer set PA2 of the UCBPP-PA14_03237 gene. The detection limit in pure culture without pre-enrichment was 105 colony-forming units (CFU)/ml for primer set PA1, 103 CFU/ml for primer set PA2, and 104 CFU/ml for primer set PA3 and primer set PA4. Then, qPCR standard curves were established based on the novel species-specific targets. The standard curves showed perfect linear correlations, with R 2 values of 0.9901 for primer set PA12, 0.9915 for primer set PA13, 0.9924 for primer set PA14, and 0.9935 for primer set PA15. The minimum detection limit of the real-time PCR (qPCR) assay was 102 CFU/ml for pure cultures of P. aeruginosa. Compared with the endpoint PCR and traditional culture methods, the qPCR assay was more sensitive by one or two orders of magnitude. The feasibility of these methods was satisfactory in terms of sensitivity, specificity, and efficiency after evaluating 29 ready-to-eat vegetable samples and was almost consistent with that of the national standard detection method. The developed assays can be applied for rapid screening and detection of pathogenic P. aeruginosa, providing accurate results to inform effective monitoring measures in order to improve microbiological safety.

4.
Biosens Bioelectron ; 190: 113394, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34118762

RESUMEN

To achieve rapid and sensitive detection of aflatoxin B1 (AFB1), we developed a polydimethylsiloxane gravity-driven cyclic microfluidic chip using the two-signal mode strategy. The structural design of the chip, together with the two-wavelength quantum dot ratio fluorescence, effectively eliminates the influence of environmental factors, improves the signal stability, and ensures that the final detection result positively correlates with the target concentration. Moreover, the theoretical analysis performed for the established physical model of the three-dimensional reaction interface inside the chip confirmed the improved reaction rate of immune adsorption in the microfluidic strategy. Overall, the method exhibited a wide analytic range (0.2-500 ng mL-1), low detection limit (0.06 ng mL-1), high specificity, good precision (coefficient of variation < 5%), excellent reusability (20 times, 89.1%) and satisfactory practical sample analysis capacity. Furthermore, the reusability and designability of this chip provide a reliable scheme for field detection of AFB1, analysis of other small molecules, and establishment of high-throughput detection systems under different conditions.


Asunto(s)
Técnicas Biosensibles , Puntos Cuánticos , Aflatoxina B1/análisis , Inmunoensayo , Límite de Detección , Microfluídica
5.
Front Microbiol ; 12: 605984, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815306

RESUMEN

The accurate and rapid classification of Salmonella serovars is an essential focus for the identification of isolates involved in disease in humans and animals. The purpose of current research was to identify novel sensitive and reliable serovar-specific targets and to develop PCR method for Salmonella C2 serogroups (O:8 epitopes) in food samples to facilitate timely treatment. A total of 575 genomic sequences of 16 target serovars belonging to serogroup C2 and 150 genomic sequences of non-target serovars were analysed by pan-genome analysis. As a result, four and three specific genes were found for serovars Albany and Hadar, respectively. Primer sets for PCR targeting these serovar-specific genes were designed and evaluated based on their specificity; the results showed high specificity (100%). The sensitivity of the specific PCR was 2.8 × 101-103 CFU/mL and 2.3 × 103-104 CFU/mL for serovars Albany and Hadar, respectively, and the detection limits were 1.04 × 103-104 CFU/g and 1.16 × 104-105 CFU/g in artificially contaminated raw pork samples. Furthermore, the potential functions of these serovar-specific genes were analysed; all of the genes were functionally unknown, except for one specific serovar Albany gene known to be a encoded secreted protein and one specific gene for serovars Hadar and Albany that is a encoded membrane protein. Thus, these findings demonstrate that pan-genome analysis is a precious method for mining new high-quality serovar-targets for PCR assays or other molecular methods that are highly sensitive and can be used for rapid detection of Salmonella serovars.

6.
Int J Food Microbiol ; 339: 109026, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33360877

RESUMEN

The abundant information provided by the pan-genome analysis approach reveals the diversity among Listeria monocytogenes serotypes. The objective of this study was to mine novel target genes using pan-genome analysis for multiplex PCR detection and differentiation of the major L. monocytogenes serotypes present in food. Pan-genome analysis and PCR validation revealed a total of 10 specific targets: one for lineage I, two for serogroup I.1, one for serogroup I.2, two for lineage II, one for serogroup II.1, three for lineage III. Primers for the novel targets were highly specific in individual reactions. The detection limits were 103-104 colony-forming units (CFU)/mL in pure bacterial cultures, meeting the requirements of molecular detection. Based on these novel targets, two new "lineage" multiplex PCR assays were developed to simultaneously distinguish between three lineages (I, II, and III) and five major serotypes (1/2a, 1/2b, 1/2c, 4b, and 4c) of L. monocytogenes. The detection limits of lineage I and lineage II&III mPCRs were 0.771 pg/µL and 1.76 pg/µL genomic DNA, respectively. The specificity of the mPCRs was robustly verified using other L. monocytogenes and non-L. monocytogenes serotypes. These results suggest that the two "lineage" multiplex PCRs based on novel targets offer a promising approach for accurate, sensitive, and rapid identification of L. monocytogenes serotypes.


Asunto(s)
Listeria monocytogenes/genética , Reacción en Cadena de la Polimerasa Multiplex , Serotipificación/métodos , Cartilla de ADN/genética , Microbiología de Alimentos , Genoma Bacteriano/genética , Listeriosis/microbiología , Serogrupo
7.
Appl Opt ; 59(26): 7752-7759, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32976445

RESUMEN

Trace element analysis of soft materials, to determine the content of low concentration elements, is important in many industries such as food quality control and medical biopsy analysis. Many of these applications would benefit from faster analysis with smaller sample requirements. Further, some natural samples are soft and have high water content, which brings challenges to element analysis. Here, we develop a cryogenic pelletization pretreatment to address those challenges. The soft samples are cryogenically milled, freeze-dried, and pelletized before elemental analysis. Analysis is performed by laser ablation spectroscopy, the combination of laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS), to rapidly analyze light and heavy analytes. For this initial study, aluminum (Al) content in soft samples is determined by LIBS and lead (Pb) content by LA-ICP-MS. The standard addition method is performed to build calibration curves for element quantification. The measurements are compared with a Hong Kong government certified acid digestion and ICP-MS procedure. The experiment is performed on standard reference materials and selected food samples. The relative errors compared with certified measurements are less than 10% for all samples, with Al content ranging from 63-1466 µg/g and Pb content from 0.37-2.35 µg/g (dry mass). Microscopy of pellets shows that laser ablation spectroscopy can be performed with 100 µg of sample (dry mass). Total analysis time from raw sample to final measurement, including preparation, is under 1 h. The results indicate that the laser ablation spectroscopy with cryogenic pelletization is a promising technique for many applications such as screening of small food samples for toxic metals and trace element analysis of millimeter biopsies.


Asunto(s)
Contaminación de Alimentos , Espectrometría de Masas/métodos , Análisis Espectral/métodos , Oligoelementos/análisis , Compuestos de Aluminio/análisis , Terapia por Láser , Plomo/análisis , Estándares de Referencia , Manejo de Especímenes
8.
Sci Total Environ ; 675: 31-40, 2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31026641

RESUMEN

MnO2 is a common material for the fabrication and design of capacitive deionization (CDI) devices but there is little information on the role of MnO2 crystal phase on CDI performance. A series of MnO2 (α, ß, γ, and δ phase) were synthesized and fabricated as cathodes for studying the CDI performance as affected by pH in simple batch mode experiments. Our results revealed that the deionization efficiency decreased with increased negative surface charge as a result of the deprotonated surface. Importantly, this correlation was pH independent and the surface heterogeneity due to different MnO2 phase was likely responsible for the different degree of surface ionization and consequently the CDI efficiency. Results of electrochemical impedance spectroscopy analyses further implicated that a highly ionized surface would result in a diffusion layer with a great resistance that conversely inhibited the access of co-ions in the CDI process. This indicated the applied potential was mainly responsible for driving ions transporting through the double layer resistance instead of accommodating them (electrosorption). Based on our results, the surface heterogeneity as a result of different spatially distributed MnO6 octahedral would be accounted for the varying degree of surface ionization and consequently the discrepancy in CDI efficiency among different MnO2 phases.

9.
ACS Appl Mater Interfaces ; 11(12): 11144-11156, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30883079

RESUMEN

Boron neutron capture therapy (BNCT) is a promising radiotherapy for treating glioblastoma multiforme (GBM). However, the penetration of drugs (e.g., sodium borocaptate and BSH) for BNCT into brain tumors is limited by cerebral vesicular protective structures, the blood-brain barrier, and the blood-brain tumor barrier (BTB). Although BSH has been reported to be selectively taken up by tumors, it is rapidly excreted from the body and cannot achieve a high tumor-to-normal brain ratio (T/N ratio) and tumor-to-blood ratio (T/B ratio). Despite the development of large-molecular weight boron compounds, such as polymers and nanoparticles, to enhance the permeation and retention effect, their effects remain insufficient for clinical use. To improve the efficiency of boron delivery to the tumor site, we propose combinations of self-assembled boron-containing polyanion [polyethylene glycol- b-poly(( closo-dodecaboranyl)thiomethylstyrene) (PEG- b-PMBSH)] nanoparticles (295 ± 2.3 nm in aqueous media) coupled with cationic microbubble (B-MB)-assisted focused ultrasound (FUS) treatment. Upon FUS sonication (frequency = 1 MHz, pressure = 0.3-0.7 MPa, duty cycle = 0.5%, sonication = 1 min), B-MBs can simultaneously achieve safe BTB opening and boron drug delivery into tumor tissue. Compared with the MBs of the PEG- b-PMBSH mixture group (B + MBs), B-MBs showed 3- and 2.3-fold improvements in the T/N (4.4 ± 1.4 vs 1.3 ± 0.1) and T/B ratios (1.4 ± 0.6 vs 0.1 ± 0.1), respectively, after 4 min of FUS sonication. The spatial distribution of PEG- b-PMBSH was also improved by the complex of PEG- b-PMBSH with MBs. The findings presented herein, in combination with the expanding clinical application of FUS, may improve BNCT and treatment of GBM.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Boro/química , Microburbujas , Polímeros/química , Animales , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glioma/patología , Glioma/radioterapia , Humanos , Membrana Dobles de Lípidos/química , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Sonicación , Distribución Tisular
10.
Langmuir ; 35(3): 628-640, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30607960

RESUMEN

Associating MnO2 with carbonaceous supports profoundly enhances capacitive deionization (CDI) efficiency. A fundamental question of how the surface chemistry of MnO2 itself influences CDI efficiency is not yet fully understood. In this study, the effect of surface ionization on the CDI efficiencies of Fe-, Co-, and Ni-doped α-MnO2 (<0.1 mol %) as a model cathode material was studied. A pattern that CDI efficiency decreased with increasing negative surface charge density resulting from surface deprotonation was noted. This is likely attributed to the appreciable co-ion expulsion occurring at a highly ionized surface in the mesopores of MnO2. It is thus concluded that the combination of surface charge modification and a microporous environment would be important for CDI efficiency enhancement by minimizing co-ion exclusion effect. In the former case, structural stress adjustment by doping elements would be a practical route to regulate the p Ka1 and p Ka2 values and consequently the degree of surface ionization of MnO2.

11.
ACS Appl Mater Interfaces ; 10(38): 32736-32746, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30180542

RESUMEN

Energy consumption is always a major issue hindering the universal application of membrane-based filtration system. We herein demonstrated a low-energy-consumption microfiltration system that can be operated under ambient pressure while a great metal ion rejection rate (>95%) accompanied by a high permeate flux (100 L/m2h) was concurrently reached. This achievement was closely correlated to the enhanced metal ion adsorption by grafted carboxyl groups at the cellulose filter paper through esterification. Adsorbed metal ions consequently enhanced Donnan exclusion effect and therefore high rejection rate was achieved. Rejection rate of modified membrane was strongly correlated to the formation constant of associated carboxyl group to metal ions. Our results would be important for developing low-energy-consumption filtration systems for water and wastewater treatment application.

12.
Environ Toxicol ; 32(6): 1742-1753, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28181394

RESUMEN

Silver nanoparticles (AgNPs) are commonly used nanomaterials in consumer products. Previous studies focused on its effects on neurons; however, little is known about their effects and uptake mechanisms on glial cells under normal or activated states. Here, ALT astrocyte-like, BV-2 microglia and differentiated N2a neuroblastoma cells were directly or indirectly exposed to 10 nm AgNPs using mono- and co-culture system. A lipopolysaccharide (LPS) was pretreated to activate glial cells before AgNP treatment for mimicking NP exposure under brain inflammation. From mono-culture, ALT took up the most AgNPs and had the lowest cell viability within three cells. Moreover, AgNPs induced H2 O2 and NO from ALT/activated ALT and BV-2, respectively. However, AgNPs did not induce cytokines release (IL-6, TNF-α, MCP-1). LPS-activated BV-2 took up more AgNPs than normal BV-2, while the induction of ROS and cytokines from activated cells were diminished. Ca2+ -regulated clathrin- and caveolae-independent endocytosis and phagocytosis were involved in the AgNP uptake in ALT, which caused more rapid NP translocation to lysosome than in macropinocytosis and clathrin-dependent endocytosis-involved BV-2. AgNPs directly caused apoptosis and necrosis in N2a cells, while by indirect NP exposure to bottom chamber ALT or BV-2 in Transwell, more apoptotic upper chamber N2a cells were observed. Cell viability of BV-2 also decreased in an ALT-BV-2 co-culturing study. The damaged cells correlated to NP-mediated H2 O2 release from ALT or NO from BV-2, which indicates that toxic response of AgNPs to neurons is not direct, but indirectly arises from AgNP-induced soluble factors from other glial cells.


Asunto(s)
Astrocitos/efectos de los fármacos , Endocitosis/efectos de los fármacos , Lisosomas/metabolismo , Nanopartículas del Metal/toxicidad , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Plata/toxicidad , Animales , Apoptosis/efectos de los fármacos , Astrocitos/inmunología , Astrocitos/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Ratones , Microglía/inmunología , Microglía/metabolismo , Necrosis , Neuronas/inmunología , Neuronas/metabolismo , Fagocitosis/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
13.
Phys Chem Chem Phys ; 18(42): 29300-29307, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27731868

RESUMEN

Passivation of surface states is known to reduce the onset photocurrent potential by removing the Fermi level pinning effect at the Helmholtz layer and enhance the photocurrent plateau by suppressing recombination loss in the space charge region. We report for the first time that metal ions can effectively passivate surface states in situ that improves the photoelectrochemical (PEC) performance of hematite electrodes. Among metal ions studied, Cr(iii), Mn(ii), Fe(ii), Co(ii), Cu(ii) and Zn(ii) were found to enhance the photocurrent by 30-300%; whereas photocurrent density significantly dropped by 90% in Ni(ii) solution after 90 min of illumination. We further hypothesized that the surface states might be the high affinity adsorption sites on hematite surfaces. Once the surface states are occupied by metal ions, along with the Schottky barrier effect at the hematite/electrolyte interface formed by adsorbed metal ions, the PEC performance is enhanced. Our results also enable the design of a potential PEC based water treatment method to extract additional energy, for example, in the brines (containing concentrated metal ions and electrolyte) of membrane processed wastewater.

14.
Chem Biol Interact ; 254: 34-44, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27216632

RESUMEN

Although, titanium dioxide nanoparticles (TiO2NPs) are nanomaterials commonly used in consumer products, little is known about their hazardous effects, especially on central nervous systems. To examine this issue, ALT astrocyte-like, BV-2 microglia and differentiated N2a neuroblastoma cells were exposed to 6 nm of 100% anatase TiO2NPs. A lipopolysaccharide (LPS) was pre-treated to activate glial cells before NP treatment for mimicking NP exposure under brain injury. We found that ALT and BV-2 cells took up more NPs than N2a cells and caused lower cell viability. TiO2NPs induced IL-1ß in the three cell lines and IL-6 in N2a. LPS-activated BV-2 took up more TiO2NPs than normal BV-2 and released more intra/extracellular reactive oxygen species (ROS), IL-1ß, IL-6 and MCP-1 than did activated BV-2. Involvement of clathrin- and caveolae-dependent endocytosis in ALT and clathrin-dependent endocytosis and phagocytosis in BV-2 both had a slow NP translocation rate to lysosome, which may cause slow ROS production (after 24 h). Although TiO2NPs did not directly cause N2a viability loss, by indirect NP exposure to the bottom chamber of LPS-activated BV-2 in the Transwell system, they caused late apoptosis and loss of cell viability in the upper N2a chamber due to H2O2 and/or TNF-α release from BV-2. However, none of the adverse effects in N2a or BV-2 cells was observed when TiO2NPs were exposed to ALT-N2a or ALT-BV-2 co-culture. These results demonstrate that neuron damage can result from TiO2NP-mediated ROS and/or cytokines release from microglia, but not from astrocytes.


Asunto(s)
Apoptosis/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Titanio/química , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Endocitosis/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Lipopolisacáridos/toxicidad , Lisosomas/metabolismo , Nanopartículas del Metal/química , Ratones , Microglía/citología , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Fagocitosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
Environ Monit Assess ; 188(3): 180, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26899028

RESUMEN

The elemental content of fish scales is known to be a reliable biogeochemical tag for tracing the origin of fishes. In this study, this correlation is further confirmed to exist on the surface of fish scales using a novel environmental analytical method, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), which bypasses several complicated sample preparation procedures such as acid digestion and pre-concentration. The results suggest that the elemental ratios of Sr/Ca, Ba/Ca, and Mn/Ca on the surface of fish scales are strongly correlated with the geochemical environment of their original habitat. This correlation is further demonstrated to be sensitive to variation of water in the habitat due to the adsorbed inorganic ions. In this sense, the limitation of fish scales as a biogeochemical tag is the sensitivity of LA-ICP-MS toward the studied elements. Graphical abstract Illustration of the connection between element distribution pattern over the surface of fish scales and biogeochemical environment of its habitat.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Peces/metabolismo , Oligoelementos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Ambiente , Espectrometría de Masas , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis
16.
J Colloid Interface Sci ; 466: 28-35, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26704473

RESUMEN

The consideration of water energy nexus inspires the environmental engineering community to pursue a more sustainable strategy in the wastewater treatment. One potential response would be to enhance the performance of the low-pressure driven filtration system. To reach this objective, it is essential to have a better understanding regarding the surface interaction between the target substance and the surface of membrane. In this study, the hollow fiber ceramic membranes were coated with a goethite layer in order to enhance the Co(2+) rejection. Experimental results indicate that higher Co(2+) rejections are always accompanied with the significant reduction in the permeability. Based on the consideration of electroviscous effect, the surface interactions including the induced changes in viscosity, pore radius and Donnan effect in the goethite layer are likely responsible for the pH dependent behaviors in the rejection and permeability. These results could be valuable references to develop the filtration system with high rejection along with acceptable degree of permeability in the future.

17.
J Environ Radioact ; 150: 62-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26295438

RESUMEN

It is important that monitoring environmental tritiated water for understanding the contamination dispersion of the nuclear facilities. Tritium is a pure beta radionuclide which is usually measured by Liquid Scintillation Counting (LSC). The average energy of tritum beta is only 5.658 keV that makes the LSC counting of tritium easily be interfered by the beta emitted by other radionuclides. Environmental tritiated water samples usually need to be decontaminated by distillation for reducing the interference. After Fukushima Nucleaer Accident, the highest gross beta concentration of groundwater samples obtained around Fukushima Daiichi Nuclear Power Station is over 1,000,000 Bq/l. There is a need for a distillation with ultra-high decontamination efficiency for environmental tritiated water analysis. This study is intended to improve the heating temperature control for better sub-boiling distillation control and modify the height of the container of the air cooling distillation device for better fractional distillation effect. The DF of Cs-137 of the distillation may reach 450,000 which is far better than the prior study. The average loss rate of the improved method and device is about 2.6% which is better than the bias value listed in the ASTM D4107-08. It is proven that the modified air cooling distillation device can provide an easy-handling, water-saving, low cost and effective way of purifying water samples for higher beta radionuclides contaminated water samples which need ultra-high decontamination treatment.


Asunto(s)
Descontaminación/métodos , Destilación/métodos , Monitoreo de Radiación/métodos , Tritio/análisis , Contaminantes Radiactivos del Agua/análisis , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Descontaminación/instrumentación , Destilación/instrumentación , Accidente Nuclear de Fukushima , Agua Subterránea/análisis , Japón , Monitoreo de Radiación/instrumentación
18.
Environ Sci Technol ; 49(6): 3813-21, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25692749

RESUMEN

The so-called "Trojan-horse" mechanism, in which nanoparticles are internalized within cells and then release high levels of toxic ions, has been proposed as a behavior in the cellular uptake of Ag nanoparticles (AgNPs). While several reports claim to have proved this mechanism by measuring AgNPs and Ag ions (I) in cells, it cannot be fully proven without examining those two components in both intra- and extracellular media. In our study, we found that even though cells take up AgNPs similarly to (microglia (BV-2)) or more rapidly than (astrocyte (ALT)) Ag (I), the ratio of AgNPs to total Ag (AgNPs+Ag (I)) in both cells was lower than that in outside media. It could be explained that H2O2, a major intracellular reactive oxygen species (ROS), reacts with AgNPs to form more Ag (I). Moreover, the major speciation of Ag (I) in cells was Ag(cysteine) and Ag(cysteine)2, indicating the possible binding of monomer cysteine or vital thiol proteins/peptides to Ag ions. Evidence we found indicates that the Trojan-horse mechanism really exists.


Asunto(s)
Endocitosis , Espacio Extracelular/química , Espacio Intracelular/química , Nanopartículas del Metal/química , Plata/metabolismo , Animales , Ácido Ascórbico/química , Muerte Celular/efectos de los fármacos , Línea Celular , Medios de Cultivo , Endocitosis/efectos de los fármacos , Peróxido de Hidrógeno/química , Iones , Lipopolisacáridos/química , Ratones , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Plata/toxicidad
19.
Environ Res ; 136: 253-63, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25460644

RESUMEN

Silver nanoparticles (AgNPs) have antibacterial characteristics, and currently are applied in Ag-containing products. This study found neural cells can uptake 3-5 nm AgNPs, and investigated the potential effects of AgNPs on gene expression of inflammation and neurodegenerative disorder in murine brain ALT astrocytes, microglial BV-2 cells and neuron N2a cells. After AgNPs (5, 10, 12.5 µg/ml) exposure, these neural cells had obviously increased IL-1ß secretion, and induced gene expression of C-X-C motif chemokine 13 (CXCL13), macrophage receptor with collagenous structure (MARCO) and glutathione synthetase (GSS) for inflammatory response and oxidative stress neutralization. Additionally, this study found amyloid-ß (Aß) plaques for pathological feature of Alzheimer's disease (AD) deposited in neural cells after AgNPs treatment. After AgNPs exposure, the gene expression of amyloid precursor protein (APP) was induced, and otherwise, neprilysin (NEP) and low-density lipoprotein receptor (LDLR) were reduced in neural cells as well as protein level. These results suggested AgNPs could alter gene and protein expressions of Aß deposition potentially to induce AD progress in neural cells. It's necessary to take notice of AgNPs distribution in the environment.


Asunto(s)
Encéfalo/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Inflamación/genética , Nanopartículas del Metal , Plata/química , Animales , Encéfalo/citología , Ratones
20.
J Hazard Mater ; 270: 92-101, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24553353

RESUMEN

In this paper, we demonstrate a means of simultaneously solving two serious environmental issues by reutilization of calcinated mixture of pulverized waste oyster shells blending with poly(methyl methacrylate) (PMMA) nanospheres to prepare CaO-based sorbents for CO2 capture. After 10 cycles of isothermal carbonation/calcination at 750°C, the greatest CO2 uptake (0.19 g CO2/g sorbent) was that for the sorbent featuring 70 wt% of PMMA, which was almost three times higher than that (0.07 g CO2/g sorbent) of untreated waste oyster shell. The greater CO2 uptake was likely a result of particle size reduction and afterwards surface basicity enhancement and an increase in the volume of mesopores and macropores. Following simplified life cycle assessment, whose all input values were collected from our experimental results, suggested that a significant CO2 emission reduction along with lesser human health and ecosystems impacts would be achieved immediately once waste is reutilized. Most importantly, the CO2 uptake efficiency must be greater than 20% or sorbents prepared from limestone mining would eventually produce a net positive CO2 emission.


Asunto(s)
Contaminantes Atmosféricos/química , Exoesqueleto , Compuestos de Calcio/química , Dióxido de Carbono/química , Nanosferas/química , Óxidos/química , Polimetil Metacrilato/química , Adsorción , Animales , Secuestro de Carbono , Ostreidae , Tamaño de la Partícula , Reciclaje , Propiedades de Superficie , Administración de Residuos/métodos , Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...