Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 10(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057393

RESUMEN

Coniella vitis is a dominant phytopathogen of grape white rot in China, significantly impacting grape yield and quality. Previous studies showed that the growth and pathogenicity of C. vitis were affected by the environmental pH. Arrestin-like protein PalF plays a key role in mediating the activation of an intracellular-signaling cascade in response to alkaline ambient. However, it remains unclear whether palF affects the growth, development, and virulence of C. vitis during the sensing of environmental pH changes. In this study, we identified a homologous gene of PalF/Rim8 in C. vitis and constructed CvpalF-silenced strains via RNA interference. CvpalF-silenced strains exhibited impaired fungal growth at neutral/alkaline pH, accompanied by reduced pathogenicity compared to the wild-type (WT) and empty vector control (CK) strains. The distance between the hyphal branches was significantly increased in the CvpalF-silenced strains. Additionally, CvpalF-silenced strains showed increased sensitivity to NaCl, H2O2, and Congo red, and decreased sensitive to CaSO4. RT-qPCR analysis demonstrated that the expression level of genes related to pectinase and cellulase were significantly down-regulated in CvpalF-silenced strains compared to WT and CK strains. Moreover, the expression of PacC, PalA/B/C/F/H/I was directly or indirectly affected by silencing CvpalF. Additionally, the expression of genes related to plant cell wall-degrading enzymes, which are key virulence factors for plant pathogenic fungi, was regulated by CvpalF. Our results indicate the important roles of CvpalF in growth, osmotolerance, and pathogenicity in C. vitis.

2.
PLoS One ; 19(6): e0302145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38861491

RESUMEN

Blockchain cross-chaining is about interconnectivity and interoperability between chains and involves both physical to virtual digital aspects and cross-chaining between digital networks. During the process, the liquidity transfer of information or assets can increase the use of items with other chains, so it is worth noting that the enhancement of cross-chain liquidity is of great practical importance to cross-chain technology. In this model, Layerzero is used as the primary secure cross-chain facility to build a full-chain identity by unifying NFT-distributed autonomous cross-chain identity IDs; applying super-contract pairs to enhance cross-chain liquidity; and initiating a dynamic transaction node creditworthiness model to increase the security of the cross-chain model and its risk management. Finally, by verifying three important property metrics timeliness is improved by at least 18%, robustness is increased by at least 50.9%, and radius of convergence is reduced by at least 25%. It is verified that the liquidity cross-chain model can eliminate the authentication transition between hierarchies while saving the cross-chain time cost, as a way to truly realize the liquid interoperability between multiple chains of blockchain.


Asunto(s)
Cadena de Bloques , Seguridad Computacional , Modelos Teóricos , Algoritmos
3.
PLoS One ; 19(6): e0303770, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38865331

RESUMEN

Research interest in information sharing behavior on social media has significantly increased over the past decade. However, empirical studies on the relationship between Big Five personality traits and information sharing behavior have yielded contradictory conclusions. We aimed to investigate how Big Five personality influences information sharing behavior on social media. This meta-analysis systematically reviewed high-quality studies indexed by web of science and CNKI from the past decade (n = 27, with 31969 samples) and performed a meta-analysis to examine the association between Big Five personality traits and information sharing behavior. The literature search was performed in September 2023. The meta-analysis results showed that extraversion (ß = 0.05**) had a positive relationship with information sharing behavior on social media. Agreeableness (ß = -0.06**), conscientiousness (ß = -0.03**), and neuroticism (ß = -0.03**) had negative relationships with information sharing behavior on social media. However, the relationship between openness and information sharing behavior was not clearly observed due to insufficient research. The meta-analysis results are made available to the scientific community to enhance research, comprehension, and utilization of social media.


Asunto(s)
Difusión de la Información , Personalidad , Medios de Comunicación Sociales , Humanos
4.
Adv Mater ; 36(25): e2400523, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594481

RESUMEN

The interaction between oxygen species and metal sites of various orbitals exhibits intimate correlation with the oxygen reduction reaction (ORR) kinetics. Herein, a new approach for boosting the inherent ORR activity of atomically dispersed Fe-N-C matrix is represented by implanting Fe atomic clusters nearby. The as-prepared catalyst delivers excellent ORR activity with half-wave potentials of 0.78 and 0.90 V in acidic and alkaline solutions, respectively. The decent ORR activity can also be validated from the high-performance rechargeable Zn-air battery. The experiments and density functional theory calculations reveal that the electron spin-state of monodispersed Fe active sites is transferred from the low spin (LS, t2g 6 eg 0) to the medium spin (MS, t2g 5 eg 1) due to the involvement of Fe atomic clusters, leading to the spin electron filling in σ∗ orbit, by which it favors OH- desorption and in turn boosts the reaction kinetics of the rate-determining step. This work paves a solid way for rational design of high-performance Fe-based single atom catalysts through spin manipulation.

5.
J Vasc Res ; 61(2): 77-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38503274

RESUMEN

INTRODUCTION: Previous studies have confirmed that low shear stress (LSS) induces glycocalyx disruption, leading to endothelial dysfunction. However, the role of autophagy in LSS-induced glycocalyx disruption and relevant mechanism are not clear. In this study, we hypothesized that LSS may promote autophagy, disrupting the endothelium glycocalyx. METHODS: Human umbilical vein endothelial cells were subjected to physiological shear stress and LSS treatments, followed by the application of autophagy inducers and inhibitors. Additionally, cells were treated with specific matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) inhibitor. The expression of autophagic markers, glycocalyx, MMP-2, and MMP-9 was measured. RESULTS: LSS impacted the expression of endothelium autophagy markers, increasing the expression of LC3II.LC3I-1 and Beclin-1, and decreasing the levels of p62, accompanied by glycocalyx disturbance. Moreover, LSS upregulated the expression of MMP-2 and MMP-9 and downregulated the levels of syndecan-1 and heparan sulfate (HS). Additionally, expression of MMP-2 and MMP-9 was increased by an autophagy promoter but was decreased by autophagy inhibitor treatment under LSS. Autophagy and MMP-2 and MMP-9 further caused glycocalyx disruption. CONCLUSION: LSS promotes autophagy, leading to glycocalyx disruption. Autophagy increases the expression of MMP-2 and MMP-9, which are correlated with the glycocalyx destruction induced by LSS.


Asunto(s)
Glicocálix , Metaloproteinasa 2 de la Matriz , Humanos , Glicocálix/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Autofagia , Estrés Mecánico
6.
Chem Rec ; 24(3): e202300350, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355899

RESUMEN

Gas sensors are crucial in environmental monitoring, industrial safety, and medical diagnostics. Due to the rising demand for precise and reliable gas detection, there is a rising demand for cutting-edge gas sensors that possess exceptional sensitivity, selectivity, and stability. Due to their tunable electrical properties, high-density surface-active sites, and significant surface-to-volume ratio, nanomaterials have been extensively investigated in this regard. The traditional gas sensors utilize homogeneous material for sensing where the adsorbed surface oxygen species play a vital role in their sensing activity. However, their performance for selective gas sensing is still unsatisfactory because the employed high temperature leads to the poor stability. The heterostructures nanomaterials can easily tune sensing performance and their different energy band structures, work functions, charge carrier concentration and polarity, and interfacial band alignments can be precisely designed for high-performance selective gas sensing at low temperature. In this review article, we discuss in detail the fundamentals of semiconductor gas sensing along with their mechanisms. Further, we highlight the existed challenges in semiconductor gas sensing. In addition, we review the recent advancements in semiconductor gas sensor design for applications from different perspective. Finally, the conclusion and future perspectives for improvement of the gas sensing performance are discussed.

7.
Heliyon ; 10(1): e23299, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163126

RESUMEN

Background: Shedding of glycocalyx is relevant to worse prognosis in surgical patients, and elevated levels of serum matrix metalloproteinase-9 (MMP-9) are associated with this phenomenon. This study aimed to investigate the dynamic alterations of serum glycocalyx components and MMP-9 during cardiopulmonary bypass (CPB), and evaluate their predictive capacities for prolonged intensive care unit (ICU) stay, as well as their correlation with coagulation dysfunction. Methods: This retrospective study analyzed serum levels of syndecan-1, heparan sulfate (HS), and MMP-9 at different time points during CPB, and assessed their association with prolonged ICU stay and coagulation dysfunction. Results: Syndecan-1, HS, and MMP-9 exhibited divergent changes during CPB. Serum levels of syndecan-1 (AUC = 78.0 %) and MMP-9 (AUC = 78.4 %) were validated as reliable predictors for prolonged ICU stay, surpassing the predictive value of creatinine (AUC = 70.0 %). Syndecan-1 (rho = 0.566, P < 0.01 at T1 and rho = 0.526, P < 0.01 at T2) and HS (rho = 0.403, P < 0.05 at T4) exhibited correlations with activated partial thromboplastin time (APTT) ratio beyond the normal range. Conclusions: Our findings advocate the potential efficacy of serum glycocalyx components and MMP-9 as early predictive indicators for extended ICU stay following cardiac surgery with CPB. Additionally, we observed a correlation between glycocalyx disruption during CPB and coagulation dysfunction. Further studies with expansive cohorts are warranted to consolidate our findings and explore the predictive potential of other glycocalyx components.

8.
Nanoscale ; 16(4): 1823-1832, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38168975

RESUMEN

Here, a series of transition metal (Ni) doped iron-based perovskite oxides LaFe1-xNixO3-δ (x = 0, 0.25, 0.5, 0.75, 1) were prepared, and then the perovskite oxide with the optimized nickel-iron ratio was doped with non-metallic elements (N). Experimental and theoretical investigations reveal that the co-doping breaks the traditional linear constraint relationship (GOOH - GOH = 3.2 eV) and the theoretical overvoltage is reduced from 0.64 V (LaFeO3-δ) to 0.44 V (LaFe0.5Ni0.5O3-δ/N). Specifically, Ni-doping can accelerate electron transfer and improve the conductivity. Moreover, N-doping can reduce the adsorption energy of *OH/*O and enhance the adsorption energy of *OOH. We demonstrated that the optimized cation and anion co-doped LaFe0.5Ni0.5O3-δ/N perovskite oxide exhibits an excellent OER performance, with a low overpotential of 270.6 mV at 10 mA cm-2 and a small Tafel slope of 65 mV dec-1 in 1 M KOH solution, markedly exceeding that of the parent perovskite oxide LaFeO3-δ (300.9 mV) and commercial IrO2 (289.1 mV). It also delivers decent durability with no significant degradation after a 35 h stability test. This work reveals the internal mechanism of perovskite oxide by doping cation and anion for water oxidation, which broadens the idea for the rational design of new perovskite-based sustainable energy catalysts.

9.
ACS Nano ; 18(1): 1214-1225, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150422

RESUMEN

By substituting the oxygen evolution reaction (OER) with the anodic urea oxidation reaction (UOR), it not only reduces energy consumption for green hydrogen generation but also allows purification of urea-rich wastewater. Spin engineering of the d orbital and oxygen-containing adsorbates has been recognized as an effective pathway for enhancing the performance of electrocatalysts. In this work, we report the fabrication of a bifunctional electrocatalyst composed of amorphous RuO2-coated NiO ultrathin nanosheets (a-RuO2/NiO) with abundant amorphous/crystalline interfaces for hydrogen evolution reaction (HER) and UOR. Impressively, only 1.372 V of voltage is required to attain a current density of 10 mA cm-2 over a urea electrolyzer. The increased oxygen vacancies in a-RuO2/NiO by incorporation of amorphous RuO2 enhance the total magnetization and entail numerous spin-polarized electrons during the reaction, which speeds up the UOR reaction kinetics. The density functional theory study reveals that the amorphous/crystalline interfaces promote charge-carrier transfer, and the tailored d-band center endows the optimized adsorption of oxygen-generated intermediates. This kind of oxygen vacancy induced spin-polarized electrons toward boosting HER and UOR kinetics and provides a reliable reference for exploration of advanced electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...