Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Nat Commun ; 15(1): 5681, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971813

RESUMEN

Fast photoinduced charge separation (CS) and long-lived charge-separated state (CSS) in small-molecules facilitate light-energy conversion, while simultaneous attainment of both remains challenging. Here we accomplish this through aggregation based on fullerene-indacenodithiophene dyads. Transient absorption spectroscopy reveals that, compared to solution, the CS time in aggregates is accelerated from 41.5 ps to 0.4 ps, and the CSS lifetime is prolonged from 311.4 ps to 40 µs, indicating that aggregation concomitantly promotes fast CS and long-lived CSS. Fast CS arises from the hot charge-transfer states dissociation, opening up additional resonant channels to free carriers (FCs); subsequently, charge recombination into intramolecular triplet CSS becomes favorable mediated by spin-uncorrelated FCs. Different from fullerene/indacenodithiophene blends, the unique CS mechanism in dyad aggregates reduces the long-lived CSS dependence on molecular order, resulting in a CSS lifetime 200 times longer than blends. This endows the dyad aggregates to exhibit both photoelectronic switch properties and superior photocatalytic capabilities.

2.
Macromol Rapid Commun ; : e2400240, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38876473

RESUMEN

The effective treatment of chronic wounds represents a critical global medical challenge demanding urgent attention. Persistent inflammation, driven by an excess of reactive oxygen radicals, sets in motion a detrimental cycle leading to chronic wounds and impeding the natural healing process. This study develops a sprayable wound dressing by covalently grafting amino fullerene to carboxymethylated curdlan (CMC-C). This novel dressing exhibits excellent biocompatibility, antioxidant, and reactive oxygen species scavenging properties. Furthermore, it demonstrates a targeted affinity for HEK-a cells, efficiently reducing the inflammatory response while promoting cell proliferation and migration in vitro. Moreover, the animal experiment investigations reveal that CMC-C significantly accelerates chronic wounds healing by regulating the inflammatory process, promoting collagen deposition, and improving vascularization. These results demonstrate the potential of the sprayable dressing (CMC-C) in curing the healing of chronic wounds through the modulation of the inflammatory microenvironment. Overall, the sprayable hydrogel dressing based on water-soluble derivative of fullerene and curdlan emerges as a potential approach for clinical applications in the treatment of chronic wounds.

3.
Adv Mater ; 36(23): e2310875, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38450765

RESUMEN

Photodynamic therapy (PDT) has been approved for clinic. However, powerless efficiency for deep hypoxic tumor therapy remains an enormous challenge for PDT. Herein, a hypoxia-sensitive nanotherapeutic system (FTCD-SRGD) based on fullerene (C70) and anoxic activating chemical prodrug tirapazamine (TPZ) is rationally designed for multimodal therapy of deep hypoxic tumors. To enhance the accumulation and achieve specific drug release in tumor, the FTCD-SRGD is modified with cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGDfK) peptide and disulfide bonds. With the exacerbated hypoxic microenvironment created by C70 consuming O2 for generating reactive oxygen species (ROS), TPZ is activated to produce toxic radical species to ablate deep tumors, which achieves a synergistic treatment of C70-mediated PDT and hypoxia-enhanced chemotherapy. Additionally, given this hypoxia-sensitive system-induced immunogenic cell death (ICD) activating anticancer cytotoxic T lymphocyte to result in more susceptible tumor to immunotherapy, FTCD-SRGD plus immune checkpoint inhibitor (anti-PD-L1) fully inhibit deep hypoxic tumors by promoting infiltration of effector T cells in tumors. Collectively, it is the first time to develop a multimodal therapy system with fullerene-based hypoxia-sensitive PS for deep tumors. The powerful multimodal nanotherapeutic system for combining hypoxia-enhanced PDT and immunotherapy to massacre deep hypoxic tumors can provide a paradigm to combat the present bottleneck of tumor therapy.


Asunto(s)
Fulerenos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Tirapazamina , Fulerenos/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Fotoquimioterapia/métodos , Ratones , Línea Celular Tumoral , Tirapazamina/química , Tirapazamina/farmacología , Humanos , Terapia Combinada , Microambiente Tumoral/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/patología , Hipoxia Tumoral/efectos de los fármacos , Profármacos/química , Profármacos/farmacología , Profármacos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
4.
Adv Mater ; 36(21): e2312440, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332741

RESUMEN

Delayed re-epithelization and weakened skin contractions are the two primary factors that hinder wound closure in large-scale acute or chronic wounds. However, effective strategies for targeting these two aspects concurrently are still lacking. Herein, an antioxidative active-shrinkage hydrogel (AHF@AS Gel) is constructed that can integratedly promote re-epithelization and skin constriction to accelerate large-scale acute and diabetic chronic wound closure. The AHF@AS Gel is encapsulated by antioxidative amino- and hydroxyl-modified C70 fullerene (AHF) and a thermosensitive active shrinkage hydrogel (AS Gel). Specifically, AHF relieves overactivated inflammation, prevents cellular apoptosis, and promotes fibroblast migration in vitro by reducing excessive reactive oxygen species (ROS). Notably, the AHF@AS Gel achieved ≈2.7-fold and ≈1.7-fold better re-epithelization in acute wounds and chronic diabetic wounds, respectively, significantly contributing to the promotion of wound closure. Using proteomic profiling and mechanistic studies, it is identified that the AHF@AS Gel efficiently promoted the transition of the inflammatory and proliferative phases to the remodeling phase. Notably, it is demonstrated that AS Gel alone activates the mechanosensitive epidermal growth factor receptor/Akt (EGFR/Akt) pathway and promotes cell proliferation. The antioxidative active shrinkage hydrogel offers a comprehensive strategy for acute wound and diabetic chronic wound closure via biochemistry regulation integrating with mechanical forces stimulation.


Asunto(s)
Antioxidantes , Hidrogeles , Piel , Cicatrización de Heridas , Hidrogeles/química , Antioxidantes/química , Antioxidantes/farmacología , Animales , Piel/metabolismo , Piel/efectos de los fármacos , Piel/patología , Ratones , Cicatrización de Heridas/efectos de los fármacos , Fulerenos/química , Fulerenos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores ErbB/metabolismo , Repitelización/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Movimiento Celular/efectos de los fármacos , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis/efectos de los fármacos
5.
Nanomaterials (Basel) ; 14(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38334527

RESUMEN

Photocatalytic hydrogen generation via water decomposition is a promising avenue in the pursuit of large-scale, cost-effective renewable hydrogen energy generation. However, the design of an efficient photocatalyst plays a crucial role in achieving high yields in hydrogen generation. Herein, we have engineered a fullerene-2,3,9,10,16,17,23,24-octa(octyloxy)copper phthalocyanine (C60-CuPcOC8) photocatalyst, achieving both efficient hydrogen generation and high stability. The significant donor-acceptor (D-A) interactions facilitate the efficient electron transfer from CuPcOC8 to C60. The rate of photocatalytic hydrogen generation for C60-CuPcOC8 is 8.32 mmol·g-1·h-1, which is two orders of magnitude higher than the individual C60 and CuPcOC8. The remarkable increase in hydrogen generation activity can be attributed to the development of a robust internal electric field within the C60-CuPcOC8 assembly. It is 16.68 times higher than that of the pure CuPcOC8. The strong internal electric field facilitates the rapid separation within 0.6 ps, enabling photogenerated charge transfer efficiently. Notably, the hydrogen generation efficiency of C60-CuPcOC8 remains above 95%, even after 10 h, showing its exceptional photocatalytic stability. This study provides critical insight into advancing the field of photocatalysis.

6.
ACS Nano ; 18(3): 2131-2148, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38198697

RESUMEN

Endotoxemia is a life-threatening multiple organ failure disease caused by bacterial endotoxin infection. Unfortunately, current single-target therapy strategies have failed to prevent the progression of endotoxemia. Here, we reported that alanine fullerene redox modulator (AFRM) remodeled the intestinal microenvironment for multiple targets endotoxemia mitigation by suppressing inflammatory macrophages, inhibiting macrophage pyroptosis, and repairing epithelial cell barrier integrity. Specifically, AFRM exhibited broad-spectrum and self-cascade redox regulation properties with superoxide dismutase (SOD)-like enzyme, peroxidase (POD)-like enzyme activity, and hydroxyl radical (•OH) scavenging ability. Guided by proteomics, we demonstrated that AFRM regulated macrophage redox homeostasis and down-regulated LPS/TLR4/NF-κB and MAPK/ERK signaling pathways to suppress inflammatory hyperactivation. Of note, AFRM could attenuate inflammation-induced macrophage pyroptosis via inhibiting the activation of gasdermin D (GSDMD). In addition, our results revealed that AFRM could restore extracellular matrix and cell-tight junction proteins and protect the epithelial cell barrier integrity by regulating extracellular redox homeostasis. Consequently, AFRM inhibited systemic inflammation and potentiated intestinal epithelial barrier damage repair during endotoxemia in mice. Together, our work suggested that fullerene based self-cascade redox modulator has the potential in the management of endotoxemia through synergistically remodeling the inflammation and epithelial barriers in the intestinal microenvironment.


Asunto(s)
Endotoxemia , Fulerenos , Ratones , Animales , Endotoxemia/inducido químicamente , Endotoxemia/metabolismo , Intestinos , FN-kappa B/metabolismo , Inflamación , Oxidación-Reducción , Lipopolisacáridos/farmacología
7.
ACS Appl Mater Interfaces ; 16(5): 5536-5547, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38267397

RESUMEN

Autoimmune hepatitis (AIH) is a severe immune-mediated inflammatory liver disease whose standard of care is immunosuppressive treatment with inevitable undesired outcomes. Macrophage is acknowledged to aggravate liver damage, providing a promising AIH therapeutic target. Accordingly, in this study, a kind of curdlan-decorated fullerene nanoparticle (Cur-F) is fabricated to alleviate immune-mediated hepatic injury for treating AIH via reducing macrophage infiltration in a concanavalin A (Con A)-induced AIH mouse model. After intravenous administration, Cur-F primarily distributes in liver tissues, efficiently eliminates the excessive reactive oxygen species, significantly attenuates oxidative stress, and subsequently suppresses the nuclear factor kappa-B-gene binding (NF-κB) signal pathway, resulting in the lowered production of pro-inflammatory cytokines and the balancing of the immune homeostasis with the prevention of macrophage infiltration in the liver. The regulation of hepatic inflammation contributes to inhibiting inflammatory cytokines-induced hepatocyte apoptosis, decreasing the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) contents and thus ameliorating immune-mediated hepatic injury. Notably, there is no detectable toxicity to the body. Our findings may open up novel avenues for AIH based on curdlan and fullerene materials.


Asunto(s)
Fulerenos , Hepatitis Autoinmune , beta-Glucanos , Animales , Ratones , Hepatitis Autoinmune/tratamiento farmacológico , Hepatitis Autoinmune/metabolismo , Fulerenos/farmacología , Fulerenos/uso terapéutico , Fulerenos/metabolismo , Hígado/metabolismo , Citocinas/metabolismo , FN-kappa B/metabolismo , Concanavalina A , Macrófagos/metabolismo
8.
Phys Chem Chem Phys ; 26(6): 5499-5507, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38282470

RESUMEN

The practical applications of endohedral metallofullerenes (EMFs) are mainly constrained by their low yields. Understanding the formation mechanisms is therefore crucial for developing methods for high-yield and selective synthesis. To address this, a novel force-field parameter set, "CSc.ff", was created using a single-parameter search optimization method, then molecular dynamics simulations of various systems with a carbon-to-scandium atomic ratio of 12.5 were carried out. The simulations were run under a constant atomic number, volume, and energy (NVE) ensemble. The influence of the working gas, helium, as well as temperature gradients on the formation process was examined. Our simulations reveal that the cage growth patterns of Sc-based EMFs (Sc-EMFs) closely resemble those of hollow fullerenes, evolving from free carbon atoms to chains, rings, and, ultimately, to cage-shaped clusters. Importantly, the Sc-EMFs formed in the simulation frequently exhibit structural defects or under-coordinated carbon atoms. Scandium atoms, whether at the periphery or on the surface of these cages, can be incorporated into the cages, forming Sc-EMFs. Helium was found to not only promote the formation of carbon cages but also facilitate the encapsulation of scandium atoms, playing a crucial role in the formation of cluster fullerenes. Moreover, cooling effectively inhibits the uncontrollable growth of the carbon cage and is essential for forming stable, appropriate-sized cages. This study enhances our understanding of the formation of Sc-EMFs and provides valuable insights for developing more efficient synthetic methods.

9.
Angew Chem Int Ed Engl ; 63(8): e202316227, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38179837

RESUMEN

The limited exciton lifetime (τ, generally <1 ns) leads to short exciton diffusion length (LD ) of organic semiconductors, which is the bottleneck issue impeding the further improvement of power conversion efficiencies (PCEs) for organic solar cells (OSCs). However, efficient strategies to prolong intrinsic τ are rare and vague. Herein, we propose a facile method to efficiently reduce vibrational frequency of molecular skeleton and suppress exciton-vibration coupling to decrease non-radiative decay rate and thus prolong τ via deuterating nonfullerene acceptors. The τ remarkably increases from 0.90 ns (non-deuterated L8-BO) to 1.35 ns (deuterated L8-BO-D), which is the record for organic photovoltaic materials. Besides, the inhibited molecular vibration improves molecular planarity of L8-BO-D for enhanced exciton diffusion coefficient. Consequently, the LD increases from 7.9 nm (L8-BO) to 10.7 nm (L8-BO-D). The prolonged LD of L8-BO-D enables PM6 : L8-BO-D-based bulk heterojunction OSCs to acquire higher PCEs of 18.5 % with more efficient exciton dissociation and weaker charge carrier recombination than PM6 : L8-BO-based counterparts. Moreover, benefiting from the prolonged LD , D18/L8-BO-D-based pseudo-planar heterojunction OSCs achieve an impressive PCE of 19.3 %, which is among the highest values. This work provides an efficient strategy to increase the τ and thus LD of organic semiconductors, boosting PCEs of OSCs.

10.
Adv Mater ; 36(5): e2308909, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939009

RESUMEN

Controlling vertical phase separation of the active layer to enable efficient exciton dissociation and charge carrier transport is crucial to boost power conversion efficiencies (PCEs) of pseudoplanar heterojunction (PPHJ) organic solar cells (OSCs). However, how to optimize the vertical phase separation of PPHJ OSCs via molecule design is rarely reported yet. Herein, ternary polymerization strategy is employed to develop a series of polymer donors, DL1-DL4, and regulate their solubility, molecular aggregation, molecular orientation, and miscibility, thus efficiently manipulating vertical phase separation in PPHJ OSCs. Among them, DL1 not only has enhanced solubility, inhibited molecular aggregation and partial edge-on orientation to facilitate acceptor molecules, Y6, to permeate into polymer layer and increase donor/acceptor interfaces, but also sustains high crystallinity and appropriate miscibility with Y6 to acquire ordered molecular packing, thus achieving optimized vertical phase separation to well juggle exciton dissociation and charge transport in PPHJ devices. Therefore, DL1/Y6 based PPHJ OSCs gain the best exciton dissociation probability, highest charge carrier mobilities and weakest charge recombination, and thus afford an impressive PCE of 19.10%, which is the record value for terpolymer donors. It demonstrates that ternary polymerization is an efficient method to optimize vertical phase separation in PPHJ OSCs for high PCEs.

11.
Macromol Biosci ; 24(2): e2300277, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37658682

RESUMEN

Ulcerative colitis is a chronic inflammatory bowel disease with a high recurrence rate. Natural phytochemical compounds are increasingly being considered as preventative and supportive treatments for this condition. However, the poor water solubility and stability of many of these compounds limit their effectiveness in vivo. To address this issue, fisetin (FT), a natural phytochemical with poor solubility, is stabilized using silk sericin (SS) to create a composite (SS/FT). The therapeutic potential of the SS/FT on ulcerative colitis is extensively investigated, and the results showed that it effectively alleviated the body weight loss and colon length shortening induced by dextran sulfate sodium. Notably, SS/FT downregulated the immune response, decreased colonic histopathological lesions, and reduced the cGAS/STING signal activation. This suggests that SS/FT may offer a promising therapy for treating ulcerative colitis.


Asunto(s)
Colitis Ulcerosa , Flavonoles , Sericinas , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Sericinas/efectos adversos , Transducción de Señal , FN-kappa B/metabolismo , Fitoquímicos/efectos adversos , Sulfato de Dextran , Modelos Animales de Enfermedad , Colon/patología , Ratones Endogámicos C57BL
12.
Proc Natl Acad Sci U S A ; 120(52): e2311673120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109541

RESUMEN

The unbalanced immune state is the dominant feature of myocardial injury. However, the complicated pathology of cardiovascular diseases and the unique structure of cardiac tissue lead to challenges for effective immunoregulation therapy. Here, we exploited oral fullerene nanoscavenger (OFNS) to maintain intestinal redox homeostasis to resolve systemic inflammation for effectively preventing distal myocardial injury through bidirectional communication along the heart-gut immune axis. Observably, OFNS regulated redox microenvironment to repair cellular injury and reduce inflammation in vitro. Subsequently, OFNS prevented myocardial injury by regulating intestinal redox homeostasis and recovering epithelium barrier integrity in vivo. Based on the profiles of transcriptomics and proteomics, we demonstrated that OFNS balanced intestinal and systemic immune homeostasis for remote cardioprotection. Of note, we applied this principle to intervene myocardial infarction in mice and mini-pigs. These findings highlight that locally addressing intestinal redox to inhibit systemic inflammation could be a potent strategy for resolving remote tissue injury.


Asunto(s)
Fulerenos , Infarto del Miocardio , Porcinos , Ratones , Animales , Fulerenos/farmacología , Porcinos Enanos , Inflamación/patología , Infarto del Miocardio/prevención & control , Homeostasis , Mucosa Intestinal
13.
Adv Sci (Weinh) ; 10(35): e2302910, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884486

RESUMEN

Tumor immunotherapy offers a new paradigm to treat cancer; however, the existing regimens are accompanied by the dilemma of insufficient therapeutic outcomes and off-target adverse effects. The intestinal immune system contains a bulk of immune cells, which can be important contributors to the maintenance of systemic immune homeostasis. However, manipulating intestinal immunity to achieve systemic anti-tumor immunity is extremely challenging. Here, an oral immunotherapy strategy is reported using immune-enhancing fullerenes (IEF) that can reinvigorate anti-tumor immunity via immune cell-metabolic reprogramming of intestinal immune cells. Findings show that IEF can remodel anti-inflammatory macrophages into tumor-killing macrophages by regulating the energy metabolism pathway from oxidative phosphorylation (OXPHOS) to glycolysis. Consequently, IEF can reprogram the immunosuppressive intestinal immunity and enhance sys temic immunity in vivo, thereby boosting anti-tumor immunity and converting "cold" tumors into "hot" tumors. Oral immunotherapy strategy, modulating autoimmune cells in the intestine and achieving systemic anti-tumor immunity, can ensure safe and efficient tumor immunotherapy.


Asunto(s)
Neoplasias , Humanos , Inmunoterapia , Terapia de Inmunosupresión , Neoplasias/tratamiento farmacológico , Intestinos
14.
ACS Appl Mater Interfaces ; 15(42): 48952-48962, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37843040

RESUMEN

Excessive oxidative stress, bacterial infections, and inflammation are the primary factors impeding the healing of skin wounds. Bioactive hydrogels are commonly employed in the treatment of skin injuries. However, the limited solubility of many drugs and active agents in water significantly hampers their effectiveness in hydrogel dressings. In this research, prior to incorporation into the silk fibroin (SF) hydrogel matrix, two active agents curcumin and silver nanoparticles (Ag NPs) were decorated by silk sericin to improve their dispersibility and stability in water. The resultant SF/Ag/C hydrogels combined the biological safety and nontoxicity of SF, the antioxidant and anti-inflammatory efficacy of curcumin, and the antibacterial effect of Ag NPs. These properties effectively enhanced wound repair by reducing bacterial infections, mitigating oxidative stress, suppressing the expression of pro-inflammatory factors, and promoting angiogenesis. This study presented a straightforward approach for constructing bioactive hydrogels for the promotion of the wound healing process.


Asunto(s)
Infecciones Bacterianas , Curcumina , Fibroínas , Nanopartículas del Metal , Sericinas , Humanos , Seda , Sericinas/farmacología , Hidrogeles/farmacología , Curcumina/farmacología , Plata/farmacología , Fibroínas/farmacología , Antibacterianos , Vendajes , Agua
16.
Theranostics ; 13(14): 4936-4951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771782

RESUMEN

Neuroinflammation is considered to drive the pathogenic process of neuronal degeneration in Parkinson's disease (PD). However, effective anti-neuroinflammation therapeutics for PD still remain dissatisfactory. Here we explore a robust therapeutic strategy for PD using anti-neuroinflammatory fullerenes. Methods: Oral fullerene was prepared by a ball-milling method. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model was used to investigate the therapeutic effects and mechanisms of it. The gut microenvironment was evaluated by 16S rRNA gene sequencing, gas chromatography-mass spectrometry, quantitative polymerase chain reaction (Q-PCR), and western blot (WB). The neuroinflammation and neurodegeneration were evaluated by pathological analysis, Elisa kits, transmission electron microscopy, Q-PCR, WB and so on. Toxicity was assessed by weight, blood test and hematoxylin-eosin (HE) staining. Results: Oral fullerene therapeutic system that dissolved [60]fullerene into olive oil (abbreviated as OFO) was dexterously designed, which could reduce neuroinflammation via regulating the diversity of gut microbiome, increasing the contents of short chain fatty acids (SCFAs) and recovering the integrity of gut barrier. Accordingly, the reduction of neuroinflammation prevented dopaminergic neuronal degeneration. And thus, OFO significantly ameliorated motor deficits and fundamentally reversed dopamine (DA) loss in MPTP-induced PD mice. Of note, OFO exhibited low toxicity towards the living body. Conclusion: Our findings suggest that OFO is a safe-to-use, easy-to-apply, and prospective candidate for PD treatment in clinic, opening a therapeutic window for neuroinflammation-triggered neurodegeneration.

17.
ACS Appl Mater Interfaces ; 15(35): 41287-41298, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37632730

RESUMEN

Bacterial infections severely threaten human health; therefore, it is important to endow the matrix for tissue engineering with antibacterial efficiency. The loading of antibacterial drugs on nanomaterials provides an efficient strategy to realize synergistic antibacterial efficiency. By depositing various metal-organic frameworks, such as UIO-66, onto konjac glucomannan (KGM), composite hydrogels (KGM/UIO-66) were created. These hydrogels were used as drug carriers, enabling the development of antibacterial hydrogels with high drug loading capacities (e.g., the maximum loading amount of pterostilbene on KGM/UIO-66 reached 0.157 mg/mg) and sustained drug release. The resulting KGM/UIO-66/pterostilbene hydrogel exhibited a three-dimensional porous structure, excellent biocompatibility, antibacterial efficiency, and anti-inflammatory activity. It effectively protected cells from bacterial attacks while ensuring cell adhesion and proliferation, demonstrating great potential as a three-dimensional substrate for biomedical applications, including tissue engineering and regenerative medicine.


Asunto(s)
Estructuras Metalorgánicas , Humanos , Antibacterianos , Antiinflamatorios , Hidrogeles
18.
Nat Commun ; 14(1): 4922, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582960

RESUMEN

Spin-based sensors have attracted considerable attention owing to their high sensitivities. Herein, we developed a metallofullerene-based nano spin sensor to probe gas adsorption within porous organic frameworks. For this, spin-active metallofullerene, Sc3C2@C80, was selected and embedded into a nanopore of a pyrene-based covalent organic framework (Py-COF). Electron paramagnetic resonance (EPR) spectroscopy recorded the EPR signals of Sc3C2@C80 within Py-COF after adsorbing N2, CO, CH4, CO2, C3H6, and C3H8. Results indicated that the regularly changing EPR signals of embedded Sc3C2@C80 were associated with the gas adsorption performance of Py-COF. In contrast to traditional adsorption isotherm measurements, this implantable nano spin sensor could probe gas adsorption and desorption with in situ, real-time monitoring. The proposed nano spin sensor was also employed to probe the gas adsorption performance of a metal-organic framework (MOF-177), demonstrating its versatility. The nano spin sensor is thus applicable for quantum sensing and precision measurements.

19.
Nanoscale ; 15(33): 13645-13652, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37551614

RESUMEN

Endohedral metallofullerenes are capable of holding peculiar metal clusters inside the carbon cage. Additionally, these display many chemical and physical properties originating from the complexation between the metal clusters and carbon cages, which could be acquired for wide applications. In this study, two metallofullerenes (Ce2O@C88 and Ce3N@C88) with an identical large C88-D2(35) cage, and their molecular structures and single-molecule conductance properties were investigated comparatively. Characterizations of UV-vis-NIR absorption spectroscopy, Raman spectroscopy, and DFT calculations were employed to determine the geometries and electronic structures of Ce2O@C88 and Ce3N@C88. These molecules revealed varied energy gaps, structural parameters, vibrational modes, and molecular frontier orbitals. Although the two metallofullerenes have an identical cage isomer of C88-D2(35), their different endohedral clusters can influence their structures and physicochemical properties. Furthermore, the single-molecule conductance properties were measured using the scanning tunneling microscopy break junction technique (STM-BJ). The experimental results revealed that Ce2O@C88 has a higher conductance than Ce3N@C88 and C60. This revealed the cluster-dependent electron transportation as well as the significant research value of metallofullerenes with large carbon cages. These results provide guidance for fabricating single-molecule electronic devices.

20.
J Mater Chem B ; 11(31): 7401-7409, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37431674

RESUMEN

Myelosuppression is a predominant side-effect of radiotherapy, which manifests as the lower activity of blood cell precursors in bone marrow. Though progress in anti-myelosuppression has been made by the application of growth factors e.g., the granulocyte colony-stimulating factor (G-CSF), the side-effects (e.g., bone-pain, liver injury, and lung toxicity) limit their applications in clinic. Herein, we developed a strategy of efficiently normalizing leukopoiesis using gadofullerene nanoparticles (GFNPs) against myelosuppression triggered by radiation. Specifically, GFNPs with high radical-scavenging abilities elevated the generation of leukocytes and alleviated the bone marrow's pathological state under myelosuppression. Notably, GFNPs potentiated the differentiation, development, and maturation of leukocytes (neutrophils, lymphocytes) in radiation bearing mice even better than what G-CSF did. In addition, GFNPs had little toxicity towards the main organs including the heart, liver, spleen, lung, and kidney. This work provides an in-depth understanding of how advanced nanomaterials mitigate myelosuppression by regulating leukopoiesis.


Asunto(s)
Médula Ósea , Fulerenos , Ratones , Animales , Médula Ósea/patología , Leucopoyesis , Factor Estimulante de Colonias de Granulocitos/farmacología , Fulerenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...