RESUMEN
Heart failure (HF) is a global concern, particularly HF with preserved ejection fraction (HFpEF), lacking effective treatments. Understanding the differences of metabolic profiles between HFpEF and HFrEF (heart failure with reduced ejection fraction) patients is crucial for therapeutic advancements. In this study, pseudotargeted metabolomics was employed to analyze for disparities of plasma metabolic profiles between HFpEF and HFrEF in two cohorts: discovery (n = 514) and validation (n = 3368). Plasma-free carnitine levels were significant changed in HF patients. A non-linear and U-shaped (for HFpEF) or J-shaped (for HFrEF) association between circulating free carnitine levels and the composite risk of cardiac events were observed. Interestingly, HFpEF patients with low free carnitine (≤40.18 µmol/L) displayed a poorer survival, contrasting with HFrEF where higher levels (≥35.67 µmol/L) were linked to poorer outcomes, indicating distinct metabolism pathways. In conclusion, these findings offer insights into HFpEF metabolic profiles, suggesting potential therapeutic targets.
RESUMEN
BACKGROUND AND PURPOSE: Fulminant myocarditis (FM) is a myocardial inflammatory disease that can result from either viral diseases or autoimmune diseases. In this study, we have determined the treatment effects of immunomodulatory drugs on FM. EXPERIMENTAL APPROACH: FM was induced in A/JGpt mice by intraperitoneal administration of coxsackievirus B3, after which immunoglobins were administered daily by intraperitoneal injection. On the seventh day, the cardiac structure and function were determined using echocardiography and cardiac catheterisation. Single-cell RNA sequencing (scRNA-seq) was performed to evaluate CD45+ cells in the heart. KEY RESULTS: Immunoglobin, a typical immunomodulatory drug, dramatically reduced mortality and significantly improved cardiac function in mice with FM. ScRNA-seq revealed that immunoglobin treatment effectively modulated cardiac immune homeostasis, particularly by attenuating overactivated innate immune responses. At the cellular level, immunoglobin predominantly targeted Plac8+ monocytes and S100a8+ neutrophils, suppressing their proinflammatory activities, and enhancing antigen processing and presentation capabilities, thereby amplifying the efficiency and potency of the immune response against the virus. Immunoglobin benefits are mediated by the modulation of multiple signalling pathways, including relevant receptors on immune cells, direction of inflammatory cell chemotaxis, antigen presentation and anti-viral effects. Subsequently, Bst2-ILT7 ligand-receptor-mediated cellular interactions manipulated by immunoglobin were further confirmed in vivo. CONCLUSIONS AND IMPLICATIONS: Immunoglobin treatment significantly attenuated FM-induced cardiac inflammation and improved cardiac function by inhibiting overactivated innate immune responses.
RESUMEN
BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized with progressive cardiac fibrosis and heart failure. However, the exact mechanism driving the progression of cardiac fibrosis and heart failure in ACM remains elusive. This study aims to investigate the underlying mechanisms of progressive cardiac fibrosis in ACM caused by newly identified Desmoglein-2 (DSG2) variation. METHODS: We identified homozygous DSG2F531C variant in a family with 8 ACM patients using whole-exome sequencing and generated Dsg2F536C knock-in mice. Neonatal and adult mouse ventricular myocytes isolated from Dsg2F536C knock-in mice were used. We performed functional, transcriptomic and mass spectrometry analyses to evaluate the mechanisms of ACM caused by DSG2F531C variant. RESULTS: All eight patients with ACM were homozygous for DSG2F531C variant. Dsg2F536C/F536C mice displayed cardiac enlargement, dysfunction, and progressive cardiac fibrosis in both ventricles. Mechanistic investigations revealed that the variant DSG2-F536C protein underwent misfolding, leading to its recognition by BiP within the endoplasmic reticulum, which triggered endoplasmic reticulum stress, activated the PERK-ATF4 signaling pathway and increased ATF4 levels in cardiomyocytes. Increased ATF4 facilitated the expression of TGF-ß1 in cardiomyocytes, thereby activating cardiac fibroblasts through paracrine signaling and ultimately promoting cardiac fibrosis in Dsg2F536C/F536C mice. Notably, inhibition of the PERK-ATF4 signaling attenuated progressive cardiac fibrosis and cardiac systolic dysfunction in Dsg2F536C/F536C mice. CONCLUSIONS: Hyperactivation of the ATF4/TGF-ß1 signaling in cardiomyocytes emerges as a novel mechanism underlying progressive cardiac fibrosis in ACM. Targeting the ATF4/TGF-ß1 signaling may be a novel therapeutic target for managing ACM.
Asunto(s)
Factor de Transcripción Activador 4 , Desmogleína 2 , Fibrosis , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Displasia Ventricular Derecha Arritmogénica/patología , Desmogleína 2/genética , Desmogleína 2/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Linaje , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genéticaRESUMEN
Here, we report the preparation of lactones via Ni-catalyzed alkene hydroxylarylation and sequential intramolecular lactonization with O2 as a green oxidant and oxygen source. The bulky 1,3-diketone ligand is crucial by enabling Ni-catalyzed hydroxylarylation of alkenes, providing numerous phthalide and furanone derivatives with high efficiency under mild conditions. The synthetic value of this methodology was further demonstrated by the efficient synthesis of typhaphthalide and a monoamine oxidase B inhibitor.
RESUMEN
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Asunto(s)
Insuficiencia Cardíaca , Procesamiento Proteico-Postraduccional , Insuficiencia Cardíaca/metabolismo , Humanos , Animales , AcetilaciónRESUMEN
BACKGROUND: Immune response and inflammation play important roles in the physiological and pathophysiological processes of heart failure (HF). In our previous study, myeloid-derived suppressor cells (MDSCs), a heterogeneous group of immature myeloid cells with anti-inflammatory and immunosuppressive functions, were shown to exert cardioprotective effects in HF. The pharmacological targeting of MDSCs using rapamycin may emerge as a promising strategy for the prevention and treatment of HF. However, the specific mechanisms underlying rapamycin-induced MDSC accumulation remain unclear. Our study aimed to clarify the effects of rapamycin on the recruitment and function of MDSCs in HF, exploring new therapeutic options for the prevention and treatment of HF. METHODS: We used transverse aortic constriction surgery and isoproterenol injection to establish HF models. Flow cytometry, reverse transcription polymerase chain reaction, transcriptomics and western blot were used to explore the regulation of rapamycin on recruitment and function of MDSCs in HF. Furthermore, rapamycin and granulocyte-macrophage colony-stimulating factor (GM-CSF) were combined to induce exogenous MDSCs from bone marrow cells. RESULTS: Rapamycin promotes the recruitment of MDSCs by inhibiting their maturation and differentiation via suppression of the Wnt signaling in HF mice and enhanced the immunosuppressive function of MDSCs via the NF-κB signaling. Furthermore, exogenous MDSCs induced by rapamycin and GM-CSF can significantly alleviate transverse aortic constriction-induced cardiac dysfunction. CONCLUSIONS: The pharmacological targeting of MDSCs using rapamycin is a promising strategy for the prevention and treatment of HF.
Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Insuficiencia Cardíaca , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide , Sirolimus , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/inmunología , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Sirolimus/farmacología , Sirolimus/uso terapéutico , Masculino , Ratones , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Modelos Animales de Enfermedad , FN-kappa B/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células CultivadasRESUMEN
MT-1207 (MT) as a new antihypertensive drug is under clinical trial. However, its hypotensive mechanism has not been experimentally explored, and it is unknown whether MT can be used for bilateral renal artery stenosis hypertension. Using two-kidney two-clip (2K2C) to mimic bilateral renal artery stenosis in rats, a stroke-prone renovascular hypertension model, the present study further verified its antihypertensive effect, cardiovascular and renal protection, mortality reduction and lifespan prolongation, as well as demonstrated its two novel pharmacological effects for uric acid-lowering and cognition-improving. Notably, MT did not aggravate renal dysfunction; instead, it had beneficial effects on reducing serum uric acid level and maintaining serum K+ at a relatively stable level in 2K2C rats. In contrast, angiotensin receptor blocker losartan aggravated renal dysfunction in 2K2C rats. Mechanistically, MT hypotensive effect was dependent on its blockade of α1 and 5-HT2 receptors, since MT pretreatment abolished these receptor agonists-induced blood pressure elevations in vivo. Further evidence showed MT bound to and interacted with these receptor subtypes including α1A, α1B, α1D, 5-HT2A, 5-HT2B, and 5-HT2C receptors known for control of blood pressure. In conclusion, MT may be used for treatment of bilateral renal artery stenosis hypertension, different from losartan that is prohibited for treatment of bilateral renal artery stenosis hypertension. Targets validation of MT hypotensive mechanism and beneficial effects of MT on uric acid and cognitive function provide new insights for this novel multitarget drug, deserving clinical trial attention.
Asunto(s)
Antihipertensivos , Hipertensión Renovascular , Ratas Sprague-Dawley , Obstrucción de la Arteria Renal , Animales , Masculino , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Ratas , Obstrucción de la Arteria Renal/tratamiento farmacológico , Obstrucción de la Arteria Renal/complicaciones , Hipertensión Renovascular/tratamiento farmacológico , Presión Sanguínea/efectos de los fármacos , Ácido Úrico/sangre , Modelos Animales de Enfermedad , Losartán/farmacología , Riñón/efectos de los fármacos , Riñón/metabolismoRESUMEN
Cardiovascular diseases (CVDs) continue to pose a significant burden on global health, prominently contributing to morbidity and mortality rates worldwide. Recent years have witnessed an increasing recognition of the intricate involvement of neutrophil extracellular traps (NETs) in the pathology of diverse cardiovascular conditions. This review provides a comprehensive analysis of the multifaceted functions of NETs in cardiovascular diseases, shedding light on the impact on atherosclerosis, myocardial infarction, heart failure, myocarditis, atrial fibrillation, aortic stenosis, and the potential therapeutic avenues targeting NETs.
Asunto(s)
Enfermedades Cardiovasculares , Trampas Extracelulares , Neutrófilos , Trampas Extracelulares/metabolismo , Humanos , Animales , Neutrófilos/metabolismo , Neutrófilos/inmunologíaRESUMEN
OBJECTIVE: Emerging evidence highlights the pivotal roles of long non-coding RNAs (lncRNAs) in lipid metabolism. Apoprotein C3 (ApoC3) is a well-established therapeutic target for hypertriglyceridemia and exhibits a strong association with cardiovascular disease. However, the exact mechanisms via which the lncRNAs control ApoC3 expression remain unclear. METHODS: We identified a novel long noncoding RNA (lncRNA), GM47544, within the ApoA1/C3/A4/A5 gene cluster. Subsequently, the effect of GM47544 on intracellular triglyceride metabolism was analyzed. The diet-induced mouse models of hyperlipidemia and atherosclerosis were established to explore the effect of GM47544 on dyslipidemia and plaque formation in vivo. The molecular mechanism was explored through RNA sequencing, immunoprecipitation, RNA pull-down assay, and RNA immunoprecipitation. RESULTS: GM47544 was overexpressed under high-fat stimulation. GM47544 effectively improved hepatic steatosis, reduced blood lipid levels, and alleviated atherosclerosis in vitro and in vivo. Mechanistically, GM47544 directly bound to ApoC3 and facilitated the ubiquitination at lysine 79 in ApoC3, thereby facilitating ApoC3 degradation via the ubiquitin-proteasome pathway. Moreover, we identified AP006216.5 as the human GM47544 transcript, which fulfills a comparable function in human hepatocytes. CONCLUSIONS: The identification of GM47544 as a lncRNA modulator of ApoC3 reveals a novel mechanism of post-translational modification, with significant clinical implications for the treatment of hypertriglyceridemia and atherosclerosis.
Asunto(s)
Apolipoproteína C-III , Ratones Endogámicos C57BL , ARN Largo no Codificante , Triglicéridos , Ubiquitinación , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Apolipoproteína C-III/metabolismo , Apolipoproteína C-III/genética , Animales , Ratones , Humanos , Triglicéridos/metabolismo , Masculino , Metabolismo de los Lípidos , Proteolisis , Aterosclerosis/metabolismo , Aterosclerosis/genéticaRESUMEN
Mycoplasma pneumoniae pneumonia (MPP) is a common respiratory tract infection disease in children. To date, there have been few studies on the relationship between cytological changes in bronchoalveolar lavage fluid (BALF) and clinical features. The objective of this study is to investigate the correlation between changes in the proportion of cell classifications in BALF and the clinical features in children with severe MPP (SMPP). In total, the study included 64 children with SMPP requiring bronchoalveolar lavage who were admitted to our hospital between March and September 2022 (study group) and 11 children with bronchial foreign bodies without co-infection (control group), who were admitted during the same period. The proportion of cell classifications in BALF was determined by microscopic examination after performing Wright-Giemsa staining. Patients were grouped according to different clinical characteristics, and between-group comparisons were made regarding the variations in the proportion of cell classifications in BALF. The levels of blood routine neutrophil percentage (GRA%), C-reactive protein, D-dimer and lactate dehydrogenase in the study group were higher than those in the control group (P < 0.05). There were differences in the GRA% and macrophage percentage in the BALF between the two groups (P < 0.05). The GRA% and blood lymphocyte percentage were associated with pleural effusion. Multiple indicators correlated with extrapulmonary manifestations (P < 0.05). Moreover, the percentage of lymphocytes in the BALF correlated with pleural effusion, extrapulmonary manifestations and refractory MPP (RMPP) (P < 0.05). Logistic regression showed that BALF lymphocytes were protective factors for RMPP, while serum amyloid A and extrapulmonary manifestations were risk factors (P < 0.05). CONCLUSION: The BALF of children with SMPP is predominantly neutrophilic. A lower percentage of lymphocytes is related to a higher incidence of pleural effusion, extrapulmonary manifestations and progression to RMPP, as well as a longer length of hospitalisation. WHAT IS KNOWN: ⢠Mycoplasma pneumonia in children is relatively common in clinical practice. Bronchoalveolar lavage (BAL) is a routine clinical procedure. WHAT IS NEW: However, there are relatively few studies focusing on the cytomorphological analysis of cells in BAL fluid.
Asunto(s)
Líquido del Lavado Bronquioalveolar , Neumonía por Mycoplasma , Humanos , Neumonía por Mycoplasma/diagnóstico , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/microbiología , Masculino , Femenino , Preescolar , Niño , Mycoplasma pneumoniae/aislamiento & purificación , Lactante , Estudios de Casos y Controles , Estudios Retrospectivos , Neutrófilos , Índice de Severidad de la EnfermedadRESUMEN
Research advances over the past 30 years have confirmed a critical role for genetics in the etiology of dilated cardiomyopathies (DCMs). However, full knowledge of the genetic architecture of DCM remains incomplete. We identified candidate DCM causal gene, C10orf71, in a large family with 8 patients with DCM by whole-exome sequencing. Four loss-of-function variants of C10orf71 were subsequently identified in an additional group of492 patients with sporadic DCM from 2 independent cohorts. C10orf71 was found to be an intrinsically disordered protein specifically expressed in cardiomyocytes. C10orf71-KO mice had abnormal heart morphogenesis during embryonic development and cardiac dysfunction as adults with altered expression and splicing of contractile cardiac genes. C10orf71-null cardiomyocytes exhibited impaired contractile function with unaffected sarcomere structure. Cardiomyocytes and heart organoids derived from human induced pluripotent stem cells with C10orf71 frameshift variants also had contractile defects with normal electrophysiological activity. A rescue study using a cardiac myosin activator, omecamtiv mecarbil, restored contractile function in C10orf71-KO mice. These data support C10orf71 as a causal gene for DCM by contributing to the contractile function of cardiomyocytes. Mutation-specific pathophysiology may suggest therapeutic targets and more individualized therapy.
Asunto(s)
Cardiomiopatía Dilatada , Mutación del Sistema de Lectura , Ratones Noqueados , Miocitos Cardíacos , Organoides , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/metabolismo , Modelos Animales de Enfermedad , Contracción Miocárdica/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Organoides/metabolismo , Organoides/patologíaRESUMEN
Kynurenine to tryptophan ratio (KTR), which serves as an indicator for evaluating indoleamine-2,3-dioxygenase activity and inflammation, has been reported to be linked with cardiovascular incidences. However, its correlation with cardiovascular outcomes in patients suffering from heart failure (HF) remains to be explored. The objective of this study was to investigate the prognostic value of KTR in HF. The concentration of tryptophan and kynurenine were quantified by liquid chromatography-tandem mass spectrometry, and the KTR value was calculated in a population of 3150 HF patients. The correlation between plasma KTR levels and the occurrence of adverse cardiovascular events was evaluated for its prognostic value. We also assessed the role of KTR in addition to the classic inflammatory biomarker hypersensitive C-reactive protein (hs-CRP) in different subtypes of HF. We found that increased KTR levels were associated with an elevated risk and severity of the primary endpoints in different subtypes of HF. The simultaneous evaluation of KTR and hs-CRP levels enhanced risk categorization among HF patients. Furthermore, the KTR index presented complementary prognostic value for those HF patients with low-grade inflammation (hs-CRP ≤ 6 mg/L). Our results indicated plasma KTR is an independent risk factor for cardiovascular events. Plasma KTR levels in patients with HF can provide both concurrent and complementary prognostic value to hs-CRP.
RESUMEN
OBJECTIVE: To explore the clinical phenotype and genetic basis of a child with Neutral lipid storage disease with myopathy (NLSDM). METHODS: A child who was admitted to the First Affiliated Hospital of Zhengzhou University in February 2021 for a history of elevated creatine kinase (CK) for over 2 months was selected as the study subject. Clinical and laboratory examinations were carried out, and the child was subjected to whole exome sequencing. Candidate variants were validated by Sanger sequencing of her family members. RESULTS: The patient, a 9-year-old female, had exhibited weakness in the lower limbs, elevated CK level, and refractory cardiomyotrophy. Genetic testing revealed that she has harbored c.32C>G (p.S11W) and c.516C>G (p.N172K) compound heterozygous variants of the PNPLA2 gene, which were respectively inherited from her mother and father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were rated as likely pathogenic (PM1+PM2_Supporting+PP3+PP4). CONCLUSION: The c.32C>G (p.S11W) and c.516C>G (p.N172K) compound heterozygous variants of the PNPLA2 gene probably underlay the myasthenia gravis and elevated creatine kinase in this child.
Asunto(s)
Lipasa , Errores Innatos del Metabolismo Lipídico , Enfermedades Musculares , Humanos , Femenino , Niño , Enfermedades Musculares/genética , Errores Innatos del Metabolismo Lipídico/genética , Lipasa/genética , Mutación , Pruebas Genéticas , Secuenciación del Exoma , Creatina Quinasa/sangre , Linaje , Fenotipo , AciltransferasasRESUMEN
BACKGROUND: Dilated cardiomyopathy is characterized by left ventricular dilation and continuous systolic dysfunction. Mitochondrial impairment is critical in dilated cardiomyopathy; however, the underlying mechanisms remain unclear. Here, we explored the cardioprotective role of a heart-enriched long noncoding RNA, the dilated cardiomyopathy repressive transcript (DCRT), in maintaining mitochondrial function. METHODS: The DCRT knockout (DCRT-/-) mice and DCRT knockout cells were developed using CRISPR-Cas9 technology. Cardiac-specific DCRT transgenic mice were generated using α-myosin heavy chain promoter. Chromatin coimmunoprecipitation, RNA immunoprecipitation, Western blot, and isoform sequencing were performed to investigate the underlying mechanisms. RESULTS: We found that the long noncoding RNA DCRT was highly enriched in the normal heart tissues and that its expression was significantly downregulated in the myocardium of patients with dilated cardiomyopathy. DCRT-/- mice spontaneously developed cardiac dysfunction and enlargement with mitochondrial impairment. DCRT transgene or overexpression with the recombinant adeno-associated virus system in mice attenuated cardiac dysfunction induced by transverse aortic constriction treatment. Mechanistically, DCRT inhibited the third exon skipping of NDUFS2 (NADH dehydrogenase ubiquinone iron-sulfur protein 2) by directly binding to PTBP1 (polypyrimidine tract binding protein 1) in the nucleus of cardiomyocytes. Skipping of the third exon of NDUFS2 induced mitochondrial dysfunction by competitively inhibiting mitochondrial complex I activity and binding to PRDX5 (peroxiredoxin 5) and suppressing its antioxidant activity. Furthermore, coenzyme Q10 partially alleviated mitochondrial dysfunction in cardiomyocytes caused by DCRT reduction. CONCLUSIONS: Our study revealed that the loss of DCRT contributed to PTBP1-mediated exon skipping of NDUFS2, thereby inducing cardiac mitochondrial dysfunction during dilated cardiomyopathy development, which could be partially treated with coenzyme Q10 supplementation.
Asunto(s)
Empalme Alternativo , Cardiomiopatía Dilatada , Ribonucleoproteínas Nucleares Heterogéneas , Ratones Noqueados , Proteína de Unión al Tracto de Polipirimidina , ARN Largo no Codificante , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones , Humanos , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/genética , Ratones TransgénicosRESUMEN
OBJECTIVES: Evidence on the link between long-term ambient particulate matter (PM) exposures and childhood sleep disorders were scarce. We examined the associations between long-term exposures to PM2.5 and PM1 (PM with an aerodynamic equivalent diameter <2.5 µm and <1 µm, respectively) with sleep disorders in children. METHODS: We performed a population-based cross-sectional survey in 177,263 children aged 6 to 18 years in 14 Chinese cities during 2012-2018. A satellite-based spatiotemporal model was employed to estimate four-year annual average PM2.5 and PM1 exposures at residential and school addresses. Parents or guardians completed a checklist using the Sleep Disturbance Scale for Children. We estimated the associations using generalized linear mixed models with adjustment for characteristics of children, parents, and indoor environments. RESULTS: Long-term PM2.5 and PM1 exposures were positively associated with odds of sleep disorders for almost all domains. For example, increments in PM2.5 and PM1 per 10 µg/m3 were associated with odds ratios of global sleep disorder of 1.24 (95 % confidence interval [CI]: 1.14, 1.35) and 1.31 (95 %CI: 1.18, 1.46), respectively. Similar results were observed for subtypes of sleep disorder. These associations were heterogeneous regionally, with stronger associations among children residing in southeast region than in northeast and northwest regions. Moreover, larger estimates of PM1 were found than that of PM2.5 in southeast region. CONCLUSION: Long-term PM2.5 and PM1 exposures are independently associated with higher risks of childhood sleep disorders, and these associations vary by geographical region.
Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Material Particulado , Trastornos del Sueño-Vigilia , Humanos , Material Particulado/análisis , China/epidemiología , Niño , Adolescente , Trastornos del Sueño-Vigilia/epidemiología , Masculino , Exposición a Riesgos Ambientales/estadística & datos numéricos , Femenino , Estudios Transversales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricosRESUMEN
lncRNA ZNF593 antisense (ZNF593-AS) transcripts have been implicated in heart failure through the regulation of myocardial contractility. The decreased transcriptional activity of ZNF593-AS has also been detected in cardiac hypertrophy. However, the function of ZNF593-AS in cardiac hypertrophy remains unclear. Herein, we report that the expression of ZNF593-AS reduced in a mouse model of left ventricular hypertrophy and cardiomyocytes in response to treatment with the hypertrophic agonist phenylephrine (PE). In vivo, ZNF593-AS aggravated pressure overload-induced cardiac hypertrophy in knockout mice. By contrast, cardiomyocyte-specific transgenic mice (ZNF593-AS MHC-Tg) exhibited attenuated TAC-induced cardiac hypertrophy. In vitro, vector-based overexpression using murine or human ZNF593-AS alleviated PE-induced myocyte hypertrophy, whereas GapmeR-induced inhibition aggravated hypertrophic phenotypes. By using RNA-seq and gene set enrichment analyses, we identified a link between ZNF593-AS and oxidative phosphorylation and found that mitofusin 2 (Mfn2) is a direct target of ZNF593-AS. ZNF593-AS exerts an antihypertrophic effect by upregulating Mfn2 expression and improving mitochondrial function. Therefore, it represents a promising therapeutic target for combating pathological cardiac remodeling.
Asunto(s)
Cardiomegalia , GTP Fosfohidrolasas , Miocitos Cardíacos , ARN Largo no Codificante , Regulación hacia Arriba , Animales , Humanos , Masculino , Ratones , Cardiomegalia/genética , Cardiomegalia/metabolismo , Modelos Animales de Enfermedad , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Remodelación Ventricular/genéticaRESUMEN
The coronavirus disease (COVID-19) pandemic has continued for 5 years. Sporadic cases continue to occur in different locations. Type 2 diabetes mellitus (T2DM) is associated with a high risk of a poor prognosis in patients with COVID-19. Successful control of blood glucose levels can effectively decrease the risks of severe infections and mortality. However, the effects of different treatments were reported differently and even adversely. This retrospective study included 4,922 patients who have been diagnosed as COVID-19 and T2DM from 138 Hubei hospitals. The clinical characteristics and outcomes were compared and calculated their risk for death using multivariate Cox regression and Kaplan-Meier curves. After adjustment of age, sex, comorbidities, and in-hospital medications, metformin and alpha-glucosidase inhibitor (AGI) use performed lower all-cause mortality (adjusted hazard ratio [HR], 0.41; 95% confidence interval [CI]: 0.24-0.71; p = 0.001 for metformin; 0.53, 0.35-0.80, p = 0.002 for AGIs), while insulin use was associated with increased all-cause mortality (adjusted HR, 2.07, 95% CI, 1.61-2.67, p < 0.001). After propensity score-matched (PSM) analysis, adjusted HRs for insulin, metformin, and AGIs associated with all-cause mortality were 1.32 (95% CI, 1.03-1.81; p = 0.012), 0.48 (95% CI, 0.23-0.83, p = 0.014), and 0.59 (95% CI, 0.35-0.98, p = 0.05). Therefore, metformin and AGIs might be more suitable for patients with COVID-19 and T2DM while insulin might be used with caution.
Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Metformina , Humanos , Diabetes Mellitus Tipo 2/mortalidad , Diabetes Mellitus Tipo 2/tratamiento farmacológico , COVID-19/mortalidad , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , China/epidemiología , Anciano , Metformina/uso terapéutico , Hipoglucemiantes/uso terapéutico , SARS-CoV-2 , Insulina/uso terapéutico , Inhibidores de Glicósido Hidrolasas/uso terapéutico , AdultoRESUMEN
Background: For children with severe aplastic anemia, if the first immunosuppressive therapy (IST) fails, it is not recommended to choose a second IST. Therefore, for patients without matched sibling donor (MSD) and matched unrelated donor (MUD), haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) can be chosen as a salvage treatment. This article aims to explore the comparison between upfront Haplo-HSCT and salvage Haplo-HSCT after IST. Methods: 29 patients received salvage Haplo-HSCT, and 50 patients received upfront Haplo-HSCT. The two groups received Bu (Busulfan, 3.2mg/kg/d*2d on days -9 to-8), CY (Cyclophosphamide, 60mg/kg/d*2d on days -4 to-3), Flu (fludarabine, 40mg/m2/d*5d on days -9 to -5) and rabbit ATG (Anti-thymocyte globulin, total dose 10mg/kg divided into days -4 to -2). Results: The OS of the salvage Haplo-HSCT group showed no difference to the upfront Haplo-HSCT group (80.2 ± 8.0% vs. 88.7 ± 4.8%, p=0.37). The FFS of the salvage Haplo-HSCT group also showed no difference to the frontline Haplo-HSCT group (75 ± 8.2% vs. 84.9 ± 5.3%, p=0.27). There was no significant difference in the incidence of other complications after transplantation between the two groups, except for thrombotic microangiopathy (TMA). In the grouping analysis by graft source, the incidence of II-IV aGVHD in patients using PBSC ± BM+UCB was lower than that in the PBSC ± BM group (p=0.010). Conclusion: Upfront Haplo-HSCT and salvage Haplo-HSCT after IST in children with acquired severe aplastic anemia have similar survival outcomes. However, the risk of TMA increases after salvage Haplo-HSCT. This article provides some reference value for the treatment selection of patients. In addition, co-transplantation of umbilical cord blood may reduce the incidence of GVHD.
Asunto(s)
Anemia Aplásica , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Terapia Recuperativa , Trasplante Haploidéntico , Humanos , Anemia Aplásica/terapia , Anemia Aplásica/mortalidad , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Masculino , Femenino , Niño , Preescolar , Terapia Recuperativa/métodos , Adolescente , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Inmunosupresores/uso terapéutico , Acondicionamiento Pretrasplante/métodos , Lactante , Resultado del Tratamiento , Terapia de Inmunosupresión/métodosRESUMEN
Numerous studies have revealed a close correlation between the levels of apolipoproteins (Apos) (including lipoprotein(a) [Lp(a)]) and an increased risk of cardiovascular disease in recent decades. However, clinically, lipid profiling remains limited to the conventional plasma levels of cholesterol, triglyceride, ApoA1, and ApoB, which brings the necessity to quantify more apolipoproteins in human plasma. In this study, we simultaneously quantified 13 apolipoproteins and Lp(a) in 5 µL of human plasma using the LC-MS/MS platform. A method was developed for the precise detection of Lp(a), ApoA1, A2, A5, B, C1, C2, C3, D, E, H, L1, M, and J. Suitable peptides were selected and optimized to achieve clear separation of each peak. Method validation consisting of linearity, sensitivity, accuracy and precision, recovery, and matrix effects was evaluated. The intra-day CV ranged from 0.58% to 14.2% and the inter-day CV ranged from 0.51% to 13.3%. The recovery rates ranged from 89.8% to 113.7%, while matrix effects ranged from 85.4% to 113.9% for all apolipoproteins and Lp(a). Stability tests demonstrated that these apolipoproteins remained stable for 3 days at 4 °C and 7 days at -20 °C. This validated method was successfully applied to human plasma samples obtained from 45 volunteers. The quantitative results of ApoA1, ApoB, and Lp(a) exhibited a close correlation with the results from the immunity transmission turbidity assay. Collectively, we developed a robust assay that can be used for high-throughput quantification of apolipoproteins and Lp(a) simultaneously for investigating related risk factors in patients with dyslipidemia.