Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.264
Filtrar
1.
Hypertens Res ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969805

RESUMEN

The renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) are two major blood pressure-regulating systems. The link between the renal and cerebral RAS axes was provided by reflex activation of renal afferents and efferent sympathetic nerves. There is a self-sustaining enhancement of the brain and the intrarenal RAS. In this study, prenatal exposure to lipopolysaccharide (LPS) led to increased RAS activity in the paraventricular nucleus (PVN) and overactivation of sympathetic outflow, accompanied by increased production of reactive oxygen species (ROS) and disturbances between inhibitory and excitatory neurons in PVN. The AT1 receptor blocker losartan and α2 adrenergic receptor agonist clonidine in the PVN significantly decreased renal sympathetic nerve activity (RSNA) and synchronously reduced systolic blood pressure. Prenatal LPS stimulation caused H3 acetylation at H3K9 and H3K14 in the PVN, which suggested that epigenetic changes are involved in transmitting the prenatal adverse stimulative information to the next generation. Additionally, melatonin treatment during pregnancy reduced RAS activity and ROS levels in the PVN; balanced the activity of inhibitory and excitatory neurons in the PVN; increased urine sodium secretion; reduced RSNA and blood pressure. In conclusion, prenatal LPS leads to increased RAS expression within the PVN and overactivation of the sympathetic outflow, thereby contributing to hypertension in offspring rats. Melatonin is expected to be a promising agent for preventing prenatal LPS exposure-induced hypertension.

2.
Nutr Metab (Lond) ; 21(1): 44, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982520

RESUMEN

BACKGROUND: Although several studies have found the relationship between essential elements and diabetes, the studies about the association of essential elements with diabetes diagnosed according to an oral glucose tolerance test (OGTT) and glycated hemoglobin (HbA1c) in a sex- and age-specific manner were limited. To investigate the linear and nonlinear relationship of five essential elements including iron (Fe), copper (Cu), Zinc (Zn), magnesium (Mg), and calcium (Ca) with diabetes, fasting plasma glucose (FPG), 2-h postprandial plasma glucose (PPG), and HbA1c and to evaluate the sex- and age-specific heterogeneities in these relationships. METHODS: A total of 8392 community-dwelling adults were recruited to complete a questionnaire and undergo checkups of anthropometric parameters and serum levels of five metals (Fe, Cu, Zn, Mg, and Ca). The multivariable logistic and linear regression, the restricted cubic spline (RCS) analysis, and subgroup analysis were applied to find the associations between the essential elements and the prevalence of diabetes as well as FPG, PPG, and HbA1c. RESULTS: In the multivariable logistic regression and multivariable linear regression, serum Cu was positively associated with FPG, PPG, and HbA1c while serum Mg was significantly inversely correlated with FPG, PPG, HbA1c, and diabetes (all P < 0.001). In the RCS analysis, the non-linear relationship of Cu and diabetes (P < 0.001) was found. In the subgroup analysis, stronger positive associations of Cu with diabetes (P for interaction = 0.027) and PPG (P for interaction = 0.002) were found in younger women. CONCLUSIONS: These findings may lead to more appropriate approaches to essential elements supplementation in people with diabetes of different ages and sexes. However, more prospective cohort and experimental studies are needed to probe the possible mechanism of sex- and age-specific associations between serum essential elements and diabetes.

3.
J Clin Transl Hepatol ; 12(6): 551-561, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38974959

RESUMEN

Background and Aims: Hepatocellular carcinoma (HCC) cases with small nodules are commonly treated with radiofrequency ablation (RFA), but the recurrence rate remains high. This study aimed to establish a blood signature for identifying HCC with metastatic traits pre-RFA. Methods: Data from HCC patients treated between 2010 and 2017 were retrospectively collected. A blood signature for metastatic HCC was established based on blood levels of alpha-fetoprotein and des-γ-carboxy-prothrombin, cell-free DNA (cfDNA) mutations, and methylation changes in target genes in frozen-stored plasma samples that were collected before RFA performance. The HCC blood signature was validated in patients prospectively enrolled in 2021. Results: Of 251 HCC patients in the retrospective study, 33.9% experienced recurrence within 1 year post-RFA. The HCC blood signature identified from these patients included des-γ-carboxy-prothrombin ≥40 mAU/mL with cfDNA mutation score, where cfDNA mutations occurred in the genes of TP53, CTNNB1, and TERT promoter. This signature effectively predicted 1-year post-RFA recurrence of HCC with 92% specificity and 91% sensitivity in the retrospective dataset, and with 87% specificity and 76% sensitivity in the prospective dataset (n=32 patients). Among 14 cases in the prospective study with biopsy tissues available, positivity for the HCC blood signature was associated with a higher HCC tissue score and shorter distance between HCC cells and microvasculature. Conclusions: This study established an HCC blood signature in pre-RFA blood that potentially reflects HCC with metastatic traits and may be valuable for predicting the disease's early recurrence post-RFA.

4.
Anal Bioanal Chem ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970677

RESUMEN

As biomarkers of cancer, the accurate and sensitive detection of microRNAs is of great significance. Therefore, we proposed a surface-enhanced Raman scattering (SERS)/electrochemical (EC) dual-mode nanosensor for sensitively detecting miRNA-141. The nanosensor uses Au@Ag nanowires as a novel SERS/EC sensing platform, which has the advantages of good biocompatibility, fast response, and high sensitivity. The dual-mode nanosensor can not only effectively overcome the problem of insufficient reliability of single signal, but also realize the amplification and stable output of the detection signal, to ensure the reliability and repeatability of miRNA detection. With this sensing strategy, the target miRNA-141 can be detected over a wide linear range (100 fM to 50 nM) (LOD of 18.4 fM for SERS and 16.0 fM for electrochemical methods). In addition, the process shows good selectivity and can distinguish miRNA-141 from other interfering miRNAs. The actual analysis of human serum samples also proves that our strategy has good reliability, repeatability, and has broad application prospects in the field of analysis and detection.

5.
Biochim Biophys Acta Mol Basis Dis ; : 167338, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986818

RESUMEN

BACKGROUND: We have previously identified auto-antibody (Ab) to collapsin response mediator protein 2 (CRMP2) in patients with encephalitis. The present study aims to evaluate the pathogenic effects of anti-CRMP2 Ab. METHODS: Recombinant CRMP2 protein was injected subcutaneously into mice to establish an active immune mouse model with anti-CRMP2 Ab. Behavioral assessments, histopathological staining, and electrophysiological testing were performed to identify any pathogenic changes. RESULTS: The mice exhibited signs of impaired motor coordination four weeks post-immunization of CRMP2 protein. Moreover, CRMP2 immunized mice for eight weeks showed anxiety-like behaviors indicating by tests of open field and the elevated plus maze. After incubating the CA1 region of hippocampal brain section with the sera from CRMP2 immunized mice, the whole-cell path-clamp recordings showed increased excitability of pyramidal neurons. However, no obvious inflammation and infiltration of immune cells were observed by histopathological analysis. Western blot showed that the phosphorylation levels of CRMP2-Thr514 and -Ser522 were not affected. CONCLUSION: In an active immunization model with CRMP2 protein, impaired coordination and anxiety-like behaviors were observed. Also, anti-CRMP2 Abs containing sera heightened the excitability of hippocampal pyramidal neurons in vitro, which imply the pathogenic effects of anti-CRMP2 Ab.

6.
BMC Med ; 22(1): 253, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902735

RESUMEN

BACKGROUND: Cognitive dysfunction is one of the common symptoms in patients with major depressive disorder (MDD). Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) have been studied separately in the treatment of cognitive dysfunction in MDD patients. We aimed to investigate the effectiveness and safety of rTMS combined with tDCS as a new therapy to improve neurocognitive impairment in MDD patients. METHODS: In this brief 2-week, double-blind, randomized, and sham-controlled trial, a total of 550 patients were screened, and 240 MDD inpatients were randomized into four groups (active rTMS + active tDCS, active rTMS + sham tDCS, sham rTMS + active tDCS, sham rTMS + sham tDCS). Finally, 203 patients completed the study and received 10 treatment sessions over a 2-week period. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was performed to assess patients' cognitive function at baseline and week 2. Also, we applied the 24-item Hamilton Depression Rating Scale (HDRS-24) to assess patients' depressive symptoms at baseline and week 2. RESULTS: After 10 sessions of treatment, the rTMS combined with the tDCS group showed more significant improvements in the RBANS total score, immediate memory, and visuospatial/constructional index score (all p < 0.05). Moreover, post hoc tests revealed a significant increase in the RBANS total score and Visuospatial/Constructional in the combined treatment group compared to the other three groups but in the immediate memory, the combined treatment group only showed a better improvement than the sham group. The results also showed the RBANS total score increased significantly higher in the active rTMS group compared with the sham group. However, rTMS or tDCS alone was not superior to the sham group in terms of other cognitive performance. In addition, the rTMS combined with the tDCS group showed a greater reduction in HDRS-24 total score and a better depression response rate than the other three groups. CONCLUSIONS: rTMS combined with tDCS treatment is more effective than any single intervention in treating cognitive dysfunction and depressive symptoms in MDD patients. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2100052122).


Asunto(s)
Cognición , Trastorno Depresivo Mayor , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Humanos , Trastorno Depresivo Mayor/terapia , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Método Doble Ciego , Adulto , Estimulación Magnética Transcraneal/métodos , Persona de Mediana Edad , Cognición/fisiología , Resultado del Tratamiento , Terapia Combinada , Adulto Joven
7.
8.
Adv Healthc Mater ; : e2400943, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856967

RESUMEN

Cancer cells support their uncontrolled proliferation primarily by regulating energy metabolism. Inhibiting tumor growth by blocking the supply of nutrients is an effective treatment strategy. Fasting-mimicking diet (FMD), as a low-calorie, low-protein, low-sugar, high-fat diet, can effectively reduce the nutrient supply to tumor cells. However, the significant biological barrier presented by the tumor microenvironment imposes greater demands and challenges for drug design. This study constructs the multifunctional nanocomposite ZnFe2O4@TiO2@CHC@Orl-FA (ZTCOF), which has great potential to overcome the aforementioned drawbacks. ZnFe2O4@TiO2 could produce 1O2 with ultrasound, and stimulate the Fenton-like conversion of endogenous H2O2 to ·OH, achieving a combined therapeutic effect of sonodynamic therapy (SDT) and chemodynamic therapy (CDT). Orl (Orlistat) and CHC (α-cyano-4-hydroxycinnamic acid) not only block tumor cell energy metabolism but also increase sensitivity to reactive oxygen species, enhancing the cytotoxic effect on tumor cells. Furthermore, combining the treatment strategies with FMD condition control can further inhibit cancer cell energy metabolism, achieving significant synergistic anti-tumor therapy. Both in vitro and in vivo experiments confirm that ZTCOF with SDT/CDT/starvation can achieve effective tumor suppression and destruction. This work provides theoretical and technical support for anti-tumor multimodal synergistic therapy.

9.
Plants (Basel) ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891290

RESUMEN

Numerous studies have shown that the endophytic fungus Piriformospora indica has a broad range of promoting effects on root development and plant growth in host plants. However, there are currently no reports on the application of this fungus on Cerasus humilis. This study first compared the colonization ability of P. indica on 11 C. humilis varieties and found that the colonization rate of this fungus on these varieties ranged from 90% to 100%, with the colonization rate of the varieties '09-01' and 'Nongda 7' being as high as 100%. Subsequently, the effect of P. indica on root development and plant growth of C. humilis was investigated using cuttings of '09-01' and 'Nongda 7' as materials. P. indica colonization was found to increase the biomass of '09-01' and 'Nongda 7' plants; root activity, POD enzymes, and chlorophyll content were also significantly increased. In addition, indole-3-acetic acid (IAA) content in the roots of C. humilis plants increased after colonization, while jasmonic acid (JA) and 1-aminocyclopropane-1-car- boxylic acid (ACC) content decreased. In conclusion, it has been demonstrated that P. indica can promote the growth of C. humilis plants by accelerating biomass accumulation, promoting rooting, and enhancing the production of photosynthetic pigments, as well as regulating hormone synthesis.

10.
Chem Commun (Camb) ; 60(54): 6913-6916, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38881424

RESUMEN

A unique fluorescent sensing probe for UO22+ detection was fabricated with terbium-based metal organic frameworks via introducing specific recognition sites (denoted as Tb-TDPAT). The newly formed Tb-TDPAT presented remarkable detection sensitivity and selectivity towards UO22+, surpassing the need for complex post-modification methods.

11.
BDJ Open ; 10(1): 43, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830840

RESUMEN

INTRODUCTION: Dental implantation has emerged as an efficient substitute for missing teeth, which is essential for restoring oral function and aesthetics. Compared to traditional denture repair approaches, dental implants offer better stability and sustainability. The position, angle, and depth of dental implants are crucial factors for their long-term success and necessitate high-precision operation and technical support. METHOD: We propose an integrated dual-arm high-precision oral implant surgery navigation positioning system and a corresponding control strategy. Compared with traditional implant robots, the integrated dual-arm design greatly shortens the preparation time before surgery and simplifies the operation process. We propose a novel control flow and module for the proposed structure, including an Occluded Target Tracking Module (OTTM) for occlusion tracking, a Planting Plan Development Module (PPDM) for generating implant plans, and a Path Formulation Module (PFM) for controlling the movement path of the two robot arms. RESULT: Under the coordinated control of the aforementioned modules, the robot achieved excellent accuracy in clinical trials. The average angular error and entry point error for five patients who underwent implant surgery using the proposed robot were 2.1° and 0.39 mm, respectively. CONCLUSION: In essence, our study introduces an integrated dual-arm high-precision navigation system for oral implant surgery, resolving issues like lengthy preoperative preparation and static surgical planning. Clinical results confirm its efficacy, emphasizing its accuracy and precision in guiding oral implant procedures.

12.
J Asian Nat Prod Res ; : 1-6, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860491

RESUMEN

Three new flavonoids including two isoflavanones sophortones A and B (1 and 2), and one chalcone sophortone C (3) were isolated from the roots of Sophora tonkinensis. Their structures were established by UV, IR, HRESIMS, and NMR data. The absolute configurations of 1 and 2 were determined by electronic circular dichroism (ECD) calculations.

13.
Genome Biol ; 25(1): 164, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915088

RESUMEN

Spatial transcriptomics has transformed our ability to study tissue complexity. However, it remains challenging to accurately dissect tissue organization at single-cell resolution. Here we introduce scHolography, a machine learning-based method designed to reconstruct single-cell spatial neighborhoods and facilitate 3D tissue visualization using spatial and single-cell RNA sequencing data. scHolography employs a high-dimensional transcriptome-to-space projection that infers spatial relationships among cells, defining spatial neighborhoods and enhancing analyses of cell-cell communication. When applied to both human and mouse datasets, scHolography enables quantitative assessments of spatial cell neighborhoods, cell-cell interactions, and tumor-immune microenvironment. Together, scHolography offers a robust computational framework for elucidating 3D tissue organization and analyzing spatial dynamics at the cellular level.


Asunto(s)
Aprendizaje Automático , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Animales , Humanos , Ratones , Biología Computacional/métodos , Comunicación Celular , Transcriptoma , Microambiente Tumoral
14.
BMC Genomics ; 25(1): 620, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898399

RESUMEN

BACKGROUND: Soybean mosaic disease caused by soybean mosaic virus (SMV) is one of the most devastating and widespread diseases in soybean producing areas worldwide. The WRKY transcription factors (TFs) are widely involved in plant development and stress responses. However, the roles of the GmWRKY TFs in resistance to SMV are largely unclear. RESULTS: Here, 185 GmWRKYs were characterized in soybean (Glycine max), among which 60 GmWRKY genes were differentially expressed during SMV infection according to the transcriptome data. The transcriptome data and RT-qPCR results showed that the expression of GmWRKY164 decreased after imidazole treatment and had higher expression levels in the incompatible combination between soybean cultivar variety Jidou 7 and SMV strain N3. Remarkably, the silencing of GmWRKY164 reduced callose deposition and enhanced virus spread during SMV infection. In addition, the transcript levels of the GmGSL7c were dramatically lower upon the silencing of GmWRKY164. Furthermore, EMSA and ChIP-qPCR revealed that GmWRKY164 can directly bind to the promoter of GmGSL7c, which contains the W-box element. CONCLUSION: Our findings suggest that GmWRKY164 plays a positive role in resistance to SMV infection by regulating the expression of GmGSL7c, resulting in the deposition of callose and the inhibition of viral movement, which provides guidance for future studies in understanding virus-resistance mechanisms in soybean.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Glycine max , Enfermedades de las Plantas , Proteínas de Plantas , Potyvirus , Factores de Transcripción , Glycine max/virología , Glycine max/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Potyvirus/fisiología , Potyvirus/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas
15.
Sci Rep ; 14(1): 12926, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839842

RESUMEN

Cuproptosis is a newly defined form of programmed cell death that relies on mitochondria respiration. Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis and metastasis. However, whether cuproptosis-related lncRNAs are involved in the pathogenesis of diffuse large B cell lymphoma (DLBCL) remains unclear. This study aimed to identify the prognostic signatures of cuproptosis-related lncRNAs in DLBCL and investigate their potential molecular functions. RNA-Seq data and clinical information for DLBCL were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Cuproptosis-related lncRNAs were screened out through Pearson correlation analysis. Utilizing univariate Cox, least absolute shrinkage and selection operator (Lasso) and multivariate Cox regression analysis, we identified seven cuproptosis-related lncRNAs and developed a risk prediction model to evaluate its prognostic value across multiple groups. GO and KEGG functional analyses, single-sample GSEA (ssGSEA), and the ESTIMATE algorithm were used to analyze the mechanisms and immune status between the different risk groups. Additionally, drug sensitivity analysis identified drugs with potential efficacy in DLBCL. Finally, the protein-protein interaction (PPI) network were constructed based on the weighted gene co-expression network analysis (WGCNA). We identified a set of seven cuproptosis-related lncRNAs including LINC00294, RNF139-AS1, LINC00654, WWC2-AS2, LINC00661, LINC01165 and LINC01398, based on which we constructed a risk model for DLBCL. The high-risk group was associated with shorter survival time than the low-risk group, and the signature-based risk score demonstrated superior prognostic ability for DLBCL patients compared to traditional clinical features. By analyzing the immune landscapes between two groups, we found that immunosuppressive cell types were significantly increased in high-risk DLBCL group. Moreover, functional enrichment analysis highlighted the association of differentially expressed genes with metabolic, inflammatory and immune-related pathways in DLBCL patients. We also found that the high-risk group showed more sensitivity to vinorelbine and pyrimethamine. A cuproptosis-related lncRNA signature was established to predict the prognosis and provide insights into potential therapeutic strategies for DLBCL patients.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso , ARN Largo no Codificante , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Humanos , ARN Largo no Codificante/genética , Pronóstico , Biomarcadores de Tumor/genética , Mapas de Interacción de Proteínas/genética , Masculino , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Persona de Mediana Edad
16.
J Ethnopharmacol ; 333: 118417, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830452

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Saposhnikoviae Radix (SR) was initially documented in Shennong Bencao Jing classics for its properties in dispelling wind, dissolving surface, relieving pain, and alleviating spasms. This herb is commonly used in traditional Chinese medicine to address conditions that affect the body's surface, by aiding in the expulsion of pathogens from the surface and alleviating pain associated with the immune response. Atopic dermatitis (AD) is a prevalent allergic skin disorder, and the therapeutic effects of SR in dispelling wind and relieving the body's surface are consistent with the clinical symptoms commonly observed in AD. AIM OF THE STUDY: The anti-AD effects of SR were examined under three different growth patterns to identify active pharmacodynamic compounds. The results provide insight into the clinical efficacy of wild and cultivated SR. MATERIALS AND METHODS: The efficacy of wild, wild-simulated, and cultivated SR was assessed in a mouse model of AD. In addition, the effects of wild and varying doses of cultivated SR were evaluated in mice with short-term AD symptoms. GC-MS and UPLC-MS/MS were used to analyze the chemical components of the three SR treatments and molecular docking was used to identify active components. RESULTS: A mouse model of AD was used to assess the pharmacodynamic effects of SR prepared by three different cultivation methods. The study found that all three SR preparations improved phenotypic markers and histopathological features in the AD mouse model. The efficacy of wild SR and wild-simulated SR was similar, although there was a significant difference between wild and cultivated SR. Both wild SR and various doses of cultivated SR ameliorated skin injuries and reduced inflammation in serum and skin tissues. Furthermore, skin thickness, inflammatory cells, mast cell infiltration, and IL-33 expression improved following treatment. Notably, wild SR, double-cultivated SR, and triple-cultivated SR demonstrated significant therapeutic effects. An analysis using GC-MS revealed the presence of 55, 52, and 43 volatile oils in the three SR preparations, with more common components observed between wild and wild-simulated SR. Fewer common components were evident between cultivated and wild SR. UPLC-MS/MS analysis identified a total of 37 compounds, with larger relative peak areas observed for the chromogenic ketones. Molecular docking studies revealed that certain compounds, such as n-propyl 9,12-octadecadienoate, (E)-9-octadecenoic acid ethyl ester, and various chromogenic ketones, such as cimifugin, 5-O-methyIvisamminol, hamaudol, 3'-O-acetylhamaudol, 3'-O-angeloyhamandol, adenosine and farnesylaceton, may be the major substances that distinguish the activities of SR with three different growth patterns. CONCLUSION: Variations in the anti-AD efficacy of SR with three growth patterns were identified, and their chemical composition differences were determined. These findings suggest that increasing the dosage of cultivated SR could potentially be a viable clinical alternative for atopic dermatitis treatment.

18.
Immunobiology ; 229(5): 152821, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38935988

RESUMEN

BACKGROUND: As metastatic papillary thyroid carcinoma becomes increasingly challenging to treat, immunotherapy has emerged as a new research direction. Tumor-associated macrophages (TAMs) influence the occurrence, invasion, and metastasis of tumors. Apolipoprotein E (APOE) can regulate the polarization changes of macrophages and participate in the remodeling of the tumor microenvironment. However, the role of APOE in regulating the polarization and biological functions of TAMs in papillary thyroid carcinoma (PTC) remains unclear, as it acts as a dual biomarker. METHODS: We probed APOE expression in PTC tissues using immunohistochemical staining. A cell co-culture model was established where different APOE-expressing K1 cells were co-cultured with THP-1-derived M0 macrophages. An in-depth analysis of macrophage polarization behavior was performed using real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting. Subsequently, the impact of APOE-regulated macrophages on tumor cell behavior, especially proliferation, migration, and invasion, was evaluated utilizing IncuCyte ZOOM system, flow cytometry, colony formation, and scratch experiments. Finally, we used a xenograft model to confirm the effects of APOE on PTC tumorigenesis. RESULTS: Tumor dimensions, stage, and lymphatic metastases were significantly associated with increased APOE expression in PTC tissues. K1 cells were markedly limited in their proliferation, migration, and invasion abilities when APOE expression was silenced, a process mediated by the PI3K/Akt/NF-κB signaling axis. Moreover, APOE is a key facilitator of the enhancement of the anti-inflammatory cytokines IL-10 and TGF-ß1. In PTC cellular models, APOE contributed to the phenotypic shift of THP-1 derived macrophages towards an M2 phenotypic polarization, predominantly through the modulation of IL-10. Furthermore, in vivo studies involving athymic nude mice have demonstrated pivotal role of APOE in tumor progression and the induction of M2-like TAM polarization. CONCLUSION: Our results elucidated that APOE could promote the shift of TAMs from M0-type to M2-type polarization by regulating inflammatory factors expressions in K1 cell through the PI3K/Akt/NF-κB pathway. These findings are crucial for understanding the molecular mechanisms underlying PTC pathogenesis and for developing immunological drugs to treat this disease.

19.
Curr Neuropharmacol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38919004

RESUMEN

BACKGROUND: Excessive free radicals are implicated in the pathophysiology of tardive dyskinesia (TD), and Ginkgo biloba extract (EGb761) scavenges free radicals, thereby enhancing antioxidant enzymes such as mitochondrial manganese superoxide dismutase (MnSOD). This study examined whether EGb761 treatment would improve TD symptoms and increase MnSOD activity, particularly in TD patients with specific MnSOD Val-9Ala genotype. METHODS: An EGb761 (240 mg/day) 12-week double-blind clinical trial with 157 TD patients was randomized. The severity of TD was measured by the Abnormal Involuntary Movement Scale (AIMS) and plasma MnSOD activity was assayed before and after 12 weeks of treatment. Further, in an expanded sample, we compared MnSOD activity in 159 TD, 227 non-TD and 280 healthy controls, as well as the allele frequencies and genotypes for the MnSOD Ala-9Val polymorphism in 352 TD, 486 non-TD and 1150 healthy controls. RESULTS: EGb761 significantly reduced TD symptoms and increased MnSOD activity in TD patients compared to placebo (both p < 0.01). Moreover, we found an interaction between genotype and treatment response (p < 0.001). Furthermore, in the EGb761 group, patients carrying the Ala allele displayed a significantly lower AIMS total score than patients with the Val/Val genotype. In addition, MnSOD activity was significantly lower at baseline in TD patients compared with healthy controls or non-TD patients. CONCLUSION: EGb761 treatment enhanced low MnSOD activity in TD patients and produced greater improvement in TD symptoms in patients with the Ala allele of the MnSOD Ala-9Val polymorphism.

20.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1882-1887, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812200

RESUMEN

Chemical constituents from the ethanol extract of Picrorhiza scrophulariiflora were isolated and purified by column chromatography. Their structures were identified by HR-MS, 1D and 2D-NMR, and their cytotoxicity was assessed by CCK-8 assay. Four compounds were isolated and identified as follows: 2ß-D-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosterol-5,25-diene-22-one(1), 2ß-D-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5,24-diene-22-one(2), 25-acetoxy-2ß-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5-ene-22-one(3) and 25-acetoxy-2ß-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5,23-(E)-diene-22-one(4). Compound 1 represents a new cucurbitane glycoside. The half inhibitory concentrations of the 4 compounds exceeded 100 µmol·L~(-1) against four tumor cell lines, indicating no significant cytotoxicity.


Asunto(s)
Glicósidos , Picrorhiza , Glicósidos/química , Glicósidos/aislamiento & purificación , Humanos , Línea Celular Tumoral , Picrorhiza/química , Estructura Molecular , Espectroscopía de Resonancia Magnética , Medicamentos Herbarios Chinos/química , Triterpenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...