Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Signal Transduct Target Ther ; 9(1): 80, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565536

RESUMEN

RNA-binding proteins (RBPs)-RNA networks have contributed to cancer development. Circular RNAs (circRNAs) are considered as protein recruiters; nevertheless, the patterns of circRNA-protein interactions in colorectal cancer (CRC) are still lacking. Processing bodies (PBs) formed through liquid-liquid phase separation (LLPS) are membrane-less organelles (MLOs) consisting of RBPs and RNA. Previous evidence suggests a connection between PBs dynamics and cancer progression. Despite the increasingly acknowledged crucial role of RBPs and RNA in the accumulation and maintenance of MLOs, there remains a lack of specific research on the interactions between PBs-related RBPs and circRNAs in CRC. Herein, we identify that MEX-3 RNA binding family member A (MEX3A), frequently upregulated in CRC tissues, predicts poorer patient survival. Elevated MEX3A accelerates malignance and inhibits autophagy of CRC cells. Importantly, MEX3A undergoes intrinsically disordered regions (IDRs)-dependent LLPS in the cytoplasm. Specifically, circMPP6 acts as a scaffold to facilitate the interaction between MEX3A and PBs proteins. The MEX3A/circMPP6 complex modulates PBs dynamic and promotes UPF-mediated phosphodiesterase 5A (PDE5A) mRNA degradation, consequently leading to the aggressive properties of CRC cells. Clinically, CRC patients exhibiting high MEX3A expression and low PDE5A expression have the poorest overall survival. Our findings reveal a collaboration between MEX3A and circMPP6 in the regulation of mRNA decay through triggering the PBs aggregation, which provides prognostic markers and/or therapeutic targets for CRC.


Asunto(s)
Neoplasias Colorrectales , ARN Circular , Humanos , Autofagia/genética , Neoplasias Colorrectales/metabolismo , Familia , Fosfoproteínas/metabolismo , Proteínas/metabolismo , ARN/genética , ARN Circular/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Drug Resist Updat ; 73: 101052, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262246

RESUMEN

AIMS: This investigation aims to elucidate the mechanism underlying sorafenib-induced ferroptosis in hepatocellular carcinoma (HCC). METHODS: The role of dual specificity phosphatase 4 (DUSP4) in sorafenib-treated HCC was investigated using comprehensive assessments both in vitro and in vivo, including Western blotting, qRT-PCR, cell viability assay, lipid reactive oxygen species (ROS) assay, immunohistochemistry, and xenograft tumor mouse model. Additionally, label-free quantitative proteomics was employed to identify potential proteins associated with DUSP4. RESULTS: Our study revealed that suppression of DUSP4 expression heightens the susceptibility of HCC cells to ferroptosis inducers, specifically sorafenib and erastin, in both in vitro and in vivo settings. Furthermore, we identified DUSP4-mediated regulation of key ferroptosis-related markers, such as ferritin light chain (FTL) and ferritin heavy chain 1 (FTH1). Notably, label-free quantitative proteomics unveiled the phosphorylation of threonine residue T148 on YTH Domain Containing 1 (YTHDC1) by DUSP4. Further investigations unraveled that YTHDC1, functioning as an mRNA nuclear export regulator, is a direct target of DUSP4, orchestrating the subcellular localization of FTL and FTH1 mRNAs. Significantly, our study highlights a strong correlation between elevated DUSP4 expression and sorafenib resistance in HCC. CONCLUSIONS: Our findings introduce DUSP4 as a negative regulator of sorafenib-induced ferroptosis. This discovery opens new avenues for the development of ferroptosis-based therapeutic strategies tailored for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Monoéster Fosfórico Hidrolasas/uso terapéutico , Ferroptosis/genética , Línea Celular Tumoral
3.
Cell Rep ; 43(1): 113654, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38175757

RESUMEN

Deficiency of DNA repair pathways drives the development of colorectal cancer. However, the role of the base excision repair (BER) pathway in colorectal cancer initiation remains unclear. This study shows that Nei-like DNA glycosylase 1 (NEIL1) is highly expressed in colorectal cancer (CRC) tissues and associated with poorer clinical outcomes. Knocking out neil1 in mice markedly suppresses tumorigenesis and enhances infiltration of CD8+ T cells in intestinal tumors. Furthermore, NEIL1 directly forms a complex with SATB2/c-Myc to enhance the transcription of COL17A1 and subsequently promotes the production of immunosuppressive cytokines in CRC cells. A NEIL1 peptide suppresses intestinal tumorigenesis in ApcMin/+ mice, and targeting NEIL1 demonstrates a synergistic suppressive effect on tumor growth when combined with a nuclear factor κB (NF-κB) inhibitor. These results suggest that combined targeting of NEIL1 and NF-κB may represent a promising strategy for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , ADN Glicosilasas , Animales , Ratones , Carcinogénesis , Linfocitos T CD8-positivos/metabolismo , Neoplasias Colorrectales/genética , ADN Glicosilasas/metabolismo , Reparación del ADN , FN-kappa B/metabolismo
4.
Oncogene ; 41(39): 4433-4445, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35989368

RESUMEN

Abnormal regulation of centrosome components can induce chromosome instability and tumorigenesis. Centrosomal protein 63 (CEP63) is a vital member for assembling centrosome. Yet, the involvement of CEP63 in cancer pathogenesis remains unclear. Here we identify CEP63 as an important mediator for RNA-binding proteins (RBPs) to facilitate regulation on their RNA targets in colorectal cancer (CRC). We demonstrate that CEP63 protein is upregulated in a large cohort of colorectal cancer tissues and predicts poor prognosis, and USP36 is identified for stabilizing CEP63 by enhancing its K48-dependent deubiquitination. CEP63 overexpression promotes the proliferation and tumor growth of CRC cells in vitro and in vivo. Furthermore, we find that CEP63 can promote cancer stem-like cell properties by enhancing YAP1 expression through binding with and inhibiting the K63-ubiquitylation degradation of RBP FXR1 in CRC cells. Importantly, we further verify that the KH domain of FXR1 is necessary for the interaction between CEP63 and FXR1. Moreover, microtube motor proteins can form a complex with CEP63 and FXR1 to mediate the regulation of FXR1 on RNA targets. Additionally, we also confirm that CEP63 can bind and regulate multiple RBPs. In conclusion, our findings unveil an unrecognized CEP63/RBPs/RNA axis that CEP63 may perform as an adapter facilitating the formation of RBPs complex to regulate RNA progression and discover the role of CEP63 involved in signal transduction and RNA regulation, providing potential therapeutic target for CRC patients.


Asunto(s)
Neoplasias Colorrectales , Proteínas de Unión al ARN , Carcinogénesis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Centrosoma/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Proteínas Señalizadoras YAP
6.
World J Clin Cases ; 10(11): 3414-3425, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35611190

RESUMEN

BACKGROUND: Patients with recurrent or locally advanced head and neck squamous cell carcinoma (HNSCC) typically have limited treatment options and poor prognosis. AIM: To evaluate the efficacy and safety of two drugs with potent radio-sensitization properties including gemcitabine and nedaplatin as concurrent chemoradiotherapy regimens in treating HNSCC. METHODS: This single-arm prospective study enrolled patients with HNSCC to receive gemcitabine on days 1 and 8 and nedaplatin on days 1 to 3 for 21 days. Intensity-modulated radiation therapy with a conventional fraction was delivered 5 days per week. Objective response rate (ORR), disease control rate, and toxicity were observed as primary endpoints. Overall survival (OS) and progression free survival were recorded and analyzed as secondary endpoints. RESULTS: A total of 24 patients with HNSCC were enrolled. During the median 22.4-mo follow-up, both ORR and disease control rate were 100%. The one-year OS was 75%, and one-year progression-free survival (PFS) was 66.7% (median PFS was 15.1 mo). Recurrent HNSCC patients had a poorer prognosis than the treatment-naïve patients, and patients who achieved complete response had better survival than those in the PR group (all P < 0.05). The most common grade 1-4 (100%) or grade 3-4 toxicities (75%) were hematological, and the most common grade 3-4 non-hematological toxicity was mucositis in 17 (71%) patients. CONCLUSION: Gemcitabine plus nedaplatin with concurrent chemoradiotherapy is a therapeutic option for HNSCC with predictable tolerability. Considering the high adverse event rate, the optimized dose and schedule must be further explored.

7.
Mol Ther ; 30(8): 2828-2843, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35524408

RESUMEN

Translational reprogramming is part of the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, which acts to the advantage of cancer growth and development in different stress conditions, but the mechanism of ER stress-related translational reprogramming in colorectal carcinoma (CRC) progression remains unclear. Here, we identified that Krüppel-like factor 16 (KLF16) can promote CRC progression and stress tolerance through translational reprogramming. The expression of KLF16 was upregulated in CRC tissues and associated with poor prognosis for CRC patients. We found that ER stress inducers can recruit KLF16 to the nucleolus and increase its interaction with two essential proteins for nucleolar homeostasis: nucleophosmin1 (NPM1) and fibrillarin (FBL). Moreover, knockdown of KLF16 can dysregulate nucleolar homeostasis in CRC cells. Translation-reporter system and polysome profiling assays further showed that KLF16 can effectively promote cap-independent translation of ATF4, which can enhance ER-phagy and the proliferation of CRC cells. Overall, our study unveils a previously unrecognized role for KLF16 as an ER stress regulator through mediating translational reprogramming to enhance the stress tolerance of CRC cells and provides a potential therapeutic vulnerability.


Asunto(s)
Neoplasias Colorrectales , Factores de Transcripción de Tipo Kruppel , Respuesta de Proteína Desplegada , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Estrés del Retículo Endoplásmico/genética , Homeostasis , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
8.
Mol Cancer ; 21(1): 93, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35366894

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) regulate various biological activities and have been shown to play crucial roles in hepatocellular carcinoma (HCC) progression. However, only a few coding circRNAs have been identified in cancers, and their roles in HCC remain elusive. This study aimed to identify coding circRNAs and explore their function in HCC. METHODS: CircMAP3K4 was selected from the CIRCpedia database. We performed a series of experiments to determine the characteristics and coding capacity of circMAP3K4. We then used in vivo and in vitro assays to investigate the biological function and mechanism of circMAP3K4 and its protein product, circMAP3K4-455aa, in HCC. RESULTS: We found circMAP3K4 to be an upregulated circRNA with coding potential in HCC. IGF2BP1 recognized the circMAP3K4 N6-methyladenosine modification and promoted its translation into circMAP3K4-455aa. Functionally, circMAP3K4-455aa prevented cisplatin-induced apoptosis in HCC cells by interacting with AIF, thus protecting AIF from cleavage and decreasing its nuclear distribution. Moreover, circMAP3K4-455aa was degraded through the ubiquitin-proteasome E3 ligase MIB1 pathway. Clinically, a high level of circMAP3K4 is an independent prognostic factor for adverse overall survival and adverse disease-free survival of HCC patients. CONCLUSIONS: CircMAP3K4 is a highly expressed circRNA in HCC. Driven by m6A modification, circMAP3K4 encoded circMAP3K4-455aa, protected HCC cells from cisplatin exposure, and predicted worse prognosis of HCC patients. Targeting circMAP3K4-455aa may provide a new therapeutic strategy for HCC patients, especially for those with chemoresistance. CircMAP3K4 is a highly expressed circRNA in HCC. Driven by m6A modification, IGF2BP1 facilitates circMAP3K4 peptide translation, then the circMAP3K4 peptide inhibits AIF cleavage and nuclear distribution, preventing HCC cells from cell death under stress and promoting HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adenosina/análogos & derivados , Apoptosis , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/patología , Péptidos
9.
Cancer Sci ; 113(6): 2008-2021, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35348274

RESUMEN

DNA high methylation is one of driving force for colorectal carcinoma (CRC) pathogenesis. Transcription factors (TFs) can determine cell fate and play fundamental roles in multistep process of tumorigenesis. Dysregulation of DNA methylation of TFs should be vital for the progression of CRC. Here, we demonstrated that TBX20, a T-box TF family protein, was downregulated with hypermethylation of promoter in early-stage CRC tissues and correlated with a poor prognosis for CRC patients. Moreover, we identified PDZRN3 as the E3 ubiquitin ligase of TBX20 protein, which mediated the ubiquitination and degradation of TBX20. Furthermore, we revealed that TBX20 suppressed cell proliferation and tumor growth through impairing non-homologous DNA end joining (NHEJ)-mediated double-stranded break repair by binding the middle domain of both Ku70 and Ku80 and therefore inhibiting their recruitment on chromatin in CRC cells. Altogether, our results reveal the tumor-suppressive role of TBX20 by inhibiting NHEJ-mediated DNA repair in CRC cells, and provide a potential biomarker for predicting the prognosis of patients with early-stage CRC and a therapeutic target for combination therapy.


Asunto(s)
Neoplasias Colorrectales , Roturas del ADN de Doble Cadena , Proteínas de Dominio T Box , Proteínas de la Ataxia Telangiectasia Mutada , Carcinogénesis , Neoplasias Colorrectales/genética , ADN , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Humanos , Proteínas de Dominio T Box/genética
10.
Oncogene ; 40(49): 6680-6691, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34645979

RESUMEN

Colorectal carcinoma (CRC) is the second most deadly cancer worldwide. Therapies that take advantage of DNA repair defects have been explored in various tumors but not yet systematically in CRC. Here, we found that Diphosphoinositol Pentakisphosphate Kinase 2 (PPIP5K2), an inositol pyrophosphate kinase, was highly expressed in CRC and associated with a poor prognosis of CRC patients. In vitro and in vivo functional studies demonstrated that PPIP5K2 could promote the proliferation and migration ability of CRC cells independent of its inositol pyrophosphate kinase activity. Mechanically, S1006 dephosphorylation of PPIP5K2 could accelerate its dissociation with 14-3-3 in the cytoplasm, resulting in more nuclear distribution. Moreover, DNA damage treatments such as doxorubicin (DOX) or irradiation (IR) could induce nuclear translocation of PPIP5K2, which subsequently promoted homologous recombination (HR) repair by binding and recruiting RPA70 to the DNA damage site as a novel scaffold protein. Importantly, we verified that S1006 dephosphorylation of PPIP5K2 could significantly enhance the DNA repair ability of CRC cells through a series of DNA repair phenotype assays. In conclusion, PPIP5K2 is critical for enhancing the survival of CRC cells via facilitating DNA HR repair. Our findings revealed an unrecognized biological function and mechanism model of PPIP5K2 dependent on S1006 phosphorylation and provided a potential therapeutic target for CRC patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Daño del ADN , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Oncogene ; 40(40): 5925-5937, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34363021

RESUMEN

Low levels of ITLN1 have been correlated with obesity-related colorectal carcinogenesis, however, the specific functions and underlying mechanisms remain unclear. Thus, we sought to explore the inhibitory role of ITLN1 in the tumor-permissive microenvironment that exists during the first occurrence and subsequent development of colorectal carcinoma (CRC). Results indicated that ITLN1 was frequently lost in CRC tissues and ITLN1 to be an independent prognostic predictor of CRC. Orthotopic and subcutaneous tumor xenograft approaches were then used to further confirm the protective role of ITLN1 during tumor progression. Increased ITLN1 expression in CRC cells significantly inhibited local pre-existing vessels sprouting, EPC recruitment and the infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) into tumor tissues without affecting the behavior of CRC cells in vitro. Comparatively, ITLN1-derived MDSCs had a lower suppressive effect on T cell proliferation, NOS2 expression, and ROS production. In addition, ITLN1 overexpression markedly suppressed bone marrow (BM)-derived hematopoietic progenitor cells (HPC) differentiation into MDSCs as well as NOS2 activity on MDSCs. Using H-2b+YFP + chimerism through bone marrow transplantation, increased ITLN1 in HCT116 significantly reduced the BM-derived EPCs and MDSCs in vivo mobilization. Mechanistically, results indicated ITLN1 inhibited tumor-derived IL-17D and CXCL2 (MIP2) through the KEAP1/Nrf2/ROS/IL-17D and p65 NF-ĸB/CXCL2 signaling cascades dependent on PI3K/AKT/GSK3ß. This effect was reversed by the PI3K selective inhibitor LY294002. Collectively, ITLN1 synergistically suppressed IL-17D and CXCL2-mediated tumor vascularization, bone marrow derived EPC recruitment, as well as MDSCs generation and trafficking. Thus, ITLN1 potentially serves as a critical prognostic and therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Citocinas/metabolismo , Proteínas Ligadas a GPI/metabolismo , Lectinas/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Animales , Neoplasias Colorrectales/patología , Humanos , Ratones , Neovascularización Patológica
12.
Mol Cancer ; 20(1): 103, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34412652

RESUMEN

BACKGROUND: Constitutive activation of nuclear factor-κB (NF-κB) signaling plays a key role in the development and progression of colorectal carcinoma (CRC). However, the underlying mechanisms of excessive activation of NF-κB signaling remain largely unknown. METHODS: We used high throughput RNA sequencing to identify differentially expressed circular RNAs (circRNAs) between normal human intestinal epithelial cell lines and CRC cell lines. The identification of protein encoded by circPLCE1 was performed using LC-MS. The function of novel protein was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by immunoprecipitation analyses. RESULTS: A novel protein circPLCE1-411 encoded by circular RNA circPLCE1 was identified as a crucial player in the NF-κB activation of CRC. Mechanistically, circPLCE1-411 promoted the ubiquitin-dependent degradation of the critical NF-κB regulator RPS3 via directly binding the HSP90α/RPS3 complex to facilitate the dissociation of RPS3 from the complex, thereby reducing NF-κB nuclear translocation in CRC cells. Functionally, circPLCE1 inhibited tumor proliferation and metastasis in CRC cells, as well as patient-derived xenograft and orthotopic xenograft tumor models. Clinically, circPLCE1 was downregulated in CRC tissues and correlated with advanced clinical stages and poor survival. CONCLUSIONS: circPLCE1 presents an epigenetic mechanism which disrupts NF-κB nuclear translocation and serves as a novel and promising therapeutic target and prognostic marker.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , FN-kappa B/metabolismo , Fosfoinositido Fosfolipasa C/genética , ARN Circular , Proteínas Ribosómicas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Cromatografía Liquida , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Modelos Biológicos , Proteolisis , Proteómica/métodos , Transducción de Señal , Espectrometría de Masas en Tándem , Ubiquitina/metabolismo , Ubiquitinación
13.
J Hepatocell Carcinoma ; 8: 493-505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095004

RESUMEN

BACKGROUND AND AIM: To assess the profile of global histone modifications in small hepatocellular carcinoma (small HCC) and identify its prognostic value in predicting recurrence. METHODS: The expression profiles of global histone modifications, including H2AK5AC, H2BK20AC, H3K4me2, H3K9AC, H3K18AC, H4K12AC, and H4R3me2, were evaluated with immunohistochemistry in 335 HBV related small HCC patients. Two histone signature classifiers were then developed using least absolute shrinkage and selection operator Cox regression. A nomogram was built using the classifier and independent risk factors. The performances of the classifier and nomogram were assessed by receiver operating characteristic curves. RESULTS: Histone modifications were more pronounced in tumor tissues than in adjacent liver tissues. In tumor tissues, the risk score built based on the seven-histone signature exhibited satisfactory prediction efficiency, with an AUC = 0.71 (0.63-0.79) for 2-year survival in the training cohort. Patients with a high risk score had shorter recurrence-free survival than those with a low risk score (HR: 1.96, 95% CI: 1.24-3.08, p = 0.004; HR: 1.95, 95% CI: 1.12-3.42, p = 0.019; and HR: 1.97, 95% CI: 1.39-2.80, p < 0.001 for the training, validation and total cohorts, respectively). Furthermore, the statistical nomogram built using the histone classifier for early recurrence had a C-index = 0.68. In non-neoplastic liver tissues, the hepatic signature based on H3K4me2 and H4R3me2 was related to late recurrence (HR: 2.00, 95% CI: 1.15-3.48, p = 0.01). CONCLUSION: Global histone modifications in tumor and adjacent liver tissues are novel predictors of early and late recurrence, respectively, in HBV-related small HCC patients.

19.
Pak J Pharm Sci ; 34(6 Spec): 2479-2485, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-35039263

RESUMEN

This study aims to investigate the curative effect of Kangfuyan capsule in the treatment of damp-heat and blood stasis type of pelvic inflammatory disease (PID), and its influence on serum inflammatory factors IL-6, CRP and TNF-α. A total of 83 patients with PID were randomly divided into two groups: Western medicine group (control group, n=41) received oral antibiotics (azithromycin + metronidazole) alone and the traditional Chinese medicine combined with Western medicine group (experimental group, n=42) received Kangfuyan capsule based on Western medicine therapy. Clinical efficacy between these two groups and the influence of drugs in serum inflammatory factors (IL-6, CRP and TNF-α) were compared. The total effective rate was 78.05% in the control group and 97.62% in the experimental group and difference between these two groups was statistically significant (P<0.01). The symptoms and signs in the two groups significantly improved after treatment (P<0.05) and improvement rate was significantly better in the experimental group than in the control group (P<0.05). After treatment, serum inflammatory factor levels in the two groups were significantly lower than levels before treatment (P<0.05) and improvement rate was significantly better in the experimental group than in the control group (P<0.05). Kangfuyan capsule combined with antibiotics can effectively relieve the symptoms and signs of patients, improve the efficiency of treatment, provide high safety, and does not increase adverse reactions. The possible mechanism may be that this therapy suppresses chronic PID by reducing serum inflammatory factor (IL-6, CRP and TNF-α) levels.


Asunto(s)
Antibacterianos , Azitromicina , Medicamentos Herbarios Chinos , Metronidazol , Enfermedad Inflamatoria Pélvica , Adolescente , Adulto , Femenino , Humanos , Persona de Mediana Edad , Adulto Joven , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Azitromicina/efectos adversos , Azitromicina/uso terapéutico , Biomarcadores/sangre , China , Quimioterapia Combinada , Medicamentos Herbarios Chinos/efectos adversos , Medicamentos Herbarios Chinos/uso terapéutico , Mediadores de Inflamación/sangre , Metronidazol/efectos adversos , Metronidazol/uso terapéutico , Enfermedad Inflamatoria Pélvica/sangre , Enfermedad Inflamatoria Pélvica/diagnóstico , Enfermedad Inflamatoria Pélvica/tratamiento farmacológico , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA