Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Foods ; 13(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272421

RESUMEN

As one of the main sources of plant protein, it is important to improve the protein digestibility of legumes. Faced with population growth and increasing environmental pressures, it is essential to find a green approach. Germination meets this requirement, and in the process of natural growth, some enzymes are activated to make dynamic changes in the protein itself; at the same time, other substances (especially anti-nutrient factors) can also be degraded by enzymes or their properties (water solubility, etc.), thereby reducing the binding with protein, and finally improving the protein digestibility of beans under the combined influence of these factors The whole process is low-carbon, environmentally friendly and safe. Therefore, this paper summarizes this process to provide a reference for the subsequent development of soybean functional food, especially the germination of soybean functional food.

2.
Sci Total Environ ; 950: 175315, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39111451

RESUMEN

Cannabidiol (CBD) is a non-psychoactive component of cannabis with potential applications in biomedicine, food, and cosmetics due to its analgesic, anti-inflammatory, and anticonvulsant properties. However, increasing reports of adverse CBD exposure events underscore the necessity of evaluating its toxicity. In this study, we investigated the developmental toxicity of CBD in zebrafish during the embryonic (0-4 dpf, days post fertilization) and early larval stages (5-7 dpf). The median lethal concentration of CBD in embryos/larvae is 793.28 µg/L. CBD exhibited concentration-dependent manner (ranging from 250 to 1500 µg/L) in inducing serious malformed somatotypes, like shorter body length, pericardial cysts, vitelline cysts, spinal curvature, and smaller eyes. However, no singular deformity predominates. The 5-month-old zebrafish treated with 100 and 200 µg/L of CBD during the embryonic and early larval stages produced fewer offspring with higher natural mortality and malformation rate. Gonadal growth and gamete development were inhibited. Transcriptomic and metabolomic analyses conducted with 400 µg/L CBD on embryos/larvae from 0 to 5 dpf suggested that CBD promoted the formation and transportation of extracellular matrix components on 1 dpf, promoting abnormal cell division and migration, probably resulting in random malformed somatotypes. It inhibited optical vesicle development and photoreceptors formation on 2 and 3 dpf, resulting in damaged sight and smaller eye size. CBD also induced an integrated stress response on 4 and 5 dpf, disrupting redox, protein, and cholesterol homeostasis, contributing to cellular damage, physiological dysfunction, embryonic death, and inhibited reproductive system and ability in adult zebrafish. At the tested concentrations, CBD exhibited developmental toxicity, lethal toxicity, and reproductive inhibition in zebrafish. These findings demonstrate that CBD threatens the model aquatic animal, highlighting the need for additional toxicological evaluations of CBD before its inclusion in dietary supplements, edible food, and other products.


Asunto(s)
Cannabidiol , Embrión no Mamífero , Contaminantes Químicos del Agua , Pez Cebra , Animales , Cannabidiol/toxicidad , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Desarrollo Embrionario/efectos de los fármacos , Larva/efectos de los fármacos
3.
Foods ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123590

RESUMEN

Fermentation with Bacillus subtilis significantly enhances the physiological activity and bioavailability of soymilk, but the resulting characteristic flavor seriously affects its industrial promotion. The objective of this study was to identify key proteins associated with characteristic flavors in B. subtilis BSNK-5-fermented soymilk using tandem mass tag (TMT) proteomics. The results showed that a total of 765 differentially expressed proteins were identified. Seventy differentially expressed proteins related to characteristic flavor were screened through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. After integrating metabolomics data, fifteen key proteases of characteristic flavor components in BSNK-5-fermented soymilk were further identified, and free ammonia was added. In addition, there were five main formation mechanisms, including the decomposition of urea to produce ammonia; the degradation of glutamate by glutamate dehydrogenase to produce ammonia; the degradation of threonine and non-enzymatic changes to form the derivative 2,5-dimethylpyrazine; the degradation of valine, leucine, and isoleucine to synthesize isovalerate and 2-methylbutyrate; and the metabolism of pyruvate and lactate to synthesize acetate. These results provide a theoretical foundation for the improvement of undesirable flavor in B. subtilis BSNK-5-fermented soy foods.

4.
Food Chem ; 461: 140941, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39181058

RESUMEN

Phytic acid (IP6) and its degradation products lower myo-inositol phosphates exert different impacts on nutrient bioavailability and product quality characteristics. However, information regarding the occurrence of IP6 and its degradation products is scarce. In this work, simultaneous determination of IP6 and its degradation products in soybeans was developed, with emphasis on analysis by UPLC-MS/MS and a BEH Amide column both with hybrid surface technology. The retention and analyte/metal surface interactions issues were effectively addressed without ion-pairing reagents addition or derivatization. This method was applied to analyze soybeans from China. Total contents were 0.44-13.2 mg/g, and IP6 and its degradation product myo-inositol pentakisphosphate (IP5) were the predominant analytes, accounting for over 99%. Accession type significantly affected IP5 content, and landraces had significantly higher IP5 than cultivars. Geographically, the lowest IP6 was concentrated in the Huanghuaihai region. Significant correlations existed between IP6 and longitude, altitude, and annual cumulative sunshine hours. This study provides comprehensive insights into the IP6 and its degradation product profile in soybeans, which will benefit breeding soybeans based on specific requirements.


Asunto(s)
Glycine max , Ácido Fítico , Espectrometría de Masas en Tándem , Ácido Fítico/análisis , Ácido Fítico/química , Glycine max/química , Glycine max/metabolismo , China , Cromatografía Líquida de Alta Presión
5.
Nutrients ; 16(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203919

RESUMEN

The betel nut is one of the most widely consumed addictive substances in the world after nicotine, ethanol, and caffeine. Arecoline is an active ingredient from the areca nut. It has many pharmacological effects and can affect the central nervous system. In this study, we found that arecoline can relieve fatigue behavior. OBJECTIVE: This research aims to estimate the anti-fatigue effects of arecoline and explore its underlying mechanisms using a murine model of central fatigue precipitated by sleep deprivation (SD). METHODS: Seventy-two male C57BL/6 mice were randomly assigned to six groups: a control group, an SD-induced fatigue model group, a group that received Rhodiola Rosea capsules (2.5 mg/kg), and three arecoline groups, which were administered at low, medium, and high doses (10, 20, and 40 mg/kg, respectively). Following 28 days of continuous administrations, the effects of arecoline on mouse fatigue-related behaviors were assessed by behavioral tests, including grip strength, rotarod performance, and weight-bearing swimming endurance. The release levels of the related biochemical markers were measured by enzyme-linked immunosorbent assays (ELISAs). Western blotting was employed to quantify the expression levels of nuclear factor erythroid 2-related factor (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase 1 (HO-1), sequestosome-1 (p62), and NADPH quinone oxidoreductase 1 (NQO1) in the gastrocnemius muscle. RESULTS: Arecoline administration notably enhanced grip strength, delayed the onset of fatigue as evidenced by extended latencies in rotarod tests, and increased the duration of weight-bearing swimming in mice. In the elevated plus maze, arecoline obviously decreased both the number of entries and the total distance traveled in the open arms. Arecoline markedly decreased the contents of creatine kinase, blood urea nitrogen, lactate dehydrogenase, triglycerides, and cholesterol in the serum, while it elevated the levels of total testosterone, lactate dehydrogenase, and immunoglobulin G. Furthermore, it significantly increased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase in the gastrocnemius muscle, reduced malondialdehyde levels, augmented hippocampal SOD and CAT activity, and elevated glycogen stores in both liver and muscle tissues. Neurotransmitter levels showed significant increases, cytokine levels were markedly reduced, and the expressions of Nrf2, Keap1, NQO1, p62, and HO-1 in brain tissues were significantly upregulated. CONCLUSIONS: This study demonstrates that arecoline has anti-fatigue activity, and the specific mechanisms are associated with elevating glucose and lipid metabolism levels, relieving oxidative stress damage, inhibiting neuroinflammatory response, and regulating neurotransmitter levels and the Keap1/Nrf2/HO-1 signaling pathway. The research provides a new direction for arecoline's potential in preventing and improving fatigue.


Asunto(s)
Arecolina , Fatiga , Ratones Endogámicos C57BL , Privación de Sueño , Animales , Masculino , Arecolina/farmacología , Fatiga/tratamiento farmacológico , Privación de Sueño/complicaciones , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Modelos Animales de Enfermedad , Fuerza de la Mano , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Conducta Animal/efectos de los fármacos , Proteínas de la Membrana
6.
Antioxidants (Basel) ; 13(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39061879

RESUMEN

In this study, soy protein isolate (SPI) films incorporating quercetin-grafted dialdehyde starch (DAS-QR) and DAS/QR, respectively, were developed. The structural, physical, and functional properties of the composite films were determined. The results suggested that DAS-QR and DAS/QR formed hydrogen bonding with the SPI matrix, which improved the structural properties of the films. The light-blocking capacity, thermal stability, hydrophobicity, tensile strength, elongation at break, and antioxidant and antibacterial abilities of SPI films were improved by DAS-QR and DAS/QR. Notably, SPI films incorporated with DAS-QR exhibited better performance than those with DAS/QR in terms of antioxidant (SPI/DAS-QR: 79.8% of DPPH and 62.1% of ABTS scavenging activity; SPI/DAS/QR: 71.4% of DPPH and 56.0% of ABTS scavenging activity) and antibacterial abilities against S. aureus (inhibition rate: 92.7% for SPI/DAS-QR, 83.4% for SPI/DAS/QR). The composite coating film SPI/DAS-QR effectively maintained appearance quality, delayed the loss of weight and total soluble solids, postponed malondialdehyde accumulation, and decreased peroxidase activity and microbial contamination in fresh-cut potatoes. These good performances highlight SPI/DAS-QR as a promising active packaging material for fresh-cut product preservation.

7.
Animal Model Exp Med ; 7(4): 433-443, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38973219

RESUMEN

In traditional Chinese medicine (TCM), based on various pathogenic symptoms and the 'golden chamber' medical text, Huangdi Neijing, diabetes mellitus falls under the category 'collateral disease'. TCM, with its wealth of experience, has been treating diabetes for over two millennia. Different antidiabetic Chinese herbal medicines reduce blood sugar, with their effective ingredients exerting unique advantages. As well as a glucose lowering effect, TCM also regulates bodily functions to prevent diabetes associated complications, with reduced side effects compared to western synthetic drugs. Chinese herbal medicine is usually composed of polysaccharides, saponins, alkaloids, flavonoids, and terpenoids. These active ingredients reduce blood sugar via various mechanism of actions that include boosting endogenous insulin secretion, enhancing insulin sensitivity and adjusting key enzyme activity and scavenging free radicals. These actions regulate glycolipid metabolism in the body, eventually achieving the goal of normalizing blood glucose. Using different animal models, a number of molecular markers are available for the detection of diabetes induction and the molecular pathology of the disease is becoming clearer. Nonetheless, there is a dearth of scientific data about the pharmacology, dose-effect relationship, and structure-activity relationship of TCM and its constituents. Further research into the efficacy, toxicity and mode of action of TCM, using different metabolic and molecular markers, is key to developing novel TCM antidiabetic formulations.


Asunto(s)
Diabetes Mellitus , Medicamentos Herbarios Chinos , Hipoglucemiantes , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Animales , Diabetes Mellitus/tratamiento farmacológico , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Medicina Tradicional China , Glucemia/efectos de los fármacos
8.
Food Chem ; 460(Pt 1): 140459, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059325

RESUMEN

Lignanamides are a class of compounds containing amide functional groups in lignans. These compounds have excellent anti-inflammatory and neuroprotective, which have shown great potential in terms of food additives, medicine and health supplement. We summarized the recent progress of lignanamides, including chemical constituents, extraction methods, biological activities, and synthetic pathways. The structures were classified according to an updated nomenclature system, can be classified into sixteen types and have certain roles in many respects such as anti-inflammatory, anti-cancer, and antioxidative, which may be important source of materials for functional food. The potential and limitations of different extraction method, chromatographic packing, and synthetic pathway are analyzed. Notably, this review provides an overview of synthesis pathways and applications of lignanamides, further research is needed to improve extraction efficiency and synthesis method, especially in a greener way for better application.


Asunto(s)
Antiinflamatorios , Lignanos , Lignanos/química , Lignanos/aislamiento & purificación , Lignanos/farmacología , Humanos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Estructura Molecular , Amidas/química , Amidas/aislamiento & purificación
9.
Int J Biol Macromol ; 272(Pt 1): 132779, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825268

RESUMEN

The effects of high-resistant starch (RS) content rice flour, psyllium husk powder (PHP), and psyllium powder (PP) on the edible quality and starch digestibility of rice noodles were investigated in this study. High-RS rice noodles showed lower digestibility but poor edible quality. With the addition of PHP and PP, high-RS rice noodles' cooking and texture quality were improved significantly, especially the breakage rates, cooking losses, and chewiness (P < 0.05). Compared to traditional white rice noodle's estimated glycemic index (eGI) of 86.69, the eGI values for 5PHP-RN and 5PHP-2PP-RN were significantly decreased to 66.74 and 65.77, achieving a medium GI status (P < 0.05). This resulted from the high amylose and lipid content in the modified rice flour and psyllium, leading to increase of starch crystallinity. Besides, based on the analysis of Pearson's correlation, it can be found that PHP rich in insoluble dietary fiber (IDF) could improve high-RS noodle cooking and texture quality better, while PP rich in soluble dietary fiber (SDF) can further reduce the RDS content and its starch digestibility. Therefore, utilizing modified rice flour with an appropriate addition of PHP and PP can be considered an effective strategy for producing superior-quality lower glycemic index rice noodles.


Asunto(s)
Fibras de la Dieta , Harina , Oryza , Psyllium , Almidón , Oryza/química , Psyllium/química , Harina/análisis , Almidón/química , Fibras de la Dieta/análisis , Índice Glucémico , Culinaria/métodos , Amilosa/análisis , Amilosa/química , Almidón Resistente/análisis
10.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731591

RESUMEN

Angelica sinensis (Oliv.) Diels (A. sinensis) is a medicinal and edible values substance, which could promote blood circulation and enrich blood. It possesses rich chemical components and nutrients, which have significant therapeutic effects on cardiovascular and cerebrovascular diseases. It is commonly used for the prevention and treatment of cardiovascular and cerebrovascular diseases in the elderly, especially in improving ischemic damage to the heart and brain, protecting vascular cells, and regulating inflammatory reactions. This article reviews the main pharmacological effects and clinical research of A. sinensis on cardiovascular and cerebrovascular diseases in recent years, explores the effect of its chemical components on cardiovascular and cerebrovascular diseases by regulating the expression of functional proteins and inhibiting inflammation, anti-apoptosis, and antioxidant mechanisms. It provides a reference for further research on A. sinensis and the development of related drugs. It provides a new reference direction for the in-depth research and application of A. sinensis in the prevention, improvement, and treatment of cardiovascular and cerebrovascular diseases.


Asunto(s)
Angelica sinensis , Enfermedades Cardiovasculares , Trastornos Cerebrovasculares , Humanos , Angelica sinensis/química , Trastornos Cerebrovasculares/tratamiento farmacológico , Trastornos Cerebrovasculares/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Animales , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
11.
Foods ; 13(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38790825

RESUMEN

Microbial nitrogen sources are promising, and soy protein as a plant-based nitrogen source has absolute advantages in creating microbial culture medium in terms of renewability, eco-friendliness, and greater safety. Soy protein is rich in variety due to different extraction technologies and significantly different in the cell growth and metabolism of microorganisms as nitrogen source. Therefore, different soy proteins (soy meal powder, SMP; soy peptone, SP; soy protein concentrate, SPC; soy protein isolate, SPI; and soy protein hydrolysate, SPH) were used as nitrogen sources to culture Bacillus subtilis, Streptococcus lactis, and Streptomyces clavuligerus to evaluate the suitable soy nitrogen sources of the above strains. The results showed that B. subtilis had the highest bacteria density in SMP medium; S. lactis had the highest bacteria density in SPI medium; and S. clavuligerus had the highest PMV in SPI medium. Nattokinase activity was the highest in SP medium; the bacteriostatic effect of nisin was the best in SPI medium; and the clavulanic acid concentration was the highest in SMP medium. Based on analyzing the correlation between the nutritional composition and growth metabolism of the strains, the results indicated that the protein content and amino acid composition were the key factors influencing the cell growth and metabolism of the strains. These findings present a new, high-value application opportunity for soybean protein.

12.
Int J Biol Macromol ; 269(Pt 2): 131959, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692548

RESUMEN

Polyphenol-protein complexes delivery systems are gaining attention for their potential health benefits and food industry development. However, creating an ideal delivery system requires extensive wet-lab experimentation. To address this, we collected 525 ligand-protein interaction data pairs and established an interaction prediction model using Bilinear Attention Networks. We utilized 10-fold cross validation to address potential overfitting issues in the model, resulting in showed higher average AUROC (0.8443), AUPRC (0.7872), and F1 (0.8164). The optimal threshold (0.3739) was selected for the model to be used for subsequent analysis. Based on the model prediction results and optimal threshold, by verifying experimental analysis, the interaction of paeonol with the following proteins was obtained, including bovine serum albumin (lgKa = 6.2759), bovine ß-lactoglobulin (lgKa = 6.7479), egg ovalbumin (lgKa = 5.1806), zein (lgKa = 6.0122), bovine α-lactalbumin (lgKa = 3.9170), bovine lactoferrin (lgKa = 4.5380), the first four proteins are consistent with the predicted results of the model, with lgKa >5. The established model can accurately and rapidly predict the interaction of polyphenol-protein complexes. This study is the first to combine open ligand-protein interaction experiments with Deep Learning algorithms in the food industry, greatly improving research efficiency and providing a novel perspective for future complex delivery system construction.


Asunto(s)
Polifenoles , Polifenoles/química , Animales , Unión Proteica , Bovinos , Proteínas/química , Sistemas de Liberación de Medicamentos/métodos , Lactoglobulinas/química , Ligandos , Albúmina Sérica Bovina/química
13.
Food Res Int ; 186: 114355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729701

RESUMEN

In this study, five C18 fatty acids (FA) with different numbers of double bonds and configurations including stearic acid (SA), oleic acid (OA), elaidic acid (EA), linoleic acid (LA), and α-linolenic acid (ALA), were selected to prepare highland barely starch (HBS)-FA complexes to modulate digestibility and elaborate the underlying mechanism. The results showed that HBS-SA had the highest complex index (34.18 %), relative crystallinity (17.62 %) and single helix content (25.78 %). Furthermore, the HBS-C18 FA complexes were formed by EA (C18 FA with monounsaturated bonds) that had the highest R1047/1022 (1.0509) and lowest full width at half-maximum (FWHM, 20.85), suggesting good short-range ordered structure. Moreover, all C18 FAs could form two kinds of V-type complexes with HBS, which can be confirmed by the results of CLSM and DSC measurements, and all of them showed significantly lower digestibility. HBS-EA possessed the highest resistant starch content (20.17 %), while HBS-SA had the highest slowly digestible starch content (26.61 %). In addition, the inhibition of HBS retrogradation by fatty acid addition was further proven, where HBS-SA gel firmness (37.80 g) and aging enthalpy value were the lowest, indicating the most effective. Overall, compounding with fatty acids, especially SA, could be used as a novel way to make functional foods based on HBS.


Asunto(s)
Digestión , Ácidos Grasos , Hordeum , Ácido Oléico , Almidón , Almidón/química , Ácidos Grasos/análisis , Ácidos Grasos/química , Hordeum/química , Ácido Oléico/química , Ácidos Esteáricos/química , Ácido Linoleico/química , Ácido alfa-Linolénico/química , Ácidos Oléicos
14.
Environ Pollut ; 350: 124034, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663507

RESUMEN

Metconazole (MEZ), a chiral triazole fungicide, produces enantioselective adverse effects in non-target organisms. Among MEZ's isomers, cis-MEZ displays robust antimicrobial properties. Evaluating MEZ and cis-MEZ's toxicity may mitigate fungicide usage and safeguard non-target organisms. Our study evaluated the toxicity of MEZ and its cis-isomers at concentrations of 0.02, 0.2, 2, and 4 mg L-1. We report stereoselectivity and severe cardiovascular defects in zebrafish, including pericardial oedema, decreased heart rate, increased sinus venous and bulbous arteries distances, intersegmental vessel defects, and altered cardiovascular development genes (hand2, gata4, nkx2.5, tbx5, vmhc, amhc, dll4, vegfaa, and vegfc). Further, MEZ significantly increased oxidative stress and apoptosis in zebrafish, primarily in the cardiac region. Isoquercetin, an antioxidant found in plants, partially mitigates MEZ-induced cardiac defects. Furthermore, MEZ upregulated the Wnt/ß-catenin pathway genes (wnt3, ß-catenin, axin2, and gsk-3ß) and ß-catenin protein expression. Inhibitor of Wnt Response-1 (IWR-1) rescued MEZ-induced cardiotoxicity. Our findings highlight oxidative stress, altered cardiovascular development genes, and upregulated Wnt/ß-catenin signaling as contributors to cardiovascular toxicity in response to MEZ and cis-MEZ treatments. Importantly, 1R,5S-MEZ exhibited greater cardiotoxicity than 1S,5R-MEZ. Thus, our study provides a comprehensive understanding of cis-MEZ's cardiovascular toxicity in aquatic life.


Asunto(s)
Embrión no Mamífero , Estrés Oxidativo , Vía de Señalización Wnt , Pez Cebra , Animales , Estrés Oxidativo/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Triazoles/toxicidad , Fungicidas Industriales/toxicidad , Corazón/efectos de los fármacos , Cardiotoxicidad/etiología , Contaminantes Químicos del Agua/toxicidad
15.
Biosensors (Basel) ; 14(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667175

RESUMEN

Gallic acid (GA) is closely related to the quality of herbal medicines and other agricultural products. In order to facilitate the rapid detection of GA, we developed a monoclonal antibody-based ic-ELISA method. Antigens with and without connecting arms were prepared. It was found that the introduction of connecting arms (linear carbon chain) was beneficial for immune response. By utilizing hybridoma technology, a specific mAb (anti-GA-M702) was screened and identified, which exhibited a 1:40,500 antibody titer and IgG2b antibody subtype. The ic-ELISA assay was established based on anti-GA-M702. The optimal working concentrations of the encapsulated antigen and antibody were 0.5 µg/mL and 0.67 µg/mL, respectively. The ic-ELISA method showed a linear detection range of 297.17-2426.61 ng/mL for GA with a sensitivity of 849.18 ng/mL. It displayed a good applicability for the determination of GA in Galla chinensis. In conclusion, the ic-ELISA method provides an efficient approach to the rapid detection of GA in products.


Asunto(s)
Anticuerpos Monoclonales , Ensayo de Inmunoadsorción Enzimática , Ácido Gálico , Ensayo de Inmunoadsorción Enzimática/métodos , Animales
16.
Food Chem X ; 22: 101359, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38623511

RESUMEN

The purpose of the study was to explore effect of four different strains on quality characteristics of soy yogurt. The results showed that four strains were all related to the genus Lactobacillus and N1 was Lacticaseibacillus rhamnosus, N2 was Lacticaseibacillus paracasei, N3 was Lacticaseibacillus plantarum, and N4 was Lacticaseibacillus acidophilus. The result analysis of biochemical, sensory, nutritional, functional and safety properties of fermentation process and end products showed that the soy yogurt fermented with L. rhamnosus N1 had the highest isoflavone content and the lowest phytic acid content; the soy yogurt fermented with L. paracasei N2 had the highest content of free amino acids and oligosaccharides, the lowest content of trypsin inhibitors; the soy yogurt fermented with L. plantarum N3 had the lowest oil content; the soy yogurt fermented with L. acidophilus N4 had optimal functional properties. In summary, N4 was suitable as a fermentation strain for soymilk.

17.
Curr Res Food Sci ; 8: 100719, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533489

RESUMEN

Nonanal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and (E,Z)-2,6-nonadienal were used to study the effect of number and position of the unsaturated bond in aliphatic aldehydes on meat flavorings. Cysteine-Amadori and thiazolidine derivatives were synthesized, identified by UPLC-TOF/MS and NMR, and quantitatively by UPLC-MS/MS. The polyunsaturated aldehydes exhibited higher inhibition than monounsaturated aldehydes, and monounsaturated aldehydes exhibited higher inhibition than saturated aldehydes, mainly manifested by the inhibition of the cysteine-Amadori formation and acceleration of the thiazolidine derivatives formation. The effect of unsaturated bonds position in aliphatic aldehydes on the initial Maillard reaction stage was similar. The cysteine played an important role in catalyzing the reaction of aliphatic aldehydes. A total of 109 volatile compounds derived by heating prepared thiazolidine derivatives degradation were detected by GC-MS. Formation pathways of volatile compounds were proposed by retro-aldol, oxidation, etc. Particularly, a route to form thiazole by the decarboxylation reaction of thiazolidine derivatives which derivatives from formaldehyde reacting with cysteine was proposed.

18.
Foods ; 13(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38472850

RESUMEN

Gelation, as an important functional property of soy protein isolate (SPI), can be improved by some green technologies in food manufacturing, including ultrasound, ultrahigh pressure and microwave treatments. This work investigated the effect of an alkaline solubilisation step in SPI extraction combined with sonication on protein properties. The TGase-induced gel of the modified SPI was prepared to explore the effect of ultrasound on gel properties, including structures, strength, water-holding capacity and rheological properties. Additionally, the differences between traditional ultrasound modification of SPI and current modification methods were analyzed. The results showed that the ultrasonication-assisted extraction method could result in a significant increase in extraction rate from 24.68% to 42.25%. Moreover, ultrasound-assisted modification of SPI gels induced with transglutaminase (TGase) exhibited significant improvement in mechanical properties, such as texture, water-holding capacity and rheological properties, In particular, SPI extracted at 400 W ultrasound intensity for 180 s showed the best overall performance in terms of gel properties. Our method efficiently uniformizes gel structure, enhancing mechanical properties compared to conventional ultrasound methods, which reduced energy consumption and costs. These findings provide insights into the production of high-gelation SPI in food manufacturing.

19.
Molecules ; 29(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542847

RESUMEN

This study evaluated the effects of four highland barley proteins (HBPs), namely, albumin, globulin, gliadin and glutenin, on the short-term retrogradation of highland barley starch (HBS). The findings reveal that HBPs could reduce the viscosity, storage modulus and hardness of HBS, with albumin and globulin showing more prominent effects. Furthermore, with the addition of HBPs, the loss tangent (tan δ) of HBS loss increased from 0.07 to 0.10, and the enthalpy of gelatinization decreased from 8.33 to 7.23. The degree of retrogradation (DR%) of HBS was 5.57%, and the DR% decreased by 26.65%, 38.78%, 11.67% and 20.29% with the addition of albumin, globulin, gliadin and glutenin, respectively. Moreover, the relative crystallinity (RC) and the double helix structures were inhibited with the HBPs' incorporation. Meanwhile, the HBPs also could inhibit water migration and improve the structure of HBS gels. In summary, HBPs could inhibit the retrogradation behavior of HBS, which provides new theoretical insights for the production studies of highland barley foods.


Asunto(s)
Globulinas , Hordeum , Almidón/química , Gliadina/química , Albúminas
20.
Genes (Basel) ; 15(2)2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38397139

RESUMEN

As the most important melon cultivar grown in the north-western provinces of China, Hami melon (Cucumis melo) produces large edible fruits that serve as an important dietary component in the world. In general, as a climacteric plant, melon harvested at 60% maturity results in a product with bad quality, while the highest-quality product can be guaranteed when harvesting at 90% maturity. In order to clarify the genetic basis of their distinct profiles of metabolite accumulation, we performed systematic transcriptome analyses between 60% and 90% maturity melons. A total of 36 samples were sequenced and over 1.7 billion reads were generated. Differentially expressed genes in 60% and 90% maturity melons were detected. Hundreds of these genes were functionally enriched in the sucrose and citric acid accumulation process of C. melo. We also detected a number of distinct splicing events between 60% and 90% maturity melons. Many genes associated with sucrose and citric acid accumulation displayed as differentially expressed or differentially spliced between different degrees of maturity of Hami melons, including CmCIN2, CmSPS2, CmBGAL3, and CmSPS2. These results demonstrate that the phenotype pattern differences between 60% and 90% maturity melons may be largely resulted from the significant transcriptome regulation.


Asunto(s)
Cucumis melo , Transcriptoma , Transcriptoma/genética , Cucumis melo/genética , Perfilación de la Expresión Génica/métodos , Sacarosa/metabolismo , Ácido Cítrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...