Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 10(1): 244, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773077

RESUMEN

TFIID, one of the general transcription factor (GTF), regulates transcriptional initiation of protein-coding genes through direct binding to promoter elements and subsequent recruitment of other GTFs and RNA polymerase II. Although generally required for most protein-coding genes, accumulated studies have also demonstrated promoter-specific functions for several TFIID subunits in gene activation. Here, we report that TBP-associated factor 2 (TAF2) specifically regulates TFIID binding to a small subset of protein-coding genes and is essential for cell growth of multiple cancer lines. Co-immunoprecipitation assays revealed that TAF2 may be sub-stoichiometrically associated with the TFIID complex, thus indicating a minor fraction of TAF2-containing TFIID in cells. Consistently, integrated genome-wide profiles show that TAF2 binds to and regulates only a small subset of protein-coding genes. Furthermore, through the use of an inducible TAF2 degradation system, our results reveal a reduction of TBP/TFIID binding to several ribosomal genes upon selective ablation of TAF2. In addition, depletion of TAF2, as well as the TAF2-regulated ribosomal protein genes RPL30 and RPL39, decreases ribosome assembly and global protein translation. Collectively, this study suggests that TAF2 within the TFIID complex is of functional importance for TBP/TFIID binding to and expression of a small subset of protein-coding genes, thus establishing a previously unappreciated promoter-selective function for TAF2.

2.
Oncotarget ; 6(18): 15882-90, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26021816

RESUMEN

The risk of developing neurodegenerative disorders such as Alzheimer's disease (AD) increases dramatically with age. Understanding the underlying mechanisms of brain aging is crucial for developing preventative and/or therapeutic approaches for age-associated neurological diseases. Recently, it has been suggested that epigenetic factors, such as histone modifications, maybe be involved in brain aging and age-related neurodegenerations. In this study, we investigated 14 histone modifications in brains of a cohort of young (3 months), old (22 months), and old age-matched dietary restricted (DR) and rapamycin treated BALB/c mice. Results showed that 7 out of all measured histone markers were changed drastically with age. Intriguingly, histone methylations in brain tissues, including H3K27me3, H3R2me2, H3K79me3 and H4K20me2 tend to disappear with age but can be partially restored by both DR and rapamycin treatment. However, both DR and rapamycin treatment also have a significant impact on several other histone modifications such as H3K27ac, H4K16ac, H4R3me2, and H3K56ac, which do not change as animal ages. This study provides the first evidence that a broad spectrum of histone modifications may be involved in brain aging. Besides, this study suggests that both DR and rapamycin may slow aging process in mouse brain via these underlying epigenetic mechanisms.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Código de Histonas/fisiología , Sirolimus/farmacología , Factores de Edad , Animales , Encéfalo/efectos de los fármacos , Dieta , Modelos Animales de Enfermedad , Femenino , Código de Histonas/efectos de los fármacos , Histonas/metabolismo , Ratones , Ratones Endogámicos BALB C
3.
Cell ; 141(7): 1183-94, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20541251

RESUMEN

The MLL1 gene is a frequent target for recurrent chromosomal translocations, resulting in transformation of hematopoietic precursors into leukemia stem cells. Here, we report on structure-function studies that elucidate molecular events in MLL1 binding of histone H3K4me3/2 marks and recruitment of the cyclophilin CyP33. CyP33 contains a PPIase and a RRM domain and regulates MLL1 function through HDAC recruitment. We find that the PPIase domain of CyP33 regulates the conformation of MLL1 through proline isomerization within the PHD3-Bromo linker, thereby disrupting the PHD3-Bromo interface and facilitating binding of the MLL1-PHD3 domain to the CyP33-RRM domain. H3K4me3/2 and CyP33-RRM target different surfaces of MLL1-PHD3 and can bind simultaneously to form a ternary complex. Furthermore, the MLL1-CyP33 interaction is required for repression of HOXA9 and HOXC8 genes in vivo. Our results highlight the role of PHD3-Bromo cassette as a regulatory platform, orchestrating MLL1 binding of H3K4me3/2 marks and cyclophilin-mediated repression through HDAC recruitment.


Asunto(s)
Ciclofilinas/metabolismo , Histona Desacetilasas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/química , Secuencia de Aminoácidos , Línea Celular , Cristalografía por Rayos X , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Prolina/química , Dominios y Motivos de Interacción de Proteínas
4.
Mol Cell ; 38(6): 853-63, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20541448

RESUMEN

MLL1 fusion proteins activate HoxA9 gene expression and cause aggressive leukemias that respond poorly to treatment, but how they recognize and stably bind to HoxA9 is not clearly understood. In a systematic analysis of MLL1 domain recruitment activity, we identified an essential MLL1 recruitment domain that includes the CXXC domain and PHD fingers and is controlled by direct interactions with the PAF elongation complex and H3K4Me2/3. MLL1 fusion proteins lack the PHD fingers and require prebinding of a wild-type MLL1 complex and CXXC domain recognition of DNA for stable HoxA9 association. Together, these results suggest that specific recruitment of MLL1 requires multiple interactions and is a precondition for stable recruitment of MLL1 fusion proteins to HoxA9 in leukemogenesis. Since wild-type MLL1 and oncogenic MLL1 fusion proteins have overlapping yet distinct recruitment mechanisms, this creates a window of opportunity that could be exploited for the development of targeted therapies.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Leucemia/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Animales , Línea Celular , Sitios Genéticos , N-Metiltransferasa de Histona-Lisina , Proteínas de Homeodominio/genética , Humanos , Ratones , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/metabolismo , Mutación Puntual , Estructura Terciaria de Proteína , Transporte de Proteínas , Factores de Transcripción
5.
Proc Natl Acad Sci U S A ; 107(7): 3135-40, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133638

RESUMEN

Lens epithelium-derived growth factor (LEDGF) fusion proteins can direct HIV-1 DNA integration to novel sites in the host genome. The C terminus of LEDGF contains an integrase binding domain (IBD), and the N terminus binds chromatin. LEDGF normally directs integrations to the bodies of expressed genes. Replacing the N terminus of LEDGF with chromatin binding domains (CBDs) from other proteins changes the specificity of HIV-1 DNA integration. We chose two well-characterized CBDs: the plant homeodomain (PHD) finger from ING2 and the chromodomain from heterochromatin binding protein 1alpha (HP1alpha). The ING2 PHD finger binds H3K4me3, a histone mark that is associated with the transcriptional start sites of expressed genes. The HP1alpha chromodomain binds H3K9me2,3, histone marks that are widely distributed throughout the genome. A fusion protein in which the ING2 PHD finger was linked to the LEDGF IBD directed integrations near the start sites of expressed genes. A similar fusion protein in which the HP1alpha chromodomain was linked to the LEDGF IBD directed integrations to sites that differed from both the PHD finger fusion-directed and LEDGF-directed integration sites. The ability to redirect HIV-1 DNA integration may help solve the problems associated with the activation of oncogenes when retroviruses are used in gene therapy.


Asunto(s)
ADN Viral/metabolismo , VIH-1 , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Integración Viral/fisiología , Animales , Sitios de Unión/genética , Línea Celular , Cromatina/metabolismo , Biología Computacional , ADN Viral/genética , Citometría de Flujo , Perfilación de la Expresión Génica , Terapia Genética/métodos , Integrasa de VIH/metabolismo , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Análisis de Secuencia de ADN , Proteínas Supresoras de Tumor/genética
7.
Nature ; 459(7248): 847-51, 2009 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-19430464

RESUMEN

Histone H3 lysine 4 methylation (H3K4me) has been proposed as a critical component in regulating gene expression, epigenetic states, and cellular identities1. The biological meaning of H3K4me is interpreted by conserved modules including plant homeodomain (PHD) fingers that recognize varied H3K4me states. The dysregulation of PHD fingers has been implicated in several human diseases, including cancers and immune or neurological disorders. Here we report that fusing an H3K4-trimethylation (H3K4me3)-binding PHD finger, such as the carboxy-terminal PHD finger of PHF23 or JARID1A (also known as KDM5A or RBBP2), to a common fusion partner nucleoporin-98 (NUP98) as identified in human leukaemias, generated potent oncoproteins that arrested haematopoietic differentiation and induced acute myeloid leukaemia in murine models. In these processes, a PHD finger that specifically recognizes H3K4me3/2 marks was essential for leukaemogenesis. Mutations in PHD fingers that abrogated H3K4me3 binding also abolished leukaemic transformation. NUP98-PHD fusion prevented the differentiation-associated removal of H3K4me3 at many loci encoding lineage-specific transcription factors (Hox(s), Gata3, Meis1, Eya1 and Pbx1), and enforced their active gene transcription in murine haematopoietic stem/progenitor cells. Mechanistically, NUP98-PHD fusions act as 'chromatin boundary factors', dominating over polycomb-mediated gene silencing to 'lock' developmentally critical loci into an active chromatin state (H3K4me3 with induced histone acetylation), a state that defined leukaemia stem cells. Collectively, our studies represent, to our knowledge, the first report that deregulation of the PHD finger, an 'effector' of specific histone modification, perturbs the epigenetic dynamics on developmentally critical loci, catastrophizes cellular fate decision-making, and even causes oncogenesis during mammalian development.


Asunto(s)
Cromatina/metabolismo , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/fisiología , Animales , Transformación Celular Neoplásica , Células Cultivadas , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/genética , Neoplasias Hematológicas/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Histonas/química , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lisina/metabolismo , Espectroscopía de Resonancia Magnética , Metilación , Ratones , Modelos Moleculares , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Fusión Oncogénica/genética , Unión Proteica , Conformación Proteica , Proteína 2 de Unión a Retinoblastoma , Transcripción Genética , Proteínas Supresoras de Tumor/genética
8.
Mutat Res ; 647(1-2): 3-12, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18682256

RESUMEN

Histone covalent modifications regulate many, if not all, DNA-templated processes, including gene expression and DNA damage response. The biological consequences of histone modifications are mediated partially by evolutionarily conserved "reader/effector" modules that bind to histone marks in a modification- and context-specific fashion and subsequently enact chromatin changes or recruit other proteins to do so. Recently, the Plant Homeodomain (PHD) finger has emerged as a class of specialized "reader" modules that, in some instances, recognize the methylation status of histone lysine residues, such as histone H3 lysine 4 (H3K4). While mutations in catalytic enzymes that mediate the addition or removal of histone modifications (i.e., "writers" and "erasers") are already known to be involved in various human diseases, mutations in the modification-specific "reader" proteins are only beginning to be recognized as contributing to human diseases. For instance, point mutations, deletions or chromosomal translocations that target PHD fingers encoded by many genes (such as recombination activating gene 2 (RAG2), Inhibitor of Growth (ING), nuclear receptor-binding SET domain-containing 1 (NSD1) and Alpha Thalassaemia and Mental Retardation Syndrome, X-linked (ATRX)) have been associated with a wide range of human pathologies including immunological disorders, cancers, and neurological diseases. In this review, we will discuss the structural features of PHD fingers as well as the diseases for which direct mutation or dysregulation of the PHD finger has been reported. We propose that misinterpretation of the epigenetic marks may serve as a general mechanism for human diseases of this category. Determining the regulatory roles of histone covalent modifications in the context of human disease will allow for a more thorough understanding of normal and pathological development, and may provide innovative therapeutic strategies wherein "chromatin readers" stand as potential drug targets.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Factores de Transcripción/metabolismo , Autoinmunidad , Proteínas de Unión al ADN/química , Humanos , Modelos Genéticos , Modelos Moleculares , Mutación , Neoplasias/genética , Enfermedades del Sistema Nervioso/genética , Proteínas del Grupo Polycomb , Síndrome , Factores de Transcripción/química
9.
Trends Mol Med ; 13(9): 363-72, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17822958

RESUMEN

Dynamic chromatin remodeling underlies many, if not all, DNA-templated biological processes, including gene transcription; DNA replication and repair; chromosome condensation; and segregation and apoptosis. Disruption of these processes has been linked to the development and progression of cancer. The mechanisms of dynamic chromatin remodeling include the use of covalent histone modifications, histone variants, ATP-dependent complexes and DNA methylation. Together, these mechanisms impart variation into the chromatin fiber, and this variation gives rise to an 'epigenetic landscape' that extends the biological output of DNA alone. Here, we review recent advances in chromatin remodeling, and pay particular attention to mechanisms that appear to be linked to human cancer. Where possible, we discuss the implications of these advances for disease-management strategies.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Cromatina/química , Cromatina/fisiología , Histonas/química , Humanos , Modelos Biológicos , Neoplasias/fisiopatología
10.
Trends Mol Med ; 13(9): 373-80, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17822959

RESUMEN

Connections between perturbations that lie outside of our genome, that is, epigenetic alternations, and tumorigenesis have become increasingly apparent. Dynamic chromatin remodeling of the fundamental nucleosomal structure (covered in this review) or the covalent marks residing in the histone proteins that make up this structure (covered previously in part I) underlie many fundamental cellular processes, including transcriptional regulation and DNA-damage repair. Dysregulation of these processes has been linked to cancer development. Mechanisms of chromatin remodeling include dynamic interplay between ATP-dependent complexes, covalent histone modifications, utilization of histone variants and DNA methylation. In part II of this series, we focus on connections between ATP-dependent chromatin-remodeling complexes and oncogenesis and discuss the potential clinical implications of chromatin remodeling and cancer.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cromatina/metabolismo , Neoplasias/metabolismo , Adenosina Trifosfato/fisiología , Animales , Cromatina/fisiología , Histonas/química , Histonas/metabolismo , Humanos , Modelos Biológicos , Neoplasias/fisiopatología , Procesamiento Proteico-Postraduccional
11.
Nat Cell Biol ; 9(7): 804-12, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17589499

RESUMEN

Nuclear receptor-binding SET domain protein 1 (NSD1) prototype is a family of mammalian histone methyltransferases (NSD1, NSD2/MMSET/WHSC1, NSD3/WHSC1L1) that are essential in development and are mutated in human acute myeloid leukemia (AML), overgrowth syndromes, multiple myeloma and lung cancers. In AML, the recurring t(5;11)(q35;p15.5) translocation fuses NSD1 to nucleoporin-98 (NUP98). Here, we present the first characterization of the transforming properties and molecular mechanisms of NUP98-NSD1. We demonstrate that NUP98-NSD1 induces AML in vivo, sustains self-renewal of myeloid stem cells in vitro, and enforces expression of the HoxA7, HoxA9, HoxA10 and Meis1 proto-oncogenes. Mechanistically, NUP98-NSD1 binds genomic elements adjacent to HoxA7 and HoxA9, maintains histone H3 Lys 36 (H3K36) methylation and histone acetylation, and prevents EZH2-mediated transcriptional repression of the Hox-A locus during differentiation. Deletion of the NUP98 FG-repeat domain, or mutations in NSD1 that inactivate the H3K36 methyltransferase activity or that prevent binding of NUP98-NSD1 to the Hox-A locus precluded both Hox-A gene activation and myeloid progenitor immortalization. We propose that NUP98-NSD1 prevents EZH2-mediated repression of Hox-A locus genes by colocalizing H3K36 methylation and histone acetylation at regulatory DNA elements. This report is the first to link deregulated H3K36 methylation to tumorigenesis and to link NSD1 to transcriptional regulation of the Hox-A locus.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Leucemia Mieloide/patología , Proteínas de Complejo Poro Nuclear/fisiología , Proteínas Nucleares/fisiología , Proteínas de Fusión Oncogénica/fisiología , Acetilación , Enfermedad Aguda , Secuencia de Aminoácidos , Animales , Transformación Celular Neoplásica , Células Cultivadas , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Metilación , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Células Progenitoras Mieloides/fisiología , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , Espectrofotometría Atómica , Activación Transcripcional , Translocación Genética
12.
Mol Cell Biol ; 26(10): 3902-16, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16648484

RESUMEN

Homeobox transcription factors Meis1 and Hoxa9 promote hematopoietic progenitor self-renewal and cooperate to cause acute myeloid leukemia (AML). While Hoxa9 alone blocks the differentiation of nonleukemogenic myeloid cell-committed progenitors, coexpression with Meis1 is required for the production of AML-initiating progenitors, which also transcribe a group of hematopoietic stem cell genes, including Cd34 and Flt3 (defined as Meis1-related leukemic signature genes). Here, we use dominant trans-activating (Vp16 fusion) or trans-repressing (engrailed fusion) forms of Meis1 to define its biochemical functions that contribute to leukemogenesis. Surprisingly, Vp16-Meis1 (but not engrailed-Meis1) functioned as an autonomous oncoprotein that mimicked combined activities of Meis1 plus Hoxa9, immortalizing early progenitors, inducing low-level expression of Meis1-related signature genes, and causing leukemia without coexpression of exogenous or endogenous Hox genes. Vp16-Meis1-mediated transformation required the Meis1 function of binding to Pbx and DNA but not its C-terminal domain (CTD). The absence of endogenous Hox gene expression in Vp16-Meis1-immortalized progenitors allowed us to investigate how Hox alters gene expression and cell biology in early hematopoietic progenitors. Strikingly, expression of Hoxa9 or Hoxa7 stimulated both leukemic aggressiveness and transcription of Meis1-related signature genes in Vp16-Meis1 progenitors. Interestingly, while the Hoxa9 N-terminal domain (NTD) is essential for cooperative transformation with wild-type Meis1, it was dispensable in Vp16-Meis1 progenitors. The fact that a dominant transactivation domain fused to Meis1 replaces the essential functions of both the Meis1 CTD and Hoxa9 NTD suggests that Meis-Pbx and Hox-Pbx (or Hox-Pbx-Meis) complexes co-occupy cellular promoters that drive leukemogenesis and that Meis1 CTD and Hox NTD cooperate in gene activation. Chromatin immunoprecipitation confirmed co-occupancy of Hoxa9 and Meis1 on the Flt3 promoter.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas de Neoplasias/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Activación Transcripcional , Animales , Línea Celular Transformada , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Factor C1 de la Célula Huésped/metabolismo , Leucemia Mieloide/etiología , Ratones , Ratones Endogámicos BALB C , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Plásmidos/genética , Mutación Puntual , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteínas Recombinantes de Fusión/metabolismo , Retroviridae/genética , Trasplante de Células Madre , Células Madre/citología
13.
Nat Methods ; 3(4): 287-93, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16554834

RESUMEN

Differentiation mechanisms and inflammatory functions of neutrophils and macrophages are usually studied by genetic and biochemical approaches that require costly breeding and time-consuming purification to obtain phagocytes for functional analysis. Because Hox oncoproteins enforce self-renewal of factor-dependent myeloid progenitors, we queried whether estrogen-regulated Hoxb8 (ER-Hoxb8) could immortalize macrophage or neutrophil progenitors that would execute normal differentiation and normal innate immune function upon ER-Hoxb8 inactivation. Here we describe methods to derive unlimited quantities of mouse macrophages or neutrophils by immortalizing their respective progenitors with ER-Hoxb8 using different cytokines to target expansion of different committed progenitors. ER-Hoxb8 neutrophils and macrophages are functionally superior to those produced by many other ex vivo differentiation models, have strong inflammatory responses and can be derived easily from embryonic day 13 (e13) fetal liver of mice exhibiting embryonic-lethal phenotypes. Using knockout or small interfering RNA (siRNA) technologies, this ER-Hoxb8 phagocyte maturation system represents a rapid analytical tool for studying macrophage and neutrophil biology.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Estrógenos/farmacología , Proteínas de Homeodominio/farmacología , Macrófagos/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Animales , Técnicas Biosensibles , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Células Cultivadas , Citocinas/farmacología , Modelos Animales de Enfermedad , Inflamación/metabolismo , Inflamación/patología , Hígado/embriología , Hígado/patología , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados/genética , Células Progenitoras Mieloides/metabolismo , Neutrófilos/metabolismo , Neutrófilos/ultraestructura , Fenotipo , ARN Interferente Pequeño/genética
14.
Nature ; 439(7073): 204-7, 2006 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-16306937

RESUMEN

Toll-like receptors (TLRs) are activated by pathogen-associated molecular patterns to induce innate immune responses and production of pro-inflammatory cytokines, interferons and anti-inflammatory cytokines. TLRs activate downstream effectors through adaptors that contain Toll/interleukin-1 receptor (TIR) domains, but the mechanisms accounting for diversification of TLR effector functions are unclear. To dissect biochemically TLR signalling, we established a system for isolating signalling complexes assembled by dimerized adaptors. Using MyD88 as a prototypical adaptor, we identified TNF receptor-associated factor 3 (TRAF3) as a new component of TIR signalling complexes that is recruited along with TRAF6. Using myeloid cells from TRAF3- and TRAF6-deficient mice, we show that TRAF3 is essential for the induction of type I interferons (IFN) and the anti-inflammatory cytokine interleukin-10 (IL-10), but is dispensable for expression of pro-inflammatory cytokines. In fact, TRAF3-deficient cells overproduce pro-inflammatory cytokines owing to defective IL-10 production. Despite their structural similarity, the functions of TRAF3 and TRAF6 are largely distinct. TRAF3 is also recruited to the adaptor TRIF (Toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta) and is required for marshalling the protein kinase TBK1 (also called NAK) into TIR signalling complexes, thereby explaining its unique role in activation of the IFN response.


Asunto(s)
Transducción de Señal , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Antígenos de Diferenciación/química , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Línea Celular , Dimerización , Regulación de la Expresión Génica , Inmunidad Innata , Interferones/biosíntesis , Interleucina-10/biosíntesis , Ratones , Células Mieloides/metabolismo , Factor 88 de Diferenciación Mieloide , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Especificidad por Sustrato , Factor 6 Asociado a Receptor de TNF/deficiencia , Factor 6 Asociado a Receptor de TNF/genética
15.
Blood ; 106(1): 254-64, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15755900

RESUMEN

Meis1 is a homeodomain transcription factor coexpressed with Hoxa9 in most human acute myeloid leukemias (AMLs). In mouse models of leukemia produced by Hoxa9, Meis1 accelerates leukemogenesis. Because Hoxa9 immortalizes myeloid progenitors in the absence of Meis1 expression, the contribution of Meis1 toward leukemia remains unclear. Here, we describe a cultured progenitor model in which Meis1 programs leukemogenicity. Progenitors immortalized by Hoxa9 in culture are myeloid-lineage restricted and only infrequently caused leukemia after more than 250 days. Coexpressed Meis1 programmed rapid AML-initiating character, maintained multipotent progenitor potential, and induced expression of genes associated with short-term hematopoietic stem cells (HSCs), such as FLT3 and CD34, whose expression also characterizes the leukemia-initiating stem cells of human AML. Meis1 leukemogenesis functions required binding to Pbx, binding to DNA, and a conserved function of its C-terminal tail. We hypothesize that Meis1 is required for the homing and survival of leukemic progenitors within their hematopoietic niches, functions mediated by HSC-specific genes such as CD34 and Fms-like tyrosine kinase 3 (FLT3), respectively. This is the first example of a transcription factor oncoprotein (Meis1) that establishes expression of a tyrosine kinase oncoprotein (FLT3), and explains their coexpression in human leukemia. This cultured progenitor model will be useful to define the genetic basis of leukemogenesis involving Hoxa9 and Meis1.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide/fisiopatología , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Enfermedad Aguda , Animales , Diferenciación Celular/fisiología , División Celular/fisiología , Línea Celular Transformada , Linaje de la Célula/fisiología , Femenino , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/citología , Factor de Crecimiento de Hepatocito/farmacología , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Leucemia Mieloide/genética , Ratones , Ratones Endogámicos BALB C , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/química , Fenotipo , Estructura Terciaria de Proteína , Receptores de Interleucina-7/genética , Factores de Transcripción/genética , Transcripción Genética/fisiología , Células Tumorales Cultivadas , Tirosina Quinasa 3 Similar a fms
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...