Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1403279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912345

RESUMEN

Biodegradation was considered a promising and environmentally friendly method for treating environmental pollution caused by diuron. However, the mechanisms of biodegradation of diuron required further research. In this study, the degradation process of diuron by Achromobacter xylosoxidans SL-6 was systematically investigated. The results suggested that the antioxidant system of strain SL-6 was activated by adding diuron, thereby alleviating their oxidative stress response. In addition, degradation product analysis showed that diuron in strain SL-6 was mainly degraded by urea bridge cleavage, dehalogenation, deamination, and ring opening, and finally cis, cis-muconic acid was generated. The combined analysis of metabolomics and transcriptomics revealed the biodegradation and adaptation mechanism of strain SL-6 to diuron. Metabolomics analysis showed that after the strain SL-6 was exposed to diuron, metabolic pathways such as tricarboxylic acid cycle (cis, cis-muconic acid), glutathione metabolism (oxidized glutathione), and urea cycle (arginine) were reprogrammed in the cells. Furthermore, diuron could induce the production of membrane transport proteins in strain SL-6 cells and overexpress antioxidant enzyme genes, finally ultimately promoting the up-regulation of genes encoding amide hydrolases and dioxygenases, which was revealed by transcriptomics studies. This work enriched the biodegradation mechanism of phenylurea herbicides and provided guidance for the removal of diuron residues in the environment and promoting agriculture sustainable development.

2.
Nat Cell Biol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926505

RESUMEN

Cargo translocation across membranes is a crucial aspect of secretion. In conventional secretion signal peptide-equipped proteins enter the endoplasmic reticulum (ER), whereas a subset of cargo lacking signal peptides translocate into the ER-Golgi intermediate compartment (ERGIC) in a process called unconventional protein secretion (UcPS). The regulatory events at the ERGIC in UcPS are unclear. Here we reveal the involvement of ERGIC-localized small GTPases, Rab1 (Rab1A and Rab1B) and Rab2A, in regulating UcPS cargo transport via TMED10 on the ERGIC. Rab1 enhances TMED10 translocator activity, promoting cargo translocation into the ERGIC, whereas Rab2A, in collaboration with KIF5B, regulates ERGIC compartmentalization, establishing a UcPS-specific compartment. This study highlights the pivotal role of ERGIC-localized Rabs in governing cargo translocation and specifying the ERGIC's function in UcPS.

3.
Chem Mater ; 36(11): 5611-5620, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38883434

RESUMEN

Although the function and stability of catalysts are known to significantly depend on their dispersion state and support interactions, the mechanism of catalyst loading has not yet been elucidated. To address this gap in knowledge, this study elucidates the mechanism of Pt loading based on a detailed investigation of the interaction between Pt species and localized polarons (Ce3+) associated with oxygen vacancies on CeO2(100) facets. Furthermore, an effective Pt loading method was proposed for achieving high catalytic activity while maintaining the stability. Enhanced dispersibility and stability of Pt were achieved by controlling the ionic interactions between dissolved Pt species and CeO2 surface charges via pH adjustment and reduction pretreatment of the CeO2 support surface. This process resulted in strong interactions between Pt and the CeO2 support. Consequently, the oxygen-carrier performance was improved for CH4 chemical looping reforming reactions. This simple interaction-based loading process enhanced the catalytic performance, allowing the efficient use of noble metals with high performance and small loading amounts.

4.
Acta Biomater ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838902

RESUMEN

Advanced hepatocellular carcinoma (HCC) is one of the most challenging cancers because of its heterogeneous and aggressive nature, precluding the use of curative treatments. Sorafenib (SOR) is the first approved molecular targeting agent against the mitogen-activated protein kinase (MAPK) pathway for the noncurative therapy of advanced HCC; yet, any clinically meaningful benefits from the treatment remain modest, and are accompanied by significant side effects. Here, we hypothesized that using a nanomedicine platform to co-deliver SOR with another molecular targeting drug, metformin (MET), could tackle these issues. A micelle self-assembled with amphiphilic polypeptide methoxy poly(ethylene glycol)-block-poly(L-phenylalanine-co-l-glutamic acid) (mPEG-b-P(LP-co-LG)) (PM) was therefore designed for combinational delivery of two molecular targeted drugs, SOR and MET, to hepatomas. Compared with free drugs, the proposed, dual drug-loaded micelle (PM/SOR+MET) enhanced the drugs' half-life in the bloodstream and drug accumulation at the tumor site, thereby inhibiting tumor growth effectively in the preclinical subcutaneous, orthotopic and patient-derived xenograft hepatoma models without causing significant systemic and organ toxicity. Collectively, these findings demonstrate an effective dual-targeting nanomedicine strategy for treating advanced HCC, which may have a translational potential for cancer therapeutics. STATEMENT OF SIGNIFICANCE: Treatment of advanced hepatocellular carcinoma (HCC) remains a formidable challenge due to its aggressive nature and the limitations inherent to current therapies. Despite advancements in molecular targeted therapies, such as Sorafenib (SOR), their modest clinical benefits coupled with significant adverse effects underscore the urgent need for more efficacious and less toxic treatment modalities. Our research presents a new nanomedicine platform that synergistically combines SOR with metformin within a specialized diblock polypeptide micelle, aiming to enhance therapeutic efficacy while reducing systemic toxicity. This innovative approach not only exhibits marked antitumor efficacy across multiple HCC models but also significantly reduces the toxicity associated with current treatments. Our dual-molecular targeting approach unveils a promising nanomedicine strategy for the molecular treatment of advanced HCC, potentially offering more effective and safer treatment alternatives with significant translational potential.

5.
Nanoscale ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829119

RESUMEN

Metal-support interaction plays a crucial role in governing the stability and activity of atomically dispersed platinum catalysts on ceria support. The migration and aggregation of platinum atoms during the catalytic reaction leads to the redistribution of active sites. In this study, by utilizing a multimodal characterization scheme, we observed the aggregation of platinum atoms at high temperatures under reverse water gas shift reaction conditions and the subsequent fragmentation of platinum clusters, forming "single atoms" upon cooling. Theoretical simulations of both effects uncovered the roles of carbon monoxide binding on perimeter Pt sites in the clusters and hydrogen coverage in the aggregation and fragmentation mechanisms. This study highlights the complex effects of adsorbate and supports interactions with metal sites in Pt/ceria catalysts that govern their structural transformations under in situ conditions.

6.
Sci Data ; 11(1): 488, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734729

RESUMEN

Domesticated herbivores are an important agricultural resource that play a critical role in global food security, particularly as they can adapt to varied environments, including marginal lands. An understanding of the molecular basis of their biology would contribute to better management and sustainable production. Thus, we conducted transcriptome sequencing of 100 to 105 tissues from two females of each of seven species of herbivore (cattle, sheep, goats, sika deer, horses, donkeys, and rabbits) including two breeds of sheep. The quality of raw and trimmed reads was assessed in terms of base quality, GC content, duplication sequence rate, overrepresented k-mers, and quality score distribution with FastQC. The high-quality filtered RNA-seq raw reads were deposited in a public database which provides approximately 54 billion high-quality paired-end sequencing reads in total, with an average mapping rate of ~93.92%. Transcriptome databases represent valuable resources that can be used to study patterns of gene expression, and pathways that are related to key biological processes, including important economic traits in herbivores.


Asunto(s)
Herbivoria , Transcriptoma , Animales , Bovinos/genética , Femenino , Conejos/genética , Bases de Datos Genéticas , Ciervos/genética , Equidae/genética , Cabras/genética , Caballos/genética , Ovinos/genética
7.
Anal Chem ; 96(19): 7353-7359, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690857

RESUMEN

Accurate detection of multiple cardiovascular biomarkers is crucial for the timely screening of acute coronary syndrome (ACS) and differential diagnosis from acute aortic syndrome (AAS). Herein, an antibody microarray-based metal-enhanced fluorescence assay (AMMEFA) has been developed to quantitatively detect 7 cardiovascular biomarkers through the formation of a sandwich immunoassay on the poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate)-decorated GNR-modified slide (GNR@P(GMA-HEMA) slide). The AMMEFA exhibits high specificity and sensitivity, the linear ranges span 5 orders of magnitude, and the limits of detection (LODs) of cardiac troponin I (cTnI), heart-type fatty acid binding protein (H-FABP), C-reactive protein (CRP), copeptin, myoglobin, D-Dimer, and N-terminal pro-brain natriuretic peptide (NT-proBNP) reach 0.07, 0.2, 65.7, 0.6, 0.2, 8.3, and 0.3 pg mL-1, respectively. To demonstrate its practicability, the AMMEFA has been applied to quantitatively analyze 7 cardiovascular biomarkers in 140 clinical plasma samples. In addition, the expression levels of cardiovascular biomarkers were analyzed by the least absolute shrinkage and selector operator (LASSO) regression, and the area under receiver operator characteristic curves (AUCs) of healthy donors (HDs), ACS patients, and AAS patients are 0.99, 0.98, and 0.97, respectively.


Asunto(s)
Biomarcadores , Humanos , Biomarcadores/sangre , Biomarcadores/análisis , Análisis por Matrices de Proteínas/métodos , Límite de Detección , Inmunoensayo/métodos , Fluorescencia
8.
Materials (Basel) ; 17(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38793324

RESUMEN

The mechanical properties and microstructure of the cemented paste backfill (CPB) in dry-wet cycle environments are particularly critical in backfill mining. In this study, coal gangue, fly ash, cement, glass fiber, and nano-SiO2 were used to prepare CPB, and dry-wet cycle tests on CPB specimens with different curing ages were conducted. The compressive, tensile, and shear strength of CPB specimens with different curing ages under different dry-wet cycles were analyzed, and the microstructural damage of the specimens was observed by scanning electron microscopy (SEM). The results show that compared with the specimens without dry-wet cycles, the uniaxial compressive strength, tensile strength, and shear strength of the specimens with a curing age of 7 d after seven dry-wet cycles were the smallest, being reduced by 40.22%, 58.25%, and 66.8%, respectively. After seven dry-wet cycles, the compressive, tensile, and shear strength of the specimens with the curing age of 28 d decreased slightly. The SEM results show that with the increasing number of dry-wet cycles, the internal structure of the specimen becomes more and more loose and fragile, and the damage degree of the structural skeleton gradually increases, leading to the poor mechanical properties of CPB specimens. The number of cracks and pores on the specimen surface is relatively limited after a curing age of 28 d, while the occurrence of internal structural damage within the specimen remains insignificant. Therefore, the dry-wet cycle has an important influence on the both mechanical properties and microstructure of CPB. This study provides a reference for the treatment of coal-based solid waste and facilitates the understanding of the mechanical properties of backfill materials under dry-wet cycling conditions.

9.
Fish Shellfish Immunol ; 149: 109546, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614412

RESUMEN

Histones and their N-terminal or C-terminal derived peptides have been studied in vertebrates and presented as potential antimicrobial agents playing important roles in the innate immune defenses. Although histones and their derived peptides had been reported as components of innate immunity in invertebrates, the knowledge about the histone derived antimicrobial peptides (HDAPs) in invertebrates are still limited. Using a peptidomic technique, a set of peptide fragments derived from the histones was identified in this study from the serum of microbes challenged Mytilus coruscus. Among the 85 identified histone-derived-peptides with high confidence, 5 HDAPs were chemically synthesized and the antimicrobial activities were verified, showing strong growth inhibition against Gram-positive bacteria, Gram-negative bacteria, and fungus. The gene expression level of the precursor histones matched by representative HDAPs were further tested using q-PCR, and the results showed a significant upregulation of the histone gene expression levels in hemocytes, gill, and mantle of the mussel after immune stress. In addition, three identified HDAPs were selected for preparation of specific antibodies, and the corresponding histones and their derived C-terminal fragments were detected by Western blotting in the blood cell and serum of immune challenged mussel, respectively, indicating the existence of HDAPs in M. coruscus. Our findings revealed the immune function of histones in Mytilus, and confirmed the existence of HDAPs in the mussel. The identified Mytilus HDAPs represent a new source of immune effector with antimicrobial function in the innate immune system, and thus provide promising candidates for the treatment of microbial infections in aquaculture and medicine.


Asunto(s)
Péptidos Antimicrobianos , Histonas , Inmunidad Innata , Mytilus , Animales , Mytilus/inmunología , Mytilus/genética , Histonas/inmunología , Histonas/genética , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/química , Inmunidad Innata/genética , Bacterias Gramnegativas/fisiología , Bacterias Gramnegativas/efectos de los fármacos
10.
Stat Sin ; 34(2): 527-546, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38655129

RESUMEN

Multi-modal data are prevalent in many scientific fields. In this study, we consider the parameter estimation and variable selection for a multi-response regression using block-missing multi-modal data. Our method allows the dimensions of both the responses and the predictors to be large, and the responses to be incomplete and correlated, a common practical problem in high-dimensional settings. Our proposed method uses two steps to make a prediction from a multi-response linear regression model with block-missing multi-modal predictors. In the first step, without imputing missing data, we use all available data to estimate the covariance matrix of the predictors and the cross-covariance matrix between the predictors and the responses. In the second step, we use these matrices and a penalized method to simultaneously estimate the precision matrix of the response vector, given the predictors, and the sparse regression parameter matrix. Lastly, we demonstrate the effectiveness of the proposed method using theoretical studies, simulated examples, and an analysis of a multi-modal imaging data set from the Alzheimer's Disease Neuroimaging Initiative.

11.
J Colloid Interface Sci ; 668: 202-212, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38677209

RESUMEN

Hard carbon as a negative electrode material for sodium-ion batteries (SIBs) has great commercial potential and has been widely studied. The sodium-ion intercalation in graphite domains and the filling of closed pores in the low voltage platform region still remain a subject of controversy. We have successfully constructed hard carbon materials with a pseudo-graphitic structure by using polymerizable p-phenylenediamine and dichloromethane as carbon sources. This was achieved by a halogenated amination reaction and oxidative polymerization. It was found that the capacity of hard carbon materials mainly originates from intercalation into graphite domains. The study found that the prepared hard carbon could store 339.33 mAh g-1 of sodium in a reversible way at a current density of 25 mA g-1, and it had an initial coulomb efficiency of 80.23%. It even maintained a reversible sodium storage capacity of 125.53 mAh g-1 at a high current density of 12.8 A g-1. Based on the analysis of hard carbon structure and electrochemical performance, it was shown that the materials conform with an "adsorption-intercalation" mechanism for sodium storage.

12.
Org Lett ; 26(15): 2918-2922, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38560790

RESUMEN

The asymmetric total syntheses of ent-stachybotrin C and its congener have been accomplished through a convergent approach in the longest linear sequence of 12 steps from commercially available materials, respectively. Noteworthy transformation of the synthesis involved a cascade Knoevenagel condensation/Hantzsch ester reduction/epoxide ring-opening/transetherification to construct the core pyran ring with two adjacent stereocenters.

13.
Foods ; 13(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611384

RESUMEN

Chrysanthemum tea, a typical health tea with the same origin as medicine and food, is famous for its unique health benefits and flavor. The taste and sensory quality of chrysanthemum (Juhua) tea are mainly determined by secondary metabolites. Therefore, the present research adopted untargeted metabolomics combined with an electronic tongue system to analyze the correlation between the metabolite profiles and taste characteristics of different varieties of chrysanthemum tea. The results of sensory evaluation showed that there were significant differences in the sensory qualities of five different varieties of chrysanthemum tea, especially bitterness and astringency. The results of principal component analysis (PCA) indicated that there were significant metabolic differences among the five chrysanthemum teas. A total of 1775 metabolites were identified by using untargeted metabolomics based on UPLC-Q-TOF/MS analysis. According to the variable importance in projection (VIP) values of the orthogonal projections to latent structures discriminant analysis (OPLS-DA), 143 VIP metabolites were found to be responsible for metabolic changes between Huangju and Jinsi Huangju tea; among them, 13 metabolites were identified as the key metabolites of the differences in sensory quality between them. Kaempferol, luteolin, genistein, and some quinic acid derivatives were correlated with the "astringency" attributes. In contrast, l-(-)-3 phenyllactic acid and L-malic acid were found to be responsible for the "bitterness" and "umami" attributes in chrysanthemum tea. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the flavonoid and flavonol biosynthesis pathways had important effects on the sensory quality of chrysanthemum tea. These findings provide the theoretical basis for understanding the characteristic metabolites that contribute to the distinctive sensory qualities of chrysanthemum tea.

14.
Molecules ; 29(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675672

RESUMEN

The deployment of Li-S batteries in the commercial sector faces obstacles due to their low electrical conductivity, slow redox reactions, quick fading of capacity, and reduced coulombic efficiency. These issues stem from the "shuttle effect" associated with lithium polysulfides (LiPSs). In this work, a haystack-like CeO2 derived from a cerium-based metal-organic framework (Ce-MOF) is obtained for the modification of a polypropylene separator. The carbon framework and CeO2 coexist in this haystack-like structure and contribute to a synergistic effect on the restriction of LiPSs shuttling. The carbon network enhances electron transfer in the conversion of LiPSs, improving the rate performance of the battery. Moreover, CeO2 enhances the redox kinetics of LiPSs, effectively reducing the "shuttle effect" in Li-S batteries. The Li-S battery with the optimized CeO2 modified separator shows an initial discharge capacity of 870.7 mAh/g at 2 C, maintaining excellent capacity over 500 cycles. This research offers insights into designing functional separators to mitigate the "shuttle effect" in Li-S batteries.

15.
Talanta ; 273: 125852, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442564

RESUMEN

Nanozymes with core@shell nanostructure are considered promising biolabeling materials for their multifunctional properties. In this work, a simple one-pot strategy has been proposed for scalable synthesis of gold@cerium dioxide core@shell nanoparticles (Au@CeO2 NPs) with strong localized surface plasmon resonance (LSPR) absorption and high peroxidase-like catalytic activity by redox reactions of Ce3+ ions and AuCl4- ions in diluted ammonia solution under room temperature. A colorimetric lateral flow immunochromatographic assay (LFIA) has been successfully fabricated for sensitive detection of heart-type fatty acid binding protein (H-FABP, an early cardiac biomarker) by using the Au@CeO2 NPs as reporters. The as-developed LFIA with Au@CeO2 NP reporter (termed as Au@CeO2-LFIA) exhibits a dynamic range of nearly two orders of magnitude, and a limit of detection (LOD) as low as 0.35 ng mL-1 H-FABP with nanozyme-triggered 3,3',5,5'-tetramethylbenzidine (TMB) colorimetric amplification. Furthermore, the practicality of Au@CeO2-LFIA has been demonstrated by profiling the concentrations of H-FABP in 156 blood samples of acute myocardial infarction (AMI) patients, and satisfactory results are obtained.


Asunto(s)
Colorimetría , Nanopartículas del Metal , Humanos , Colorimetría/métodos , Proteína 3 de Unión a Ácidos Grasos , Peroxidasa/química , Inmunoensayo/métodos , Iones , Oro/química , Nanopartículas del Metal/química
16.
BMC Gastroenterol ; 24(1): 98, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438982

RESUMEN

BACKGROUND AND AIM: The optimal management strategy for early gastric cancer (EGC) a topic of contention. This study aims to compare the prognostic outcomes of endoscopic submucosal dissection (ESD) and surgical treatment in patients diagnosed with EGC. METHODS: In thisretrospective cohort study, we analyzed data from539 patients diagnosed with EGC between January 2012 and December 2020 from two centers. We compared Clinicopathological features, procedure-related complications, recurrence rate, overall survival, and disease specific survival between the 262 patients who underwent ESD and the 277 patients who underwent surgical treatment. ESD procedures were conducted using a dual knife by experienced endoscopists, while surgical treatments included laparoscopic or open gastrectomy. Regular ollow-up examinations were conducted post-treatment. RESULTS: The two groups exhibited comparable baseline characteristics. Multivariable Cox regression analysis identified vascular invasion as a risk factor for worse recurrence-free survival (RFS), and overall survival (OS) in patients with early gastric cancer. The ESD group experienced fewer overall postoperative complications compared to the surgical treatment group. Kaplan-Meier curves demonstrated no significant differences in recurrence rate or overall survival between the two groups. CONCLUSIONS: Both ESD and surgical treatment emerged as safe and effective approaches for managing EGC. The choice of treatment should be tailored to individual patient factors. ESD can be considered an alternative treatment option for selected patients who are not suitable candidates for surgery. Further studies are warranted to determine the long-term outcomes of ESD and surgical treatment for EGC.


Asunto(s)
Resección Endoscópica de la Mucosa , Neoplasias Gástricas , Humanos , Pronóstico , Estudios de Cohortes , Resección Endoscópica de la Mucosa/efectos adversos , Estudios Retrospectivos , Neoplasias Gástricas/cirugía
17.
Int Immunopharmacol ; 130: 111762, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38428146

RESUMEN

Drug-induced liver injury (DILI) is a common and severe adverse drug reaction that can result in acute liver failure. Previously, we have shown that Lycium barbarum L. (wolfberry) ameliorated liver damage in acetaminophen (APAP)-induced DILI. Nevertheless, the mechanism needs further clarification. Herein, we utilized APAP-induced DILI mice to investigate how wolfberry impacts the gut-liver axis to mitigate liver damage. We showed that the abundance of Akkermansia muciniphila (A. muciniphila) was decreased, and intestinal microbiota was disrupted, while the expression levels of YAP1 and FXR-mediated CYP7A1 were reduced in the liver of DILI mice. Furthermore, wolfberry increased the abundance of A. muciniphila and the number of goblet cells in the intestines, while decreasing AST, ALT, and total bile acids (TBA) levels in the serum. Interestingly, A. muciniphila promoted YAP1 and FXR expression in hepatocytes, leading to the inhibition of CYP7A1 expression and a decrease in TBA content. Notably, wolfberry did not exert the beneficial effects mentioned above after the removal of intestinal bacteria by antibiotics (ATB)-containing water. Additionally, Yap1 knockout downregulated FXR expression and enhanced CYP7A1 expression in the liver of hepatocyte-specific Yap1 knockout mice. Therefore, wolfberry stimulated YAP1/FXR activation and reduced CYP7A1 expression by promoting the balance of intestinal microbiota, thereby suppressing the overproduction of bile acids.


Asunto(s)
Acetaminofén , Akkermansia , Ácidos y Sales Biliares , Enfermedad Hepática Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Lycium , Proteínas de Unión al ARN , Proteínas Señalizadoras YAP , Animales , Ratones , Acetaminofén/efectos adversos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/microbiología , Hígado , Lycium/química , Proteínas Señalizadoras YAP/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratones Noqueados
18.
J Craniofac Surg ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411176

RESUMEN

Vascular diseases, such as vascular malformations and hemangiomas, are often classified into "fast-flow" and "slow-flow" based on their internal blood velocity. Fast-flow vascular diseases of maxillofacial regions are a kind of complicated and dangerous pathological changes originating from or containing arteries, their treatment is often complex and different from disease to disease, and large amounts of intraoperative blood loss and poor operation field may cause side injury or other problems without a detailed map of the lesion. The authors use the combination of color Doppler ultrasound and three-dimensional computed tomography angiography to diagnose and classify 36 cases of maxillofacial fast-flow vascular diseases, from January 2018 to December 2022 presented in the authors' department. Three-dimensional computed tomography angiography can display the location, type, and blood supply of lesions, whereas color Doppler ultrasound has unique advantages in identifying some special lesions (such as the colorful images of orificium fistulaes and the "Yin-yang sign" of pseudoaneurysms), then projecting and marking them on the body surface, which greatly facilitate the surgical procedure. This cost-effective and noninvasive combination shows significant clinical application value.

19.
J Agric Food Chem ; 72(5): 2526-2535, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38277640

RESUMEN

To promote the growth and yield of crops, it is necessary to develop an effective silicon fertilizer. Herein, a new type of 2 nm silicon quantum dot (SiQD) was developed, and the phenotypic, biochemical, and metabolic responses of rice seedlings treated with SiQDs were investigated. The results indicated that the foliar application of SiQDs could significantly improve the growth of rice seedlings by increasing the uptake of nutrient elements and activating the antioxidative defense system. Furthermore, metabolomics revealed that the supply of SiQDs could significantly up-regulate several antioxidative metabolites (oxalic acid, maleic acid, glycine, lysine, and proline) by reprogramming the nitrogen- and carbon-related biological pathways. The findings provide a new strategy for developing an effective and promising quantum fertilizer in agriculture.


Asunto(s)
Oryza , Puntos Cuánticos , Antioxidantes/metabolismo , Silicio/farmacología , Plantones/metabolismo , Fertilizantes , Nitrógeno/metabolismo
20.
BMC Plant Biol ; 24(1): 77, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287273

RESUMEN

BACKGROUND: Rhododendron pudingense, firstly discovered in Puding county of Guizhou province in 2020, have adapted to living in rocky fissure habitat, which has important ornamental and economic values. However, the genetic diversity and population structure of this species have been rarely described, which seriously affects the collection and protection of wild germplasm resources. RESULTS: In the present study, 13 pairs of primers for polymorphic microsatellite were used to investigate the genetic diversity of 65 R. pudingense accessions from six different geographic populations. A total of 254 alleles (Na) were obtained with an average of 19.5 alleles per locus. The average values of polymorphic information content (PIC), observed heterozygosity (Ho), and expected heterozygosity (He) were 0.8826, 0.4501, and 0.8993, respectively, These results indicate that the microsatellite primers adopted demonstrate good polymorphism, and the R. pudingense exhibits a high level of genetic diversity at the species level. The average genetic differentiation coefficient (Fst) was 0.1325, suggested that moderate divergence occurred in R. pudingense populations. The average values of genetic differentiation coefficient and gene flow among populations were 0.1165 and 3.1281, respectively. The analysis of molecular variance (AMOVA) indicated that most of the population differences (88%) were attributed to within-population variation. The PCoA results are consistent with the findings of the UPGMA clustering analysis, supporting the conclusion that the six populations of R. pudingense can be clearly grouped into two separate clusters. Based on Mantel analysis, we speculate that the PD population may have migrated from WM-1 and WM-2. Therefore, it is advised to protect the natural habitat of R. pudingense in situ as much as possible, in order to maximize the preservation of its genetic diversity. CONCLUSIONS: This is the first comprehensive analysis of genetic diversity and population structure of R. pudingense in Guizhou province. The research results revealed the high genetic diversity and moderate population diferentiation in this horticulture plant. This study provide a theoretical basis for the conservation of wild resources of the R. pudingense and lay the foundation for the breeding or cultivation of this new species.


Asunto(s)
Variación Genética , Rhododendron , Rhododendron/genética , Fitomejoramiento , Polimorfismo Genético , Repeticiones de Microsatélite/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...