Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 755
Filtrar
1.
Sensors (Basel) ; 24(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39123977

RESUMEN

Soil visible and near-infrared reflectance spectroscopy is an effective tool for the rapid estimation of soil organic carbon (SOC). The development of spectroscopic technology has increased the application of spectral libraries for SOC research. However, the direct application of spectral libraries for SOC prediction remains challenging due to the high variability in soil types and soil-forming factors. This study aims to address this challenge by improving SOC prediction accuracy through spectral classification. We utilized the European Land Use and Cover Area frame Survey (LUCAS) large-scale spectral library and employed a geographically weighted principal component analysis (GWPCA) combined with a fuzzy c-means (FCM) clustering algorithm to classify the spectra. Subsequently, we used partial least squares regression (PLSR) and the Cubist model for SOC prediction. Additionally, we classified the soil data by land cover types and compared the classification prediction results with those obtained from spectral classification. The results showed that (1) the GWPCA-FCM-Cubist model yielded the best predictions, with an average accuracy of R2 = 0.83 and RPIQ = 2.95, representing improvements of 10.33% and 18.00% in R2 and RPIQ, respectively, compared to unclassified full sample modeling. (2) The accuracy of spectral classification modeling based on GWPCA-FCM was significantly superior to that of land cover type classification modeling. Specifically, there was a 7.64% and 14.22% improvement in R2 and RPIQ, respectively, under PLSR, and a 13.36% and 29.10% improvement in R2 and RPIQ, respectively, under Cubist. (3) Overall, the prediction accuracy of Cubist models was better than that of PLSR models. These findings indicate that the application of GWPCA and FCM clustering in conjunction with the Cubist modeling technique can significantly enhance the prediction accuracy of SOC from large-scale spectral libraries.

2.
Materials (Basel) ; 17(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124502

RESUMEN

The intricate composition of wastewater impedes the recycling of agricultural and industrial effluents. This study aims to investigate the potential of sisal leaf wastewater (SLW), both water-treated (WTSLW) and alkali-treated (ATSLW), as a substitute for the alkali activator (NaOH solution) in the production of slag-powder- and fly-ash-based composites, with a focus on the effects of WTSLW substitution ratios and sisal leaf soaking durations. Initially, the fresh properties were assessed including electrical conductivity and fluidity. A further analysis was conducted on the influence of both WTSLW and ATSLW on drying shrinkage, density, and mechanical strength, including flexural and compressive measures. Microstructural features were characterized using SEM and CT imaging, while XRD patterns and FTIR spectra were employed to dissect the influence of WTSLW substitution on the composite's products. The results show that incorporating 14 wt% WTSLW into the composite enhances 90-day flexural and compressive strengths by 34.8% and 13.2%, respectively, while WTSLW curtails drying shrinkage. Conversely, ATSLW increases porosity and decreases density. Organic constituents in both WTSLW and ATSLW encapsulated in the alkaline matrix fail to modify the composites' chemical composition. These outcomes underscore the potential for sustainable construction materials through the integrated recycling of plant wastewater and solid by-products.

3.
Autophagy ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113565

RESUMEN

Loss of ovarian homeostasis is associated with ovary dysfunction and female diseases; however, the underlying mechanisms responsible for the establishment of homeostasis and its function in the ovary have not been fully elucidated. Here, we showed that conditional knockout of Rab37 in oocytes impaired macroautophagy/autophagy proficiency in the ovary and interfered with follicular homeostasis and ovary development in mice. Flunarizine treatment upregulated autophagy, thus rescuing the impairment of follicular homeostasis and ovarian dysfunction in rab37 knockout mice by reprogramming of homeostasis. Notably, both the E2F1 and EGR2 transcription factors synergistically activated Rab37 transcription and promoted autophagy. Thus, RAB37-mediated autophagy ensures ovary function by maintaining ovarian homeostasis.

4.
Front Microbiol ; 15: 1429486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119142

RESUMEN

Background: Porcine deltacoronavirus (PDCoV) is a newly discovered porcine intestinal pathogenic coronavirus with a single-stranded positive-sense RNA genome and an envelope. PDCoV infects pigs of different ages and causes acute diarrhea and vomiting in newborn piglets. In severe cases, infection leads to dehydration, exhaustion, and death in sick piglets, entailing great economic losses on pig farms. The clinical symptoms of PDCoV infection are very similar to those of other porcine enteroviruses. Although it is difficult to distinguish these viral infections without testing, monitoring PDCoV is very important because it can spread in populations. The most commonly used methods for the detection of PDCoV is qPCR, which is time-consuming and require skilled personnel and equipment. Many farms cannot meet the conditions required for detection. Therefore, it is necessary to establish a faster and more convenient method for detecting PDCoV. Aims: To establish a rapid and convenient detection method for PDCoV by combining RPA (Recombinase Polymerase Isothermal Amplification) with CRISPR/Cas13a. Methods: Specific RPA primers and crRNA for PDCoV were designed, and the nucleic acids in the samples were amplified with RPA. Fluorescent CRISPR/Cas13a detection was performed. We evaluated the sensitivity and specificity of the RPA-CRISPR/Cas13a assay using qPCR as the control method. Results: CRISPR/Cas13a-assisted detection was completed within 90 min. The minimum detection limit of PDCoV was 5.7 × 101 copies/µL. A specificity analysis showed that the assay did not cross-react with three other porcine enteroviruses. Conclusion: The RPA-CRISPR/Cas13a method has the advantages of high sensitivity, strong specificity, fast response, and readily accessible results, and can be used for the detection of PDCoV.

5.
ChemSusChem ; : e202400808, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163552

RESUMEN

Developing active sites with flexibility and diversity is crucial for single atom catalysts (SACs) towards sustainable nitrogen fixation at ambient conditions. Herein, the effects of doping main group metal elements (MGM) on the stability, catalytic activity, and selectivity of vanadium-based SACs is systematically investigated based on density functional theory calculations. It is found that the catalytic activity of V site can be significantly enhanced by the synergistic effect between MGM and vanadium atoms. More importantly, a volcano curve between the catalytic activity and the adsorption free energy of NNH* can be established, in which V-Pb dimer embedded on N-coordinated graphene (VPb-NG) exhibits optimal NRR activity due to its location at the top of volcano. Further analysis of electronic structures reveals that the unoccupancy ratio (eg/t2g) of V site is dramatically increased by the strong d-p orbital hybridization between V and Pb atoms, subsequently, N2 is activated to a larger extent. These interesting findings may provide a new path for designing active sites in SACs with excellent performance.

6.
J Am Chem Soc ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164893

RESUMEN

Monosubstituted tetrazines are important bioorthogonal reactive tools due to their rapid ligation with trans-cyclooctene. However, their application is limited by the reactivity-stability paradox in biological environments. In this study, we demonstrated that steric effects are crucial in resolving this paradox through theoretical methods and developed a simple synthetic route to validate our computational findings, leading to the discovery of 1,3-azole-4-yl and 1,2-azole-3-yl monosubstituted tetrazines as superior bioorthogonal tools. These new tetrazines surpass previous tetrazines in terms of high reactivities and elevated stabilities. The most stable tetrazine exhibits a reasonable stability (71% remaining after 24 h incubation in cell culture medium) and an exceptionally high reactivity (k2 > 104 M-1 s-1 toward trans-cyclooctene). Due to its good stability in biological systems, a noncanonical amino acid containing such a tetrazine side chain was genetically encoded into proteins site-specifically via an expanded genetic code. The encoded protein can be efficiently labeled using cyclopropane-fused trans-cyclooctene dyes in living mammalian cells with an ultrafast reaction rate exceeding 107 M-1 s-1, making it one of the fastest protein labeling reactions reported to date. Additionally, we showed its superiority through in vivo reactions in living mice, achieving an efficient local anchoring of proteins. These tetrazines are expected to be optimal bioorthogonal reactive tools within living systems.

7.
Electrophoresis ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164978

RESUMEN

DNA degradation has been a thorny problem in forensic science. Shortening the amplicon length of the genetic markers improves the analysis of degraded DNA effectively. Microhaplotype (MH) has been proposed as a potential genetic marker that can be used for degraded DNA analysis. In the present study, a 146-plex MH-next-generation sequencing (NGS) system with an average Ae of 6.876 was constructed. Unlike other MH studies, a single-primer extension (SPE)-based NGS library preparation method was used to improve the detection of MH markers for degraded DNA. SPE employs a locus-specific and universal primer to amplify target fragments, reducing the necessity for complete fragment sequences. SPE might effectively mitigate the impact of degradation on amplification. However, SPE produces amplicons of varying lengths, posing challenges in allele calling for SPE-NGS data. To address this issue, this study proposed a flexible allele-calling strategy to improve amplicon detection. In addition, this study evaluated the forensic efficacy of the system using 12 low-template samples (from 1 ng to 7.8 pg), 10 mock-degraded DNA with various degrees of degradation, and 8 forensic casework samples. When the template is as low as 7.8 pg, our system can accurately detect at least 37 loci and achieves a random match probability (RMP) of 10-30 using the complete allele-calling strategy. Eighty-two loci can be detected, and RMP can reach 10-54 using a flexible allele-calling strategy. After 150 min of 98°C treatment, 36 loci can still be detected, and an RMP of 10-5 can be obtained using the flexible allele-calling strategy. Furthermore, the number of single nucleotide polymorphism detected at different DNA amounts and degradation levels suggests that the SPE method combined with a flexible allele-calling strategy is effective.

8.
Colloids Surf B Biointerfaces ; 243: 114133, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39096622

RESUMEN

Achieving a desired whitening effect through short treatments without using peroxide and without compromising the integrity of tooth enamel remains a challenge in teeth whitening. Here, we developed a highly safe and efficient photodynamic therapy (PDT) strategy based on visible light-activated bismuth oxyiodide nanoparticles for nondestructive tooth whitening. The Bi7O9I3 nanoparticles (NPs) exhibited efficient photocatalytic activity owing to their narrow band gap, effectively harnessing the broad spectrum of visible light to generate ample electrons and holes. Meanwhile, the presence of oxygen vacancies, low oxidation state Bi3+ and the high specific surface area endow Bi7O9I3 NPs with effective electron-hole separation ability and potent redox potentials. Empowered by these characteristics, Bi7O9I3 NPs effectively catalyzed O2 into radicals (O2•-), facilitating the degradation of dental surface pigment molecules for tooth whitening. Concurrently, they eradicated oral bacteria and bacterial biofilms adhering to tooth surfaces, thereby having a positive effect on the effectiveness of tooth whitening. This PDT strategy with Bi7O9I3 NPs shows broad application prospects in tooth whitening.

9.
J Am Heart Assoc ; 13(16): e033929, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39119974

RESUMEN

BACKGROUND: Few large-scale studies have evaluated the effectiveness of percutaneous coronary intervention (PCI) technological advances in the treatment of patients with unprotected left main coronary artery disease (LM-CAD). We aim to identify independent factors that affect the prognosis of PCI in patients with unprotected LM-CAD and to assess the impact of PCI technological advances on long-term clinical outcomes. METHODS AND RESULTS: A total of 4512 consecutive patients who underwent unprotected LM-CAD PCI at Fuwai Hospital from 2004 to 2016 were enrolled. Multivariable Cox proportional hazards model was used to identify which techniques can independently affect the incidence of major adverse cardiac events (MACEs; a composite of cardiac death, myocardial infarction, or target vessel revascularization). The incidence of 3-year MACEs was 9.0% (406/4512). Four new PCI techniques were identified as the independent protective factors of MACEs, including second-generation drug-eluting stents (hazard ratio [HR], 0.61 [95% CI, 0.37-0.99]), postdilatation (HR, 0.75 [95% CI, 0.59-0.94]), final kissing balloon inflation (HR, 0.78 [95% CI, 0.62-0.99]), and using intravascular ultrasound (HR, 0.78 [95% CI, 0.63-0.97]). The relative hazard of 3-year MACEs was reduced by ≈50% with use of all 4 techniques compared with no technique use (HR, 0.53 [95% CI, 0.32-0.87]). CONCLUSIONS: PCI technological advances including postdilatation, second-generation drug-eluting stent, final kissing balloon inflation, and intravascular ultrasound guidance were associated with improved clinical outcomes in patients who underwent unprotected LM-CAD PCI.


Asunto(s)
Enfermedad de la Arteria Coronaria , Stents Liberadores de Fármacos , Intervención Coronaria Percutánea , Humanos , Femenino , Masculino , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/cirugía , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/tendencias , Intervención Coronaria Percutánea/instrumentación , Intervención Coronaria Percutánea/métodos , Anciano , Persona de Mediana Edad , Resultado del Tratamiento , Factores de Riesgo , Estudios Retrospectivos , Factores de Tiempo , China/epidemiología , Medición de Riesgo
10.
J Agric Food Chem ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161099

RESUMEN

Luteolin-7-O-glucoside(L7G), a glycosylation product of luteolin, is present in a variety of foods, vegetables, and medicinal herbs and is commonly used in dietary supplements due to its health benefits. Meanwhile, luteolin-7-O-glucoside is an indicator component for the quality control of honeysuckle in the pharmacopoeia. However, its low content in plants has hindered its use in animal pharmacological studies and clinical practice. In this study, a novel 7-O-glycosyltransferase CmGT from Cucurbita moschata was cloned, which could efficiently convert luteolin into luteolin-7-O-glucoside under optimal conditions (40 °C and pH 8.5). To further improve the catalytic efficiency of CmGT, a 3D structure of CmGT was constructed, and directed evolution was performed. The mutant CmGT-S16A-T80W was obtained by using alanine scanning and iterative saturation mutagenesis. This mutant exhibited a kcat/Km value of 772 s-1·M-1, which was 3.16-fold of the wild-type enzyme CmGT. Finally, by introducing a soluble tag and UDPG synthesis pathway, the strain BXC was able to convert 1.25 g/L of luteolin into 1.91 g/L of luteolin-7-O-glucoside under optimal conditions, achieving a molar conversion rate of 96% and a space-time yield of 27.08 mg/L/h. This study provides an efficient method for the biosynthesis of luteolin-7-O-glucoside, which holds broad application prospects in the food and pharmaceutical industry.

11.
Forensic Sci Int Genet ; 72: 103090, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38968912

RESUMEN

Kinship inference has been a major issue in forensic genetics, and it remains to be solved when there is no prior hypothesis and the relationships between multiple individuals are unknown. In this study, we genotyped 91 microhaplotypes from 46 pedigree samples using massive parallel sequencing and inferred their relatedness by calculating the likelihood ratio (LR). Based on simulated and real data, different treatments were applied in the presence and absence of relatedness assumptions. The pedigree of multiple individuals was reconstructed by calculating pedigree likelihoods based on real pedigree samples. The results showed that the 91 MHs could discriminate pairs of second-degree relatives from unrelated individuals. And more highly polymorphic loci were needed to discriminate the pairs of second-degree or more distant relative from other degrees of relationship, but correct classification could be obtained by expanding the suspected relationship searched to other relationships with lower LR values. Multiple individuals with unknown relationships can be successfully reconstructed if they are closely related. Our study provides a solution for kinship inference when there are no prior assumptions, and explores the possibility of pedigree reconstruction when the relationships of multiple individuals are unknown.


Asunto(s)
Haplotipos , Linaje , Familia , Funciones de Verosimilitud , Humanos , Masculino , Femenino , Sitios Genéticos , Polimorfismo Genético
12.
Cell Biol Int ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030886

RESUMEN

Exosomes are bilayer lipid bodies and contain a variety of bioactive molecules such as proteins, lipids, and nucleic acids, and so forth. Exosomes derived from solid tumors may play critical roles in tumor development and immune evasion. However, the underlying effects of tumor-derived exosomes on immune function in modulating intercellular crosstalk within the bone marrow niche during acute myeloid leukemia (AML) development and immune evasion remain largely elusive. In this study, we aimed to explore the role of AML-exos in AML immune evasion. First, we isolated tumor-derived exosomes from AML cells (AML-exos) and revealed the presence of programmed cell death ligand-1 (PD-L1) protein in AML-exos. Next, we demonstrated that AML-exos can directly suppress the activation of natural killer (NK) cells and inhibit the cytotoxicity of NK cells, probably through activating the programmed cell death-1 (PD-1)/PD-L1 pathway. Furthermore, the inhibitory effect of AML-exos on NK cells could be alleviated by either PD-L1 inhibitor or antagonist. In summary, we demonstrated that AML-exos possess a PD-L1-dependent tumor-promoting effect which may contribute to immune tolerance in antitumor therapy, but blocking the PD-1/PD-L1 pathway may alleviate the tumor immunosuppression induced by AML-exos. Our findings in this study may offer a new immunotherapy strategy to cure AML.

13.
PLoS One ; 19(7): e0301674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39042608

RESUMEN

Lactococcus garvieae has recently been identified and listed as one of the causative agents of hyperacute hemorrhagic sepsis in fish. In intensive recirculating aquaculture systems where there are high fish densities and minimal water changes, not only will it be conducive to the growth of bacteria, but Cryptocaryon irritans as a marine protozoan fish parasite is also prone to appear. This study reports the disease status of Trachinotus ovatus in an aquaculture area in Yangjiang City, Guangdong Province. Through the diagnosis of clinical symptoms of the diseased fish, identification of specific primers, 16s rRNA sequences phylogenetic tree analysis, physiological and biochemical identification, and observation of histopathological sections, the result of the experiment is that the mass death of T. ovatus is caused by a mixture of L. garvieae and C. irritants infections. Subsequently, regression infection experiments were performed to verify Koch's law. It was confirmed that the pathogen had strong virulence to T. ovatus. This is the first time that the co-infection of L. garvieae and C. irritans to T. ovatus was found in South China. The research results of this experiment have certain enlightenment significance for the epidemic trend of fish diseases in relevant sea areas.


Asunto(s)
Enfermedades de los Peces , Lactococcus , Filogenia , Animales , Lactococcus/genética , Lactococcus/aislamiento & purificación , Lactococcus/clasificación , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/parasitología , China , Cilióforos/genética , Cilióforos/clasificación , Cilióforos/aislamiento & purificación , Acuicultura , ARN Ribosómico 16S/genética , Coinfección/microbiología , Coinfección/parasitología , Infecciones por Cilióforos/parasitología , Infecciones por Cilióforos/veterinaria , Peces/parasitología , Peces/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/veterinaria
14.
Sci Total Environ ; 947: 174615, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38997019

RESUMEN

Agricultural drainage containing a large quantity of nutrients can cause quality deterioration and algal blooming of receiving water bodies, thus needs to be effectively remediated. In this study, iron­carbon (FeC) composite-filled constructed wetlands (Fe-C-CWs) were employed to treat farmland drainage at three pollution levels, and organic solid substrates (walnut shells) and phosphate-accumulating denitrifying bacteria (Pseudomonas sp. DWP1) were supplemented to enhance the treatment performance. The results showed that the Fe-C-CWs exhibited notably superior removal efficiency for total nitrogen (TN, 52.0-58.2 %), total phosphorus (TP, 67.8-70.2 %) and chemical oxygen demand (COD, 56.7-70.4 %) than the control systems filled solely with gravel (28.5-32.5 % for TN, 33.2-40.5 % for TP and 30.2-55.0 % for COD) at all influent strengths, through driving autotrophic denitrification, Fe-based dephosphorization, and organic degradation processes. The addition of organic substrates and functional bacteria markedly enhanced pollutant removal in the Fe-C-CWs. Furthermore, use of FeC and organic substrates and denitrifier inoculation decreased CO2 and CH4 emissions from the CWs, and reduced global warming potential of the CWs at low influent strength. Pollutant removal efficiencies in the CWs were only marginally impacted by the increasing influent loads except for NO3--N, and pollutant removal mass was largely increased with the increase of influent strengths. The microbial community in the FeC composite-filled CWs exhibited distinct distribution patterns compared to the gravel-filled CWs regardless of the influent strengths, with obviously higher proportions of dominant genera Trichococcus, Geobacter and Ferritrophicum. Keystone taxa associated with pollutant removal in the Fe-C-filled CWs were identified to be Pseudomonas, Geobacter, Ferritrophicum, Denitratisoma and Sediminibacterium. The developed augmented Fe-C-filled CWs show great promises for remediating agricultural drainage with varied pollutant loads.


Asunto(s)
Carbono , Hierro , Eliminación de Residuos Líquidos , Humedales , Eliminación de Residuos Líquidos/métodos , Hierro/química , Agricultura/métodos , Biodegradación Ambiental , Fósforo , Nitrógeno , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Desnitrificación
15.
Phys Chem Chem Phys ; 26(30): 20348-20354, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39015083

RESUMEN

CsCu2I3 is a popular lead-free metal halide perovskite with good thermal and air stability. To facilitate its applications in optoelectronics, Ag doping and high pressure are employed in this work to improve the optoelectronic properties of CsCu2I3. Using first-principles calculations and experiments, the structural phase change of 10% Ag-doped CsCu2I3 is found to occur at about 4.0 GPa. This reveals the regulation of band structures by hydrostatic pressure. In addition, the high pressure not only increases the emission energy of photoluminescence of 10% Ag-doped CsCu2I3 by more than 0.2 eV, but also increases the emission intensity by multiple times. Finally, the origin of luminescence in 10% Ag-doped CsCu2I3 is attributed to the I vacancies. This work provides insight into the structure and optoelectronic properties of 10% Ag-doped CsCu2I3, and offers significant guidance for the design and manufacturing of future luminescence devices.

16.
Int Med Case Rep J ; 17: 647-650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974881

RESUMEN

Neurosyphilis is a central nervous system infection caused by Treponema pallidum that imitates various neurological and mental disorders. Therefore, patients with this disease are prone to misdiagnoses. Here, we report a case of neurosyphilis with a psychotic disorder as the main manifestation. A young girl exhibited mental and behavioural abnormalities after a heartbreak, which manifested as alternating low mood, emotional irritability, and a lack of interest in social relations, followed by memory loss. The cerebrospinal fluid protein - Treponema pallidum particle agglutination test was positive, the toluidine red unheated serum test titre was 1:4, the white blood cell count was 5 × 10^6/L, the cerebrospinal fluid protein level was 0.97 g/L, and the brain CT was abnormal. After admission, the possibility of neurosyphilis was considered and the patient received intravenous penicillin G treatment. The patient's clinical symptom ms improved. This case emphasises that doctors should maintain clinical suspicion of Treponema pallidum infection in adolescent patients with mental abnormalities.

17.
ACS Nano ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012051

RESUMEN

Water electrolysis assisted by hydrazine has emerged as a prospective energy conversion method for achieving efficient hydrogen generation. Due to the potential coincidence region (PCR) between the hydrogen evolution reaction (HER) and the electro-oxidation of hydrazine, the hydrazine oxidation reaction (HzOR) offers distinct advantages in terms of strategy amalgamation, device architecture, and the broadening of application horizons. Herein, we report a bifunctional electrocatalyst of interfacial heterogeneous Fe2P/Co2P microspheres supported on Ni foam (FeCoP/NF). Benefiting from the strong interfacial coupling effect between Fe2P and Co2P and the three-dimensional microsphere structure, FeCoP/NF exhibits outstanding bifunctional electrocatalytic performance, achieving 10 mA cm-2 with low overpotentials of 10 and 203 mV for HER and HzOR, respectively. Utilizing FeCoP/NF for both electrodes in HzOR-assisted water electrolysis results in significantly reduced potentials of 820 mV for 1 A cm-2 in contrast to the electro-oxidation of alternative chemical substrates. The presence of a potential coincidence region makes the application of self-activated seawater electrolysis realistic. The gas production behavior at different current densities in this interesting hydrogen production system is discussed, and some rules that are distinguished from conventional water electrolysis are summarized. Furthermore, a new self-powered hydrogen production system with a direct hydrazine fuel cell, rechargeable Zn-hydrazine battery, and hydrazine-assisted seawater electrolysis is proposed, emphasizing the distinct benefits of HzOR and its potential role in electrochemical energy conversion technologies powered by renewable sources.

18.
Front Vet Sci ; 11: 1428591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015106

RESUMEN

Background and aim: Transmissible gastroenteritis virus (TGEV) is a highly contagious gastrointestinal virus that causes diarrhea, vomiting, anorexia, dehydration, and weight loss in piglets. In clinical practice, it often occurs in mixed infections with other pathogens, and is therefore difficult to diagnose and prevent. It mainly harms piglets of about 2 weeks old, causing huge losses on farms. The clinical confirmation of TGEV usually requires a laboratory diagnosis, but traditional PCR and immunofluorescence assays have some limitations. Moreover, most farms in China are ill-equipped to accurately diagnose the disease. Therefore, a new detection method with high sensitivity and specificity and less dependence on instrumentation is required. Methods: We used recombinase polymerase amplification (RPA), combined with the nuclease characteristics of the activated Cas13a protein to establish a visual CRISPR-Cas13a-assisted detection method for TGEV by adding a reporter RNA with fluorescent and quenching moieties to the system. Result: We selected the optimal RPA primer and best CRISPR RNA (crRNA). The reaction system was optimized and its repeatability, specificity, and sensitivity verified. The TGEV detection system did not cross-react with other common diarrhea viruses, and its detection limit was 101 copies, which is similar with the sensitivity of qPCR. We successfully established an RPA-CRISPR-Cas13a-assisted detection method, and used this detection system to analyze 123 pig blood samples. qPCR was used as the gold standard method. The sensitivity, specificity, positive coincidence rate, and negative coincidence rate of the new method were 100, 98.93, 96.66, and 100%, respectively.

19.
Int J Mol Med ; 54(2)2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38963023

RESUMEN

Metformin has been the go­to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP­activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Metformina , Metformina/uso terapéutico , Metformina/farmacología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/prevención & control , Degeneración del Disco Intervertebral/metabolismo , Humanos , Animales , Progresión de la Enfermedad , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Autofagia/efectos de los fármacos
20.
Zhongguo Zhen Jiu ; 44(7): 807-20, 2024 Jul 12.
Artículo en Chino | MEDLINE | ID: mdl-38986595

RESUMEN

OBJECTIVE: To explore the potential mechanism of electroacupuncture (EA) for vascular dementia (VD) using tandem mass tag (TMT) quantitative proteomics technology. METHODS: Among 80 male SPF SD rats, 78 rats which met the selection criteria through the Morris water maze test were selected and randomly divided into a sham surgery group (18 rats) and a surgery group (60 rats). VD model was established by four-vessel occlusion (4-VO) method in the surgery group, and 36 rats with successful modeling were randomly assigned to a model group (18 rats) and an EA group (18 rats). Each group was further divided into three subgroups based on intervention duration, with each subgroup containing 6 rats. Seven days after model establishment, the EA group received EA intervention at left and right "Sishencong" (EX-HN 1) and bilateral "Fengchi" (GB 20), with continuous wave at a frequency of 2 Hz and current intensity of 1 mA, daily for 30 min, with subgroups receiving EA for 7, 14, or 21 d respectively. Cognitive function before and after interventions was assessed using Morris water maze. Proteomic analysis was conducted on the optimal EA subgroup and corresponding sham surgery and model subgroups, identifying differentially expressed proteins and analyzing them through bioinformatics. Differentially expressed target proteins was performed using parallel reaction monitoring (PRM) and Western blot techniques. RESULTS: Compared to the sham surgery group, the model group exhibited prolonged escape latency and reduced number of platform crossings (P<0.01); compared with model group, the EA group showed reductions in escape latency and increased platform crossings after 7, 14, and 21 days of intervention (P<0.01, P<0.05). Compared to the 7 and 14-day intervention, the rats in the EA group of 21-day intervention showed the most significant improvements in reductions of escape latency and increased platform crossings (P<0.01, P<0.05), and was selected for further proteomic, PRM analyses, and Western blot validation. Compared to the sham surgery group, the model group displayed 71 differentially expressed proteins, with 50 up-regulated and 21 down-regulated proteins; compared to the model group, the EA group had 54 differentially expressed proteins, with 30 up-regulated and 24 down-regulated proteins. Functional enrichment and clustering analyses indicated that these proteins were primarily associated with cellular processes, metabolic processes, phagocytosis recognition, immune response, and regulation of extracellular matrix, etc. Enrichment was observed in the mammalian target of rapamycin (mTOR) signaling pathway and neurotrophic factors signaling pathways, involving glycogen synthase kinase 3ß (GSK3ß) and mitogen-activated protein kinase kinase 2 (Map2k2), with PRM and Western blot findings consistent with the proteomic results. Which meant that compared with the model group, the protein expression of GSK3ß and Map2k2 of hippocampus was increased in the EA group (P<0.01, P<0.05). CONCLUSION: EA at "Sishencong" (EX-HN 1) and "Fengchi" (GB 20) could improve cognitive function in VD rats, with the mechanism involving multiple targets and pathways, potentially related to GSK3ß, Map2k2 proteins, and the mTOR and neurotrophic factor signaling pathways.


Asunto(s)
Demencia Vascular , Electroacupuntura , Proteómica , Ratas Sprague-Dawley , Animales , Demencia Vascular/terapia , Demencia Vascular/metabolismo , Masculino , Ratas , Humanos , Aprendizaje por Laberinto , Memoria , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...