RESUMEN
Biliary atresia (BA) is a severe pediatric liver disease characterized by progressive bile duct destruction and fibrosis, leading to significant liver damage and frequently necessitating liver transplantation. This study elucidates the role of LOX-1+ polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in BA pathogenesis and assesses their potential as non-invasive early diagnostic biomarkers. Using flow cytometry, immunofluorescence, and molecular profiling, we analyzed the expression and activity of these cells in peripheral blood and liver tissues from BA patients and controls. Our findings reveal a significant increase in the frequencies and function of LOX-1+PMN-MDSCs in BA patients, along with MAPK signaling pathway upregulation, indicating their involvement in disease mechanisms. Additionally, the frequencies of LOX-1+PMN-MDSC in peripheral blood significantly positively correlate with liver function parameters in BA patients, demonstrating diagnostic performance comparable to traditional serum markers. These findings suggest that LOX-1+PMN-MDSCs contribute to the immunosuppressive environment in BA and could serve as potential diagnostic targets.
RESUMEN
On November 8, 2023, the FDA approved fruquintinib, an inhibitor of vascular endothelial growth factor receptor (VEGFR)-1, -2, and -3, for the treatment of patients with metastatic colorectal cancer (mCRC) who have been previously treated with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy, an anti-VEGF therapy, and if RAS wild-type and medically appropriate, an anti-EGFR therapy. Approval was based on Study FRESCO-2, a globally conducted, double-blind, placebo-controlled randomized trial. The primary endpoint was overall survival (OS). The key secondary endpoint was progression-free survival. A total of 691 patients were randomly assigned (461 and 230 into the fruquintinib and placebo arms, respectively). Fruquintinib provided a statistically significant improvement in OS with a hazard ratio (HR) of 0.66 [95% confidence interval (CI), 0.55, 0.80; P < 0.001]. The median OS was 7.4 months (95% CI, 6.7, 8.2) in the fruquintinib arm and 4.8 months (95% CI, 4.0, 5.8) for the placebo arm. Adverse events observed were generally consistent with the known safety profile associated with the inhibition of VEGFR. The results of FRESCO-2 were supported by the FRESCO study, a double-blind, single-country, placebo-controlled, randomized trial in patients with refractory mCRC who have been previously treated with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy. In FRESCO, the OS HR was 0.65 (95% CI, 0.51, 0.83; P < 0.001). FDA concluded that the totality of the evidence from FRESCO-2 and FRESCO supported an indication for patients with mCRC with prior treatment with fluoropyrimidine, oxaliplatin-, and irinotecan-based chemotherapy, an anti-VEGF biological therapy, and if RAS wild-type and medically appropriate, an anti-EGFR therapy.
Asunto(s)
Benzofuranos , Neoplasias Colorrectales , Aprobación de Drogas , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estados Unidos , Benzofuranos/uso terapéutico , Benzofuranos/efectos adversos , Benzofuranos/administración & dosificación , Adulto , Método Doble Ciego , Quinazolinas/uso terapéutico , Metástasis de la Neoplasia , United States Food and Drug Administration , Anciano de 80 o más Años , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Resistencia a Antineoplásicos/efectos de los fármacosRESUMEN
Artificial synaptic devices are emerging as contenders for next-generation computing systems due to their combined advantages of self-adaptive learning mechanisms, high parallel computation capabilities, adjustable memory level, and energy efficiency. Optoelectronic devices are particularly notable for their responsiveness to both voltage inputs and light exposure, making them attractive for dynamic modulation. However, engineering devices with reconfigurable synaptic plasticity and multilevel memory within a singular configuration present a fundamental challenge. Here, we have established an organic transistor-based synaptic device that exhibits both volatile and nonvolatile memory characteristics, modulated through gate voltage together with light stimuli. Our device demonstrates a range of synaptic behaviors, including both short/long-term plasticity (STP and LTP) as well as STP-LTP transitions. Further, as an encoding unit, it delivers exceptional read current levels, achieving a program/erase current ratio exceeding 105, with excellent repeatability. Additionally, a prototype 4 × 4 matrix demonstrates potential in practical neuromorphic systems, showing capabilities in the perception, processing, and memory retention of image inputs.
RESUMEN
Background & Aims: A high human cytomegalovirus (HCMV) infection rate accompanied by an increased level of bile duct damage is observed in the perinatal period. The possible mechanism was investigated. Methods: A total of 1,120 HCMV-positive and 9,297 HCMV-negative children were recruited, and depending on age, their liver biochemistry profile was compared. Fetal and infant biliary epithelial cells (F-BECs and I-BECs, respectively) were infected with HCMV, and the differences in cells were revealed by proteomic analysis. Protein-protein interactions were examined by coimmunoprecipitation and mass spectrometry analyses. A murine cytomegalovirus (MCMV) infection model was established to assess treatment effects. Results: Perinatal HCMV infection significantly increased the level of bile duct damage. Neonatal BALB/c mice inoculated with MCMV showed obvious inflammation in the portal area with an abnormal bile duct structure. Proteomics analysis showed higher CD14 expression in F-BECs than in I-BECs. CD14 siRNA administration hindered HCMV infection, and CD14-knockout mice showed lower MCMV-induced bile duct damage. HCMV infection upregulated CD55 and poly ADP-ribose polymerase-1 (PARP-1) expression in F-BECs. Coimmunoprecipitation and mass spectrometry analyses revealed formation of the CD14-CD55 complex. siRNA-mediated inhibition of CD55 expression reduced sCD14-promoted HCMV replication in F-BECs. In MCMV-infected mice, anti-mouse CD14 antibody and PARP-1 inhibitor treatment diminished cell death, ameliorated bile duct damage, and reduced mortality. Conclusions: CD14 facilitates perinatal HCMV infection in BECs via CD55, and PARP-1-mediated cell death was detected in perinatal cytomegalovirus-infected BECs. These results provide new insight into the treatment of perinatal HCMV infection with bile duct damage. Impact and implications: Perinatal human cytomegalovirus (HCMV) infection is associated with bile duct damage, but the underlying mechanism is still unknown. We discovered that CD14 expression is increased in biliary epithelial cells during perinatal HCMV infection and facilitates viral entry through CD55. We also detected PARP-1-mediated cell death in perinatal HCMV-infected biliary epithelial cells. We showed that blocking CD14 or inhibiting PARP-1 reduced bile duct damage and mortality in a mouse model of murine cytomegalovirus infection. Our findings provide a new insight into therapeutic strategies for perinatal HCMV infection.
RESUMEN
Background: Liver cancer, especially hepatocellular carcinoma (HCC), remains a significant global health challenge. Traditional prognostic indicators for HCC often fall short in providing comprehensive insights for individualized treatment. The integration of genomics and radiomics offers a promising avenue for enhancing the precision of HCC diagnosis and prognosis. Methods: From the Cancer Genome Atlas (TCGA) database, we categorized mRNA of HCC patients by Forkhead Box M1 (FOXM1) expression and performed univariate and multivariate studies to pinpoint autonomous HCC risk factors. We deployed subgroup, correlation, and interaction analyses to probe FOXM1's link with clinicopathological elements. The connection between FOXM1 and immune cells was evaluated using the CIBERSORTx database. The functions of FOXM1 were investigated through analyses of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). After filtering through TCGA and the Cancer Imaging Archive (TCIA) database, we employed dual-region computed tomography (CT) radiomics technology to noninvasively predict the mRNA expression of FOXM1 in HCC tissues. Radiomic features were extracted from both tumoral and peritumoral regions, and a radiomics score (RS) was derived. The performance and robustness of the constructed models were evaluated using 10-fold cross-validation. A radiomics nomogram was developed by incorporating RS and clinical variables from the TCGA database. The models' discriminative abilities were assessed using metrics such as the area under the curve (AUC) of the receiver operating characteristic curves (ROC) and precision-recall (PR) curves. Results: Our findings emphasized the overexpression of FOXM1 as a determinant of poor prognosis in HCC and illustrated its impact on immune cell infiltration. After selecting arterial phase CT, we chose 7 whole-tumor features and 3 features covering both the tumor and its surroundings to create WT and WP models for FOXM1 prediction. The WT model showed strong predictive capabilities for FOXM1 expression by PR curve. Conversely, the WP model did not demonstrate the good predictive ability. In our study, the radiomics score (RS) was derived from whole-tumor regions on CT images. The RS was significantly associated with FOXM1 expression, with an AUC of 0.918 in the training cohort and 0.837 in the validation cohort. Furthermore, the RS was correlated with oxidative stress genes and was integrated with clinical variables to develop a nomogram, which demonstrated good calibration and discrimination in predicting 12-, 36-, and 60-month survival probabilities. Additionally, bioinformatics analysis revealed FOXM1's potential role in shaping the immune microenvironment, with its expression linked to immune cell infiltration. Conclusion: This study highlights the potential of integrating FOXM1 expression and radiomics in understanding HCC's complexity. Our approach offers a new perspective in utilizing radiomics for non-invasive tumor characterization and suggests its potential in providing insights into molecular profiles. Further research is needed to validate these findings and explore their clinical implications in HCC management.
RESUMEN
Oral extended-release (ER) dosage forms have been used to sustain blood drug levels, reduce adverse events, and improve patient compliance. We investigated potential effects of comedication on pharmacokinetic exposure of nifedipine ER products with different formulation designs and manufacturing processes. A clinical study compared a generic version of nifedipine ER tablet with pH-dependent dissolution behavior with an osmotic pump product with pH independent drug release under fasting condition. In this study, two nifedipine tablet products were tested with or without short-term omeprazole comedication in healthy subjects. Seven-day administration of omeprazole before nifedipine dosing significantly increased the gastric pH, and subsequently increased the geometric least square (LS) means of area under the concentration-time curve from time zero to the last measurable timepoint (AUC0-t ) and maximum plasma concentration (Cmax ) of nifedipine to 132.6% (90% confidence interval (CI): 120.6-145.7%) and 112.8% (90% CI: 100.8-126.3%) for pH-dependent ER tablets, and 120.6% (90% CI: 109.7-132.5%) and 122.5% (90% CI: 113.7-131.9%) for the pH-independent ER tablets, respectively. Similar extent of increase in AUC0-t and Cmax was confirmed in the subpopulations whose gastric pH was ≥ 4 or ≤ 3 in subjects with or without omeprazole administration. Given that similar increases in drug exposures were observed for both pH-dependent and pH-independent nifedipine formulations and the geometric LS mean ratios were between 112% and 133% with and without short-term omeprazole comedication, the gastric pH may have limited effects on omeprazole-induced nifedipine PK changes on the tested formulations. The inhibition of cytochrome P450 3A4 activity may play a significant role causing nifedipine exposure changes for both formulations, which would warrant additional assessment.
Asunto(s)
Nifedipino , Omeprazol , Humanos , Omeprazol/farmacocinética , Nifedipino/efectos adversos , Nifedipino/farmacocinética , Voluntarios Sanos , Disponibilidad Biológica , Comprimidos , Área Bajo la Curva , Estudios Cruzados , Administración OralRESUMEN
There is an urgent need to design and synthesize non-noble metal electrocatalysts (NNMEs) for the replacement of platinum-based electrocatalysts to enhance the sluggish oxygen reduction reaction (ORR) for Zn-air batteries and fuel cells. Herein, Fe-N,S-C materials were fabricated through two steps: first, reprecipitating hemin by adjusting the pH and, then, decorating it with melamine and cysteine in the presence of Zn2+. The resulting Fe-N,S-C-950 (Zn) was prepared after pyrolysis at 950 °C. Using this method, abundant iron-based active species with good dispersion were obtained. The fabrication of more micropores in Fe-N,S-C-950 (Zn) plays a positive role in the improvement of ORR activity. On comparison, Fe-N,S-C-950 (Zn) outperforms Fe-N,S-C-950 and Fe-N-C-950 (Zn) with respect to the ORR due to its larger specific surface area, porous structure, multiple iron-based active sites and N- and S-doped C. Fe-N,S-C-950 (Zn) achieves outstanding ORR performances, including a half-wave potential (E1/2) of 0.844 V and 0.715 V versus a reversible hydrogen electrode (RHE) in 0.1 M KOH and 0.1 M HClO4 solution, respectively. In addition, Fe-N,S-C-950 (Zn) shows an outstanding Zn-air battery performance with an open-circuit voltage (OCV) of 1.450 V and a peak power density of 121.9 mW cm-2, which is higher than that of 20 wt% Pt/C. As a result, the as-prepared electrocatalyst in this work shows the development of the Zn-assisted strategy combined with the assembly of porphyrins as NNMEs for the enhancement of the ORR in both alkaline and acidic solutions.
RESUMEN
BACKGROUND: Biliary atresia (BA) is a severe immune-related disease that is characterized by biliary obstruction and cholestasis. The etiology of BA is unclear, our aim was to explore the relationship between biliary tract inflammation and immune-related genes. METHODS: We selected 14 SNPs in 13 immune-related genes and investigated their associations with BA by using a large caseâcontrol cohort with a total of 503 cases and 1473 controls from southern China. RESULTS: SNP rs1518111 in interleukin10 (IL10) was identified as associated with BA (P = 5.79E-03; OR: 0.80; 95% CI: 0.68-0.94). The epistatic effects of the following pairwise interactions among these SNPs were associated with BA: signal transducer and activator of transcription 4 (STAT4) and chemokine (C-X-C motif) ligand 3 (CXCL3); STAT4 and damage-regulated autophagy modulator1 (DRAM1); CXCL3 and RAD51 paralog B (RAD51B); and interferon gamma (IFNG) and interleukin26 (IL26). Furthermore, we explored the potential role of IL-10 in the pathogenesis of the neonatal mouse model of BA. IL-10 effectively prevented biliary epithelial cell injury and biliary obstruction in murine BA as well as inhibit the activation of BA-related immune cells. CONCLUSIONS: In conclusion, this study provided strong evidence implicating IL10 as a susceptibility gene for BA in the southern Chinese population. IMPACT: This study provided strong evidence implicating IL10 as a susceptibility gene for BA in the southern Chinese population. This study could infer that IL-10 may play a protective role in BA mouse model. We found that four SNPs (rs7574865, rs352038, rs4622329, and rs4902562) have genetic interactions.
Asunto(s)
Atresia Biliar , Colestasis , Humanos , Animales , Ratones , Atresia Biliar/genética , Atresia Biliar/patología , Interleucina-10/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido SimpleRESUMEN
Cephalopods can change their color and patterns by activating the skin chromatophores for camouflage. However, in the man-made soft material systems, it is greatly challenging to fabricate the color-change structure in the desired patterns and shapes. Herein, we employ a multi-material microgel direct ink writing (DIW) printing method to make mechanochromic double network hydrogels in arbitrary shapes. We prepare the microparticles by grinding the freeze-dried polyelectrolyte hydrogel and immobilize the microparticles in the precursor solution to produce the printing ink. The polyelectrolyte microgels contain mechanophores as the cross-linkers. We adjust the rheological and printing properties of the microgel ink by tailoring the grinding time of freeze-dried hydrogels and microgel concentration. The multi-material DIW 3D printing technique is utilized to fabricate various 3D hydrogel structures which could change into a colorful pattern in response to applied force. The microgel printing strategy shows great potential in the fabrication of the mechanochromic device with arbitrary patterns and shapes.
RESUMEN
Background: Biliary atresia (BA) is a type of severe cholestatic childhood disease that may have a genetic component. miR-100 plays a key role in regulating cell apoptosis, proliferation, and inflammatory reactions. A single-nucleotide polymorphism in miR-100 has been proven to modulate susceptibility to various diseases. Methods: We conducted a case-control retrospective study to explore the correlation between miR-100 gene polymorphism (rs1834306 A>G) and biliary atresia susceptibility in 484 Chinese patients and 1445 matched control subjects. Results: Our results showed that rs1834306 A>G was correlated with a significantly increased risk for BA (GG vs. AA: adjusted odds ratio (OR) = 1.44, 95%confidence interval (CI) = 1.02-2.03, p = 0.041; and GG vs. AA/AG: adjusted OR = 1.39, 95%CI = 1.02-1.89, p = 0.036). Conclusions: Our results showed that the rs1834306 A>G polymorphism is associated with an increased risk for BA and contributes to BA susceptibility.
Asunto(s)
Atresia Biliar , MicroARNs , Niño , Humanos , Atresia Biliar/genética , Estudios de Casos y Controles , Pueblos del Este de Asia , Predisposición Genética a la Enfermedad/genética , MicroARNs/genética , Polimorfismo de Nucleótido Simple/genética , Estudios Retrospectivos , ChinaRESUMEN
Pachymic acid, a well-known natural lanostane-type triterpenoid, exhibits various pharmacological properties. In this study, 18 derivatives of pachymic acid were synthesized by modifying their molecular structures and evaluated for their anticancer activity against two human cancer cell lines using the CCK-8 assay. Structure-activity relationship studies according to the in vitro cytotoxicity unexpectedly found one promising derivative A17 (namely tumulosic acid, also found in Poria cocos), which had stronger anti-proliferative activity than the positive drug cisplatin against HepG2 and HSC-2 cell lines with IC50 values of 7.36 ± 0.98 and 2.50 ± 0.15 µM, respectively. Further pharmacological analysis demonstrated that A17 induced HSC-2 cell cycle arrest at the S phase, cell apoptosis, and autophagy. Western blotting confirmed the regulatory effects of A17 on cell cycle arrest-, apoptosis-, and autophagy-related proteins expression. In addition, A17 regulated the AKT and AMPK pathways in HSC-2 cells. These results demonstrated that A17 possesses great potential as an anticancer agent.
RESUMEN
On September 15, 2021, the FDA granted accelerated approval to mobocertinib (Exkivity, Takeda Pharmaceuticals USA, Inc.) for the treatment of adult patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion mutations, as detected by an FDA-approved test, whose disease has progressed on or after platinum-based chemotherapy. The approval was based on data from Study AP32788-15-101 (NCT02716116), an international, non-randomized, multi-cohort clinical trial that included patients with locally advanced or metastatic NSCLC with EGFR exon 20 insertion mutations. The overall response rate in 114 patients whose disease had progressed on or after platinum-based chemotherapy was 28% [95% confidence interval (CI), 20%-37%] with a median duration of response of 17.5 months (95% CI, 7.4-20.3). The most common adverse reactions (>20%) were diarrhea, rash, nausea, stomatitis, vomiting, decreased appetite, paronychia, fatigue, dry skin, and musculoskeletal pain. Product labeling includes a Boxed Warning for QTc prolongation and torsades de pointes. This is the first approval of an oral targeted therapy for patients with advanced EGFR exon 20 insertion mutation-positive NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adulto , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutagénesis Insercional , Inhibidores de Proteínas Quinasas/efectos adversos , Receptores ErbB/genética , Exones , MutaciónRESUMEN
ABSTRACT Introduction Volleyball is a popular sport among Chinese college students. Almost all professional sports colleges and universities have set up volleyball majors courses. To improve the basic physical fitness of volleyball players, it is necessary to strengthen their physical training. Objective Analyze the causes and types of sports injuries of volleyball players in colleges, formulating countermeasures for preventive training of volleyball players. Methods The sports injuries of 38 volleyball players at a university were investigated, the physical training factors that caused injuries were analyzed, and the need to build an injury-prevention physical training system was discussed. Injury prevention physical training was presented to effectively prevent sports injuries. Results The common sports injuries of college volleyball athletes were mainly ligament injuries, knee joint injuries, patella cartilage injuries, and lumbar spine injuries. Conclusion Preventive physical training can effectively prevent sports injuries among college volleyball athletes, reduce the incidence of injury to a controlled extent, and at the same time extend the athletes' sports trajectory as far as possible beyond their efforts to improve their ultimate sports performance. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.
RESUMO Introdução O vôlei é um esporte muito apreciado pelos estudantes universitários chineses. Quase todas as faculdades e universidades esportivas profissionais criaram cursos superiores de voleibol. Para melhorar a aptidão física de base dos jogadores de voleibol, é necessário fortalecer seu treinamento físico. Objetivo Analisar as causas e os tipos de lesões esportivas dos jogadores de vôlei nas faculdades, formulando contramedidas para o treinamento preventivo dos jogadores de vôlei. Métodos Foram investigadas as lesões esportivas de 38 jogadores de vôlei de uma universidade, analisados os fatores do treinamento físico que causaram lesões, e discutida a necessidade de construir um sistema de treinamento físico de prevenção às lesões. O treinamento físico de prevenção de lesões foi apresentado para prevenir efetivamente as lesões esportivas. Resultados As lesões esportivas comuns dos atletas de vôlei universitários foram principalmente lesões ligamentares, lesões nas articulações dos joelhos, lesões na cartilagem da rótula e lesões na coluna lombar. Conclusão O treinamento físico preventivo pode efetivamente prevenir lesões esportivas entre os atletas de voleibol universitário, reduzir a incidência de lesões a uma extensão controlada e, ao mesmo tempo, estender ao máximo a trajetória esportiva dos atletas além dos esforços para melhorar seu desempenho esportivo final. Nível de evidência II; Estudos terapêuticos - investigação dos resultados do tratamento.
RESUMEN Introducción El voleibol es un deporte popular entre los estudiantes universitarios chinos. Casi todas las facultades y universidades deportivas profesionales han creado cursos de especialización en voleibol. Para mejorar la forma física básica de los jugadores de voleibol, es necesario reforzar su entrenamiento físico. Objetivo Analizar las causas y los tipos de lesiones deportivas de los jugadores de voleibol en las universidades, formulando contramedidas para el entrenamiento preventivo de los jugadores de voleibol. Métodos Se investigaron las lesiones deportivas de 38 jugadores de voleibol de una universidad, se analizaron los factores del entrenamiento físico que causaban lesiones y se discutió la necesidad de crear un sistema de entrenamiento físico para la prevención de lesiones. Se presentó un entrenamiento físico de prevención de lesiones para prevenir eficazmente las lesiones deportivas. Resultados Las lesiones deportivas comunes de los atletas universitarios de voleibol fueron principalmente lesiones de ligamentos, lesiones de la articulación de la rodilla, lesiones del cartílago rotuliano y lesiones de la columna lumbar. Conclusión El entrenamiento físico preventivo puede evitar eficazmente las lesiones deportivas entre los atletas universitarios de voleibol, reducir de forma controlada la incidencia de lesiones y, al mismo tiempo, ampliar al máximo la trayectoria deportiva de los atletas más allá de los esfuerzos por mejorar su rendimiento deportivo final. Nivel de evidencia II; Estudios terapéuticos - investigación de los resultados del tratamiento.
RESUMEN
To date, the examples of difunctionalization of alkanes to directly incorporate two functional groups are very limited. In this study, we combined photoorgano redox catalysis and P450 biocatalysts to obtain dioxygen-functionalization of α/ß-C-H bonds of arylalkanes in a straightforward manner. The synthesis of enantiomerically chiral acyloins through a one-pot two-step photoredox/P450-catalyzed cascade reaction is described. Two P450 mutants with stereocomplementary bio-oxidation were obtained using mutagenesis technology and were able to asymmetrically hydroxylate ketones to acyloins with excellent ee values, which were further proved to be efficient on a wide range of substrates. Moreover, a photoredox synthesis of ketones in situ was developed by the direct carbonylation of aromatic methyl C-H bonds and subsequently combined with the aerobic P450-biocatalytic enantioselective hydroxylation of intermediate ketones, thus providing a green and sustainable approach towards optically pure acyloins.
Asunto(s)
Sistema Enzimático del Citocromo P-450 , Oxígeno , Estereoisomerismo , Sistema Enzimático del Citocromo P-450/química , Cetonas/químicaRESUMEN
Poria cocos is a saprophytic fungus that grows in diverse species of Pinus. Its sclerotium, called fu-ling or hoelen, has been used in various traditional Chinese medicines and health foods for thousands of years, and in several modern proprietary traditional Chinese medicinal products. It has extensive clinical indications, including sedative, diuretic, and tonic effects. Pachymic acid (PA) is the main lanostane-type triterpenoid in Poria cocos. Evidence suggests that PA has various biological properties such as cytotoxic, anti-inflammatory, antihyperglycemic, antiviral, antibacterial, sedative-hypnotic, and anti-ischemia/reperfusion activities. Although considerable advancements have been made, some fundamental and intricate issues remain unclear, such as the underlying mechanisms of PA. The present study aimed to summarize the biological properties and therapeutic potential of PA. The biosynthetic, pharmacokinetic, and metabolic pathways of PA, and its underlying mechanisms were also comprehensively summarized.
RESUMEN
Alzheimer's disease (AD) is the most common dementia affecting one in nine people over 65. Only a handful of small-molecule drugs and the anti-ß amyloid (Aß) antibody aducanumab are approved to treat AD. However, they only serve to reduce symptoms of advanced disease. Novel treatments administered early in disease progression before the accumulation of Aß and tau reaches the threshold where neuroinflammation is triggered and irreversible neuronal damage occurs are more likely to provide effective therapy. There is a growing body of evidence implying that mitochondrial dysfunction occurs at an early stage of AD pathology. The mitochondrial enzyme amyloid-binding alcohol dehydrogenase (ABAD) binds to Aß potentiating toxicity. Moreover, ABAD has been shown to be overexpressed in the same areas of the brain most affected by AD. Inhibiting the Aß-ABAD protein-protein interaction without adversely affecting normal enzyme turnover is hypothesized to be a potential treatment strategy for AD. Herein, we conduct structure-activity relationship studies across a series of functionalized allopurinol derivatives to determine their ability to inhibit Aß-mediated reduction of estradiol production from ABAD. The lead compound resulting from these studies possesses potent activity with no toxicity up to 100 µM, and demonstrates an ability to rescue defective mitochondrial metabolism in human SH-SY5Y cells and rescue both defective mitochondrial metabolism and morphology ex vivo in primary 5XFAD AD mouse model neurons.
Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Neuroblastoma , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/uso terapéutico , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/farmacología , Alcohol Deshidrogenasa/uso terapéutico , Alopurinol/metabolismo , Alopurinol/farmacología , Alopurinol/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Animales , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Neuroblastoma/metabolismoRESUMEN
Herein, we present the US Food and Drug Administration (FDA) Office of Research and Standards' current thinking, challenges, and opportunities for comparative clinical endpoint bioequivalence (BE) studies of orally inhaled drug products (OIDPs). Given the product-associated complexities of OIDPs, the FDA currently uses an aggregate weight-of-evidence approach to demonstrate that a generic OIDP is bioequivalent to its reference listed drug. The approach utilizes comparative clinical endpoint BE or pharmacodynamic BE studies, pharmacokinetic BE studies, and in vitro BE studies to demonstrate equivalence, in addition to formulation sameness and device similarity. For the comparative clinical endpoint BE studies, metrics based on forced expiratory volume in the first second (FEV1 ) are often the recommended clinical endpoints. However, the use of FEV1 can pose a challenge due to its large variability and a relatively flat dose-response relationship for most OIDPs. The utility of applying dose-scale analysis was also investigated by the FDA but often not recommended, due to either flat dose-response relationships or insufficient clinical study data. As a potential way to reduce sample size, we found adapting covariate analysis only explained a limited portion of the variation based on further investigation. The FDA continues to develop alternative methods to make BE assessment of OIDPs more cost- and time-efficient. Prospective generic drug applicants and academia are encouraged to participate in this effort by proposing new approaches in pre-abbreviated new drug application meeting requests and collaborating in the form of grants and contracts under the Generic Drug User Fee Amendments (GDUFA) Regulatory Science and Research Program.
Asunto(s)
Medicamentos Genéricos , Humanos , Estados Unidos , Equivalencia Terapéutica , Medicamentos Genéricos/farmacocinética , Volumen Espiratorio Forzado , Preparaciones Farmacéuticas , United States Food and Drug AdministrationRESUMEN
Indirubin is the crucial ingredient of Danggui Longhui Wan and Qing-Dai, traditional Chinese medicine herbal formulas used for the therapy of chronic myelocytic leukemia in China for hundreds of years. Although the monomeric indirubin has been used in China for the treatment human chronic myelocytic leukemia. However, due to low water solubility, poor pharmacokinetic properties and low therapeutic effects are the major obstacle, and had significantly limited its clinical application. Consequently, the attractive anticancer profile of indirubin has enthused numerous researchers to discover novel indirubin derivatives with improved pharmacodynamic activity as well as good pharmacokinetic property. In this paper, we comprehensively review the recent progress of anticancer potential of indirubins, structural modification and structure-activity relationship, which may provide useful direction for the further development of novel indirubins with improved pharmacological profiles for the treatment of various types of cancer.
Asunto(s)
Antineoplásicos/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Medicamentos Herbarios Chinos/química , Humanos , Indoles/química , Indoles/farmacología , Indoles/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Oximas/química , Oximas/uso terapéutico , Relación Estructura-ActividadRESUMEN
Biliary atresia (BA) is the most common cause of endstage liver disease in infants with poor prognosis and high mortality. The etiology of BA is still unknown, but the genetic factors have been considered as an important player in BA. We investigated the association of two cis-regulated variants in CD14 (rs2569190) and NOTCH2 (rs835576) with BA susceptibility, using the largest case-control cohort, totaling 506 BA patients and 1,473 healthy controls in a Southern Chinese population. Significant epistatic interaction between the two variants in our samples was observed (p = 8.1E-03; OR = 2.78; 95% CI: 1.32-5.88). The expression of CD14 and NOTCH2 in the BA group was consistently lower than that in the control (CC) group (0.31 ± 0.02 versus 1.00 ± 0.14; p < 0.001), which might be related to the genetic susceptibility of the genes awaiting further validation.
RESUMEN
Biliary atresia (BA) is a severe type of cholangitis with high mortality in children of which the etiology is still not fully understood. Viral infections may be one possible cause. The typical animal model used for studying BA is established by inoculating a neonatal mouse with a rhesus rotavirus. Silver nanoparticles have been shown to exert antibacterial and antiviral effects; their function in the BA mouse model is evaluated in this study. Currently, in BA animal experiments, the methods used to improve the symptoms of BA mice are generally symptomatic treatments given via food or other drugs. The aim of this study is to demonstrate a new method for ameliorating BA syndrome in mice by the intraperitoneal injection of silver nanoparticles and to provide detailed methods for preparing the silver nanoparticle gel formulation. This method is simple and widely applicable and can be used to research the mechanism of BA, as well as in clinical treatments. Based on the BA mouse model, when the mice exhibit jaundice, the prepared silver nanoparticle gel is injected intraperitoneally to the surface of the lower liver. The survival status is observed, and biochemical indicators and liver histopathology are examined. This method allows a more intuitive understanding of both the establishment of the BA model and novel BA treatments.