Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(23): 64058-64066, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37060410

RESUMEN

Drinking water safety is threatened by numerous toxic organic pollutants difficult to chemically monitor. This study aimed to determine the toxicological profiles of organic extracts (OEs) of water samples from source to tap in two drinking water supply systems in a metropolitan city, Central China, during different hydrological periods. Mortality, DNA damage, growth, and development of Caenorhabditis elegans were evaluated following exposure to OEs. The median lethal doses of OEs of drinking water samples (n = 48) ranged from 266 REF (relative enrichment factor) to > 1563 REF. When tested at a dose of 100 REF, 56.25% (27/48) of OEs induced genotoxicity, 4.17% (2/48) inhibited the growth, and 45.83% (22/48) decreased the offspring number in C. elegans. No clear temporal-spatial variation patterns of the OEs toxicity indicators were observed. The correlations among the toxicity indicators were generally poor. The observed toxicities were not closely related to the level of dissolved organic carbon in drinking water. These findings support using multiple endpoint bioassays, such as C. elegans-based approaches, as complementary tools to conventional chemical analysis for drinking water quality monitoring.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Animales , Agua Potable/análisis , Monitoreo del Ambiente , Caenorhabditis elegans , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua , China
2.
Chemosphere ; 288(Pt 2): 132541, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34648782

RESUMEN

The spatiotemporal presence of overall disinfection by-products (DBPs) in two full-scale drinking water supply systems (DWSSs) were investigated using quantification of total organic halogen (TOX). The relationships of TOX with water quality parameters (especially the most regulated DBPs, trihalomethanes (THMs)) were also evaluated. The TOX levels ranged between 2.6 and 70.3 µg Cl/L and between 46.6 and 205.9 µg Cl/L in raw water and distribution water, respectively. The TOX concentration in water increased by an average of nine times after water treatment and varied slightly during distribution, suggesting that TOX in drinking water was mainly formed during chlorination disinfection rather than distribution. No clear seasonality in TOX level was observed. Positive correlations were found between raw water dissolved organic carbon (DOC) with an increase in TOX in treated water and between DOC level with TOX content in distributed water, emphasizing a key role of organics in TOX formation. Chloroform (TCM) was the dominant THM, followed by bromodichloromethane (BDCM) in the drinking water, and the levels of the other two measured THMs (dibromochloromethane and bromoform) were negligible. THM2 (sum of TCM and BDCM) made up average of 18% of the TOX, and was weakly correlated with TOX content (rs = 0.321; P < 0.05), implying that THM is not a suitable surrogate measure for TOX in drinking water. This study provides basic data on the occurrence and variation of TOX within conventional DWSSs and highlights the importance of using TOX measurements to obtain more accurate information about DBP occurrence, for exposure assessment and regulatory determination.


Asunto(s)
Agua Potable , Materia Orgánica Disuelta , Halógenos , Trihalometanos
3.
ACS Biomater Sci Eng ; 7(5): 1817-1826, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33966375

RESUMEN

Pseudomonas aeruginosa (PA) has emerged as a pressing challenge to pulmonary infection and lung damage. The LL37 peptide is an efficient antimicrobial agent against PA strains, but its application is limited because of fast clearance in vivo, biosafety concerns, and low bioavailability. Thus, an albumin-based nanodrug delivery system with reduction sensitivity was developed by forming intermolecular disulfide bonds to increase in vivo LL37 performance against PA. Cationic LL37 can be efficiently encapsulated via electrostatic interactions to exert improved antimicrobial effects. The LL37 peptide exhibits greater than 48 h of sustained released from LL37 peptide nanoparticles (LL37 PNP), and prolonged antimicrobial effects were noted as the incubation time increased. Levels of inflammatory cytokines secreted by peritoneal macrophages, including TNF-α and IL-6, were reduced significantly after LL37 PNP treatment following PA stimulation, indicating that LL37 PNP inhibits PA growth and exerts anti-inflammatory effects in vitro. In a murine model of acute PA lung infection, LL37 PNP significantly reduced TNF-α and IL-1ß expression and alleviated lung damage. The accelerated clearance of PA indicates that LL37 PNP could improve PA lung infection and the subsequent inflammation response more efficiently compared with free LL37 peptide. In conclusion, this excellent biocompatible LL37 delivery strategy may serve as an alternative approach for the application of new types of clinical treatment in future.


Asunto(s)
Nanopartículas , Pseudomonas aeruginosa , Albúminas , Animales , Péptidos Catiónicos Antimicrobianos , Preparaciones de Acción Retardada , Pulmón , Ratones
4.
Lancet Infect Dis ; 21(5): 617-628, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33476567

RESUMEN

BACKGROUND: Wuhan was the first epicentre of COVID-19 in the world, accounting for 80% of cases in China during the first wave. We aimed to assess household transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and risk factors associated with infectivity and susceptibility to infection in Wuhan. METHODS: This retrospective cohort study included the households of all laboratory-confirmed or clinically confirmed COVID-19 cases and laboratory-confirmed asymptomatic SARS-CoV-2 infections identified by the Wuhan Center for Disease Control and Prevention between Dec 2, 2019, and April 18, 2020. We defined households as groups of family members and close relatives who did not necessarily live at the same address and considered households that shared common contacts as epidemiologically linked. We used a statistical transmission model to estimate household secondary attack rates and to quantify risk factors associated with infectivity and susceptibility to infection, accounting for individual-level exposure history. We assessed how intervention policies affected the household reproductive number, defined as the mean number of household contacts a case can infect. FINDINGS: 27 101 households with 29 578 primary cases and 57 581 household contacts were identified. The secondary attack rate estimated with the transmission model was 15·6% (95% CI 15·2-16·0), assuming a mean incubation period of 5 days and a maximum infectious period of 22 days. Individuals aged 60 years or older were at a higher risk of infection with SARS-CoV-2 than all other age groups. Infants aged 0-1 years were significantly more likely to be infected than children aged 2-5 years (odds ratio [OR] 2·20, 95% CI 1·40-3·44) and children aged 6-12 years (1·53, 1·01-2·34). Given the same exposure time, children and adolescents younger than 20 years of age were more likely to infect others than were adults aged 60 years or older (1·58, 1·28-1·95). Asymptomatic individuals were much less likely to infect others than were symptomatic cases (0·21, 0·14-0·31). Symptomatic cases were more likely to infect others before symptom onset than after (1·42, 1·30-1·55). After mass isolation of cases, quarantine of household contacts, and restriction of movement policies were implemented, household reproductive numbers declined by 52% among primary cases (from 0·25 [95% CI 0·24-0·26] to 0·12 [0·10-0·13]) and by 63% among secondary cases (from 0·17 [0·16-0·18] to 0·063 [0·057-0·070]). INTERPRETATION: Within households, children and adolescents were less susceptible to SARS-CoV-2 infection but were more infectious than older individuals. Presymptomatic cases were more infectious and individuals with asymptomatic infection less infectious than symptomatic cases. These findings have implications for devising interventions for blocking household transmission of SARS-CoV-2, such as timely vaccination of eligible children once resources become available. FUNDING: National Natural Science Foundation of China, Fundamental Research Funds for the Central Universities, US National Institutes of Health, and US National Science Foundation.


Asunto(s)
COVID-19/transmisión , SARS-CoV-2 , Adolescente , Adulto , Factores de Edad , Anciano , COVID-19/etiología , Niño , Preescolar , China/epidemiología , Susceptibilidad a Enfermedades , Composición Familiar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Adulto Joven
5.
Pharm Dev Technol ; 22(4): 511-520, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26763663

RESUMEN

In this work, imidazolium ionic liquids (imidazolium ILs) were employed as the novel chemical permeation enhancers (CPEs) and their performances and mechanisms of action were deeply investigated. Testosterone was used as a model drug to investigate the transdermal delivery enhancement of twenty imdidazolium ILs. The results suggested that the promotion activity connected to the structure and composition of the ILs. The quantitative structure-activity relationship (QSAR) model revealed a good linearity between the electronic properties of ILs and their enhancements. Furthermore, the transepidermal water loss (TEWL) and scanning laser confocal microscope (CLSM) examinations showed the strong improvement of ILs on skin barrier permeability, which were well correlated with the drug penetration profiles. The total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscope (AFM) evaluations of skins indicated that the ILs can disrupt the regular and compact arrangements of the corneocytes, change the surface properties of stratum corneum, and make the skin structure more permeable. Our work demonstrated the significant skin permeation promotion profiles of the imidazolium ILs, which are of great potential in transdermal drug delivery systems.


Asunto(s)
Andrógenos/administración & dosificación , Imidazoles/química , Líquidos Iónicos/química , Vehículos Farmacéuticos/química , Absorción Cutánea , Testosterona/administración & dosificación , Administración Cutánea , Andrógenos/farmacocinética , Animales , Masculino , Ratones , Permeabilidad , Piel/metabolismo , Piel/ultraestructura , Testosterona/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...