Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38790322

RESUMEN

Detection and segmentation of brain metastases (BMs) play a pivotal role in diagnosis, treatment planning, and follow-up evaluations for effective BM management. Given the rising prevalence of BM cases and its predominantly multiple onsets, automated segmentation is becoming necessary in stereotactic radiosurgery. It not only alleviates the clinician's manual workload and improves clinical workflow efficiency but also ensures treatment safety, ultimately improving patient care. Recent strides in machine learning, particularly in deep learning (DL), have revolutionized medical image segmentation, achieving state-of-the-art results. This review aims to analyze auto-segmentation strategies, characterize the utilized data, and assess the performance of cutting-edge BM segmentation methodologies. Additionally, we delve into the challenges confronting BM segmentation and share insights gleaned from our algorithmic and clinical implementation experiences.

2.
Front Oncol ; 14: 1378449, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660134

RESUMEN

Purpose: Create a comprehensive automated solution for pediatric and adult VMAT-CSI including contouring, planning, and plan check to reduce planning time and improve plan quality. Methods: Seventy-seven previously treated CSI patients (age, 2-67 years) were used for creation of an auto-contouring model to segment 25 organs at risk (OARs). The auto-contoured OARs were evaluated using the Dice Similarity Coefficient (DSC), 95% Hausdorff Distance (HD95), and a qualitative ranking by one physician and one physicist (scale: 1-acceptable, 2-minor edits, 3-major edits). The auto-planning script was developed using the Varian Eclipse Scripting API and tested with 20 patients previously treated with either low-dose VMAT-CSI (12 Gy) or high-dose VMAT-CSI (36 Gy + 18 Gy boost). Clinically relevant metrics, planning time, and blinded physician review were used to evaluate significance of differences between the auto and manual plans. Finally, the plan preparation for treatment and plan check processes were automated to improve efficiency and safety of VMAT-CSI. Results: The auto-contours achieved an average DSC of 0.71 ± 0.15, HD95 of 4.81 ± 4.68, and reviewers' ranking of 1.22 ± 0.39, indicating close to "acceptable-as-is" contours. Compared to the manual CSI plans, the auto-plans for both dose regimens achieved statistically significant reductions in body V50% and Dmean for parotids, submandibular, and thyroid glands. The variance in the dosimetric parameters decreased for the auto-plans as compared to the manual plans indicating better plan consistency. From the blinded review, the auto-plans were marked as equivalent or superior to the manual-plans 88.3% of the time. The required time for the auto-contouring and planning was consistently between 1-2 hours compared to an estimated 5-6 hours for manual contouring and planning. Conclusions: Reductions in contouring and planning time without sacrificing plan quality were obtained using the developed auto-planning process. The auto-planning scripts and documentation will be made freely available to other institutions and clinics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...