RESUMEN
PURPOSE: This study aims to explore the incidence and clinical features of MYD88 and CXCR4 mutations in patients with Waldenström macroglobulinemia (WM) and determine the optimal method for routine clinical practice. Additionally, we seek to evaluate the prognostic significance of these features across various therapeutic backgrounds [cytotoxic group, the Rituximab/Bortezomib-based group, and the Bruton's tyrosine kinase inhibitor (BTKi) group]. EXPERIMENTAL DESIGN: 385 symptomatic WM patients were analyzed for MYD88 and CXCR4 mutations using Sanger sequencing, next-generation sequencing (NGS), allele-specific quantitative polymerase chain reaction (AS-PCR), and/or droplet digital PCR (ddPCR). RESULTS: The overall MYD88 mutation rate was 87.8%, relatively lower than that in Western cohort. Both AS-PCR and ddPCR demonstrated high sensitivity in unsorted samples, detecting 98.5% and 97.7% of mutations, respectively, including those with low tumor burdens. The total CXCR4 mutation rate was 30.9%, with NGS exhibiting the highest sensitivity of 78.0%. CXCR4 mutation was significantly linked to shorter OS only within the BTKi treatment group. The multivariate analysis indicated that MYD88 and CXCR4 mutations were not independent prognostic factors in the non-BTKi group when considering IPSSWM clinical staging. However, in the BTKi treatment group, these mutations emerged as independent adverse prognostic factors, overshadowing the prognostic significance of IPSSWM classification (MYD88: HR=0.229, P=0.030; CXCR4: HR=3.349, P=0.012). CONCLUSIONS: Testing for MYD88 mutations using AS-PCR or ddPCR in unsorted samples is viable for routine clinical practice. Under BTKi treatment, MYD88 and CXCR4 mutations hold greater prognostic importance than IPSSWM staging in WM.
RESUMEN
The phase 3 COMMODORE trial evaluated gilteritinib versus salvage chemotherapy (SC) in a predominantly Asian relapsed/refractory (R/R) FLT3-mutated (FLT3mut+) acute myeloid leukemia (AML) patient population. The primary endpoint was overall survival (OS); secondary endpoints included event-free survival (EFS) and complete remission (CR) rate. As of June 30, 2020 (interim analysis: 32.2 months after study initiation), 234 patients were randomized (gilteritinib, n = 116; SC, n = 118). Median OS was significantly longer with gilteritinib versus SC (9.6 vs. 5.0 months; HR 0.566 [95% CI: 0.392, 0.818]; p = 0.00211) with a median follow-up of 10.3 months. Median EFS was also significantly longer with gilteritinib (2.8 vs. 0.6 months; HR 0.551 [95% CI: 0.395, 0.769]; p = 0.00004). CR rates with gilteritinib and SC were 16.4% and 10.2%, respectively; composite CR rates were 50.0% and 20.3%, respectively. Exposure-adjusted grade ≥3 adverse event (AE) rates were lower with gilteritinib (58.38 events/patient-year [E/PY]) versus SC (168.30 E/PY). Common AEs with gilteritinib were anemia (77.9%) and thrombocytopenia (45.1%). Gilteritinib plasma concentration peaked ~4 h postdose; ~3-fold accumulation occurred with multiple dosing. The COMMODORE trial demonstrated that gilteritinib significantly improved OS and EFS in predominantly Asian patients, validating the outcomes of gilteritinib from the ADMIRAL trial in R/R FLT3mut+ AML.
RESUMEN
Besides chemotherapy and hematopoietic stem cell transplantation (HSCT), autologous T cells can also serve as a new treatment approach for AML patients. However, the features of tumor-reactive T cells and their distinctive markers still lack full description. To evaluate the characteristics of tumor-reactive T cells, we collected bone marrow (BM) T cells from newly diagnosed AML patients with RUNX1::RUNX1T1 as examples for paired single-cell RNA sequencing and single-cell V(D)J sequencing. Based on the STARTRAC-like algorithm, we defined bystander T cells and tumor-reactive T cells. Compared with bystander T cells, tumor-reactive T cells presented as senescent-like cytotoxic terminally differentiated T cells (Temra) with upregulated NK-related markers. Additionally, we found ADGRG1 could serve as the specific marker of CD8+ T tumor-reactive T cell and validated it through the Runx1Runx1t1/+; Mx1-Cre mouse model. In chimeric antigen receptor (CAR)-T and target cell system, ADGRG1 was selectively upregulated upon antigen-TCR encounter. Moreover, ADGRG1+CD8+ T cells released a higher level of IFN-γ and showed higher cell-killing ability when exposed to matched AML blasts. Together, our findings depict the single-cell profile of tumor-reactive T cells in AML BM and propose that ADGRG1 can act as an indicator of T cell tumor reactivity in AML, which may be further harnessed for adoptive cell therapy and tumor-reactive TCR enrichment.
RESUMEN
The superiority and tolerability of daratumumab plus bortezomib/melphalan/prednisone (D-VMP) versus bortezomib/melphalan/prednisone (VMP) in transplant-ineligible patients with newly diagnosed multiple myeloma (NDMM) was previously described in the global phase 3 ALCYONE study. The primary analysis of the phase 3 OCTANS study further demonstrated the superiority and tolerability of D-VMP (n = 144) versus VMP (n = 71) in transplant-ineligible Asian patients with NDMM. The current analysis describes the final efficacy and safety outcomes for D-VMP versus VMP in OCTANS, with a follow-up of > 3 years. D-VMP demonstrated a benefit versus VMP with regard to the rate of very good partial response or better (80.1% vs. 47.3%), median progression-free survival (38.7 vs. 19.2 months), median time to next treatment (46.8 vs. 20.6 months), rate of complete response or better (46.6% vs. 18.9%), median duration of response (41.3 vs. 18.5 months), achievement of minimal residual disease (MRD) negativity (40.4% vs. 10.8%), and sustained MRD negativity for ≥ 12 months (24.7% vs. 1.4%) and ≥ 18 months (15.1% vs. 1.4%). Median progression-free survival was longer among patients who achieved MRD negativity and sustained MRD negativity. The progression-free survival benefit observed with D-VMP was preserved across most clinically relevant subgroups, including patients with high-risk cytogenetics. No new safety concerns were identified with extended follow-up. This final analysis of OCTANS continues to demonstrate a clinical benefit for D-VMP versus VMP in transplant-ineligible Asian patients with NDMM, consistent with the global ALCYONE study, and supports the use of daratumumab combinations in this population. Trial registration: ClinicalTrials.gov Identifier NCT03217812 submitted July 13, 2017.
RESUMEN
Metabolism plays a key role in the maintenance of normal hematopoietic stem cells (HSCs) and in the development of leukemia. A better understanding of the metabolic characteristics and dependencies of pre-leukemic cells could help identify potential therapeutic targets to prevent leukemic transformation. As AML1-ETO, one of the most frequent fusion proteins in acute myeloid leukemia that is encoded by a RUNX1::RUNX1T1 fusion gene, is capable of generating pre-leukemic clones, here we used a conditional Runx1::Runx1t1 knock-in mouse model to evaluate pre-leukemic cell metabolism. AML1-ETO expression resulted in impaired hematopoietic reconstitution and increased self-renewal ability. Oxidative phosphorylation and glycolysis decreased significantly in these pre-leukemic cells accompanied by increased HSC quiescence and reduced cell cycling. Furthermore, HSCs expressing AML1-ETO exhibited an increased requirement for fatty acids through metabolic flux. Dietary lipid deprivation or loss of the fatty acid transporter FATP3 by targeted deletion using CRISPR/Cas9 partially restored differentiation. These findings reveal the unique metabolic profile of pre-leukemic cells and propose FATP3 as a potential target for disrupting leukemogenesis.
Asunto(s)
Cromosomas Humanos Par 21 , Cromosomas Humanos Par 8 , Leucemia Mieloide Aguda , Translocación Genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/mortalidad , Cromosomas Humanos Par 8/genética , Cromosomas Humanos Par 21/genética , Pronóstico , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adolescente , Anciano , Adulto Joven , Perfilación de la Expresión GénicaRESUMEN
The European LeukemiaNet (ELN) genetic risk classifications were developed based on data from younger adults receiving intensive chemotherapy. Emerging analyses from patients receiving less-intensive therapies prompted a proposal for an ELN genetic risk classification specifically for this patient population.
RESUMEN
This study conducted dynamic triaxial tests on a typical poured asphalt concrete material of core walls in Xinjiang, exploring the dynamic characteristics of poured asphalt concrete under various confining pressures, principal stress ratios, and vibration frequencies. On this basis, the dynamic constitutive relationship of poured asphalt concrete was investigated using the Hardin-Drnevich model. The results indicate that under different confining pressures, principal stress ratios, and vibration frequencies, the variation patterns of the backbone lines of dynamic stress-strain of poured asphalt concrete are basically identical, consistent with a hyperbolic curve. The confining pressure and principal stress ratio significantly affect the backbone line of dynamic stress-strain. By comparison, frequency has a minimal effect. The changing trends of dynamic elasticity modulus and damping ratio of poured asphalt concrete under various factors are almost the same. When the material has high dynamic stress and strain, the hysteresis loop is large. When the curve of the damping ratio becomes flat, the asymptotic constant can be used as the maximum damping ratio. The relationship between the reciprocal of the dynamic elasticity modulus and the dynamic strain of poured asphalt concrete exhibits a linear distribution. Under different ratios of confining pressure to principal stress, there are large discrepancies between the calculated values from the formula and the experimental fitting values of the maximum dynamic elasticity modulus, and the maximum relative errors reach 16.65% and 18.15%, respectively. Therefore, the expression for the maximum dynamic elasticity modulus was modified, and the calculated values using the modified formula were compared with the experimental fitting values. The relative errors are significantly reduced, and the maximum relative errors are 3.02% and 2.04%, respectively, in good agreement with the fitting values of the experimental data. The findings of this article render a theoretical basis and reference for the promotion and application of poured asphalt concrete.
RESUMEN
Experimental evidence, both in vitro and in vivo, has indicated cardioprotective effects of extracellular vesicles (EVs) derived from various cell types, including induced pluripotent stem cell-derived cardiomyocytes. The biological effects of EV secretion, particularly in the context of ischemia and cardiac electrophysiology, remain to be fully explored. Therefore, the goal of this study was to unveil the effects of exosome (EXO)-mediated cell-cell signaling during hypoxia by employing a simulated preconditioning approach on human-induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CMs). Electrophysiological activity of hIPSC-CMs was measured using a multielectrode array (MEA) system. A total of 16 h of hypoxic stress drastically increased the beat period. Moreover, hIPSC-CMs preconditioned with EXOs displayed significantly longer beat periods compared with non-treated cells after 16 h of hypoxia (+15.7%, p < 0.05). Furthermore, preconditioning with hypoxic EXOs resulted in faster excitation-contraction (EC) coupling compared with non-treated hIPSC-CMs after 16 h of hypoxia (-25.3%, p < 0.05). Additionally, microRNA (miR) sequencing and gene target prediction analysis of the non-treated and pre-conditioned hIPSC-CMs identified 10 differentially regulated miRs and 44 gene targets. These results shed light on the intricate involvement of miRs, emphasizing gene targets associated with cell survival, contraction, apoptosis, reactive oxygen species (ROS) regulation, and ion channel modulation. Overall, this study demonstrates that EXOs secreted by hIPSC-CM during hypoxia beneficially alter electrophysiological properties in recipient cells exposed to hypoxic stress, which could play a crucial role in the development of targeted interventions to improve outcomes in ischemic heart conditions.
Asunto(s)
Exosomas , Células Madre Pluripotentes Inducidas , MicroARNs , Miocitos Cardíacos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/metabolismo , Exosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hipoxia de la Célula , Regulación de la Expresión Génica , Fenómenos Electrofisiológicos , Células CultivadasRESUMEN
INTRODUCTION: New diagnostic methods and antifungal strategies may improve prognosis of mucormycosis. We describe the diagnostic value of metagenomic nextâgeneration sequencing (mNGS) and identify the prognostic factors of mucormycosis. METHODS: We conducted a retrospective study of hematologic patients suffered from mucormycosis and treated with monotherapy [amphotericin B (AmB) or posaconazole] or combination therapy (AmB and posaconazole). The primary outcome was 84-day all-cause mortality after diagnosis. RESULTS: Ninety-five patients were included, with "proven" (n = 27), "probable" (n = 16) mucormycosis confirmed by traditional diagnostic methods, and "possible" (n = 52) mucormycosis with positive mNGS results. The mortality rate at 84 days was 44.2%. Possible + mNGS patients and probable patients had similar diagnosis processes, overall survival rates (44.2% vs 50.0%, p = 0.685) and overall response rates to effective drugs (44.0% vs 37.5%, p = 0.647). Furthermore, the median diagnostic time was shorter in possible + mNGS patients than proven and probable patients (14 vs 26 days, p < 0.001). Combination therapy was associated with better survival compared to monotherapy at six weeks after treatment (78.8% vs 53.1%, p = 0.0075). Multivariate analysis showed that combination therapy was the protective factor (HR = 0.338, 95% CI: 0.162-0.703, p = 0.004), though diabetes (HR = 3.864, 95% CI: 1.897-7.874, p < 0.001) and hypoxemia (HR = 3.536, 95% CI: 1.874-6.673, p < 0.001) were risk factors for mortality. CONCLUSIONS: Mucormycosis is a life-threatening infection. Early management of diabetes and hypoxemia may improve the prognosis. Exploring effective diagnostic and treatment methods is important, and combination antifungal therapy seems to hold potential benefits.
Asunto(s)
Anfotericina B , Antifúngicos , Enfermedades Hematológicas , Secuenciación de Nucleótidos de Alto Rendimiento , Mucormicosis , Humanos , Mucormicosis/diagnóstico , Mucormicosis/tratamiento farmacológico , Mucormicosis/mortalidad , Mucormicosis/microbiología , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Pronóstico , Antifúngicos/uso terapéutico , Adulto , Anciano , Enfermedades Hematológicas/complicaciones , Anfotericina B/uso terapéutico , Metagenómica/métodos , Triazoles/uso terapéutico , Adulto Joven , Quimioterapia Combinada , Análisis de Supervivencia , Resultado del TratamientoRESUMEN
BACKGROUND: Immunotherapies, including chimeric antigen receptor (CAR) T cells and bispecific antibodies (BsAbs), encounter several challenges in the management of acute myeloid leukemia (AML), including limited persistence of these treatments, antigen loss and resistance of leukemia stem cells (LSCs) to therapy. METHODS: Here, we proposed a novel dual-targeting approach utilizing engineered anti-IL10R CAR-T cells to secrete bispecific antibodies targeting CD33. This innovative strategy, rooted in our previous research which established a connection between IL-10 and the stemness of AML cells, designed to improve targeting efficiency and eradicate both LSCs and AML blasts. RESULTS: We first demonstrated the superior efficacy of this synergistic approach in eliminating AML cell lines and primary cells expressing different levels of the target antigens, even in cases of low CD33 or IL10R expression. Furthermore, the IL10R CAR-T cells that secret anti-CD33 bsAbs (CAR.BsAb-T), exhibited an enhanced activation and induction of cytotoxicity not only in IL10R CAR-T cells but also in bystander T cells, thereby more effectively targeting CD33-positive tumor cells. Our in vivo experiments provided additional evidence that CAR.BsAb-T cells could efficiently redirect T cells, reduce tumor burden, and demonstrate no significant toxicity. Additionally, delivering bsAbs locally to the tumor sites through this strategy helps mitigate the pharmacokinetic challenges typically associated with the rapid clearance of prototypical bsAbs. CONCLUSIONS: Overall, the engineering of a single-vector targeting IL10R CAR, which subsequently secretes CD33-targeted bsAb, addresses the issue of immune escape due to the heterogeneous expression of IL10R and CD33, and represents a promising progress in AML therapy aimed at improving treatment outcomes.
Asunto(s)
Anticuerpos Biespecíficos , Leucemia Mieloide Aguda , Receptores Quiméricos de Antígenos , Lectina 3 Similar a Ig de Unión al Ácido Siálico , Humanos , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/inmunología , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Animales , Línea Celular Tumoral , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Inmunoterapia Adoptiva/métodos , Receptores de Interleucina-10/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Ratones Endogámicos NOD , Citotoxicidad InmunológicaRESUMEN
The instability to moisture, heat, and ultraviolet (UV) light is the main problem in the application of quantum dot solar cells (QDSCs). Thin film encapsulation can effectively improve their operational stability. However, it is difficult to achieve multiple barrier effects with single layer of encapsulated film. Here, a hybrid thin-film encapsulation strategy is reported to encapsulate lead sulfide QDSCs, which can isolate moisture and partial thermal, and prevent the penetration of UV light, thus retarding the surface oxidation process of the quantum dots. After 60 h, the encapsulated device retains a normalized power conversion efficiency of 83.8% and 80.6% at 85% humidity and 75 °C, respectively, which is three and six times of the value obtained in unencapsulated devices. At continuous UV illumination, encapsulated device exhibits five times higher stability than the reference. This strategy provides the way for the overall improvement of the operating stability of lead sulfide QDSCs in harsh environments of high humidity, high temperature, and UV light.
RESUMEN
Persistence of quiescent leukemia stem cells (LSCs) after treatment most likely contributes to chemotherapy resistance and poor prognosis of leukemia patients. Identification of this quiescent cell population would facilitate eradicating LSCs. Here, using a cell-tracing PKH26 (PKH) dye that can be equally distributed to daughter cells following cell division in vivo, we identify a label-retaining slow-cycling leukemia cell population from AML1-ETO9a (AE9a) leukemic mice. We find that, compared with cells not maintaining PKH-staining, a higher proportion of PKH-retaining cells are in G0 phase, and PKH-retaining cells exhibit increased colony formation ability and leukemia initiation potential. In addition, PKH-retaining cells possess high chemo-resistance and are more likely to be localized to the endosteal bone marrow region. Based on the transcriptional signature, HLA class II histocompatibility antigen gamma chain (Cd74) is highly expressed in PKH-retaining leukemia cells. Furthermore, cell surface CD74 was identified to be highly expressed in LSCs of AE9a mice and CD34+ human leukemia cells. Compared to Lin-CD74- leukemia cells, Lin-CD74+ leukemia cells of AE9a mice exhibit higher stemness properties. Collectively, our findings reveal that the identified slow-cycling leukemia cell population represents an LSC population, and CD74+ leukemia cells possess stemness properties, suggesting that CD74 is a candidate LSC surface marker.
Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Antígenos de Histocompatibilidad Clase II , Células Madre Neoplásicas , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Humanos , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Ratones , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Diferenciación de Linfocitos B/genética , Leucemia/patología , Leucemia/metabolismo , Leucemia/genética , Línea Celular Tumoral , Proliferación Celular , Ratones Endogámicos C57BL , Regulación Leucémica de la Expresión GénicaRESUMEN
Ivosidenib, an isocitrate dehydrogenase 1 (IDH1) inhibitor, has demonstrated clinical benefits in a pivotal study (AG120-C-001) in patients with IDH1-mutated (mIDH1) acute myeloid leukemia (AML). A registry study (CS3010-101: NCT04176393) was conducted to assess the pharmacokinetic (PK) characteristics, safety, and efficacy of ivosidenib in Chinese patients with relapsed or refractory (R/R) mIDH1 AML. Patients received ivosidenib 500 mg once daily for 28-day cycles until disease progression. Ten subjects underwent intensive PK/progressive disease (PD) assessments. All subjects had the clinical response assessed at screening, every 28 days through month 12, and then every 56 days. Between November 12, 2019, and April 2, 2021, 30 patients were enrolled; 26 (86.7%) had de novo AML and 18 (60.0%) were transfusion-dependent at baseline. Following single and repeated doses of ivosidenib, median time to maximum plasma concentration (T max) was 4.0 and 2.0 hours, respectively. The inter-individual variability of pharmacokinetic exposure was moderate to high (coefficient of variation [CV], 25%-53%). No obvious accumulation was observed after repeated doses at cycle 2 day 1. Regarding the clinical response, the CR + CRh rate was 36.7% (95% confidence interval [CI]: 19.9%-56.1%), the median duration of CR + CRh was 19.7 months (95% CI: 2.9 months-not reached [NR]), and median duration of response (DoR) was 14.3 months (95% CI: 6.4 months-NR). Consistent clinical benefits and safety of ivosidenib were consistently observed at the final data cutoff with median follow-up time 26.0 months, as compared with primary data cutoff, and the data from Chinese R/R mIDH1 AML patients were also consistent with results from pivotal study.
RESUMEN
To evaluate the efficacy and safety of flumatinib in the later-line treatment of Chinese patients with Philadelphia chromosome-positive chronic-phase chronic myeloid leukemia (CP-CML previously treated with tyrosine kinase inhibitors (TKIs). Patients with CML-CP were evaluated for the probabilities of responses including complete hematologic response (CHR), cytogenetic response, and molecular response (MR) and adverse events (AEs) after the later-line flumatinib therapy. Of 336 enrolled patients with median age 50 years, median duration of treatment with flumatinib was 11.04 (2-25.23) months. Patients who achieved clinical responses at baseline showed maintenance of CHR, complete cytogenetic response (CCyR)/2-log molecular response (MR2), major molecular response (MMR), and 4-log molecular response or deep molecular response (MR4/DMR) in 100%, 98.9%, 98.6%, and 92.9% patients, respectively. CHR, CCyR/MR2, MMR, and MR4/DMR responses were achieved in 86.4%, 52.7%, 49.6%, and 23.5% patients respectively, which showed the lack of respective clinical responses at baseline. The patients without response at baseline, treated with flumatinib as 2L TKI, having no resistance to prior TKI or only resistance to imatinib, with response to last TKI, and with BCR::ABL ≤10% had higher CCyR/MR2, MMR, or MR4/DMR. The AEs observed during the later-line flumatinib treatment were tolerable and consistent with those reported with the first-line therapy. Flumatinib was effective and safe in patients who are resistant or intolerant to other TKIs. In particular, 2L flumatinib treatment induced high response rates and was more beneficial to patients without previous 2G TKI resistance, thus serving as a probable treatment option for these patients.
RESUMEN
BACKGROUND: Patients with newly diagnosed chronic myeloid leukemia (CML) need long-term therapy with high efficacy and safety. Asciminib, a BCR::ABL1 inhibitor specifically targeting the ABL myristoyl pocket, may offer better efficacy and safety and fewer side effects than currently available frontline ATP-competitive tyrosine kinase inhibitors (TKIs). METHODS: In a phase 3 trial, patients with newly diagnosed CML were randomly assigned in a 1:1 ratio to receive either asciminib (80 mg once daily) or an investigator-selected TKI, with randomization stratified by European Treatment and Outcome Study long-term survival score category (low, intermediate, or high risk) and by TKI selected by investigators before randomization (including imatinib and second-generation TKIs). The primary end points were major molecular response (defined as BCR::ABL1 transcript levels ≤0.1% on the International Scale [IS]) at week 48, for comparisons between asciminib and investigator-selected TKIs and between asciminib and investigator-selected TKIs in the prerandomization-selected imatinib stratum. RESULTS: A total of 201 patients were assigned to receive asciminib and 204 to receive investigator-selected TKIs. The median follow-up was 16.3 months in the asciminib group and 15.7 months in the investigator-selected TKI group. A major molecular response at week 48 occurred in 67.7% of patients in the asciminib group, as compared with 49.0% in the investigator-selected TKI group (difference, 18.9 percentage points; 95% confidence interval [CI], 9.6 to 28.2; adjusted two-sided P<0.001]), and in 69.3% of patients in the asciminib group as compared with 40.2% in the imatinib group within the imatinib stratum (difference, 29.6 percentage points; 95% CI, 16.9 to 42.2; adjusted two-sided P<0.001). The percentage of patients with a major molecular response at week 48 was 66.0% with asciminib and 57.8% with TKIs in the second-generation TKI stratum (difference, 8.2 percentage points; 95% CI, -5.1 to 21.5). Adverse events of grade 3 or higher and events leading to discontinuation of the trial regimen were less frequent with asciminib (38.0% and 4.5%, respectively) than with imatinib (44.4% and 11.1%) and second-generation TKIs (54.9% and 9.8%). CONCLUSIONS: In this trial comparing asciminib with investigator-selected TKIs and imatinib, asciminib showed superior efficacy and a favorable safety profile in patients with newly diagnosed chronic-phase CML. Direct comparison between asciminib and second-generation TKIs was not a primary objective. (Funded by Novartis; ASC4FIRST ClinicalTrials.gov number, NCT04971226).
Asunto(s)
Antineoplásicos , Proteínas de Fusión bcr-abl , Mesilato de Imatinib , Leucemia Mielógena Crónica BCR-ABL Positiva , Pirazoles , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/genética , Mesilato de Imatinib/uso terapéutico , Mesilato de Imatinib/efectos adversos , Estimación de Kaplan-Meier , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Niacinamida/administración & dosificación , Niacinamida/efectos adversos , Niacinamida/análogos & derivados , Pirazoles/administración & dosificación , Pirazoles/efectos adversos , /efectos adversos , Resultado del TratamientoRESUMEN
Early molecular response at 3 months is predictive of improved overall survival and progression-free survival in patients with chronic myeloid leukemia in the chronic phase. Although about one-third of patients treated with first-line imatinib do not achieve an early molecular response, long-term overall survival and progression-free survival are still observed in most patients. DASCERN (NCT01593254) is a prospective, phase IIb, randomized trial evaluating a switch to dasatinib in patients who have not achieved an early molecular response after 3 months of treatment with first-line imatinib. Early analysis demonstrated an improved major molecular response (MMR) rate at 12 months with dasatinib versus imatinib (29% vs. 13%, P=0.005). Here, we report results from the final 5-year follow-up. In total, 174 patients were randomized to dasatinib and 86 to remain on imatinib. Forty-six (53%) patients who remained on imatinib but subsequently experienced failure were allowed to cross over to dasatinib per protocol. At a minimum follow-up of 60 months, the cumulative MMR rate was significantly higher in patients randomized to dasatinib than those randomized to imatinib (77% vs. 44%, P<0.001). The median time to MMR was 13.9 months with dasatinib versus 19.7 months with imatinib. The safety profile was consistent with previous reports. These results demonstrate that switching to dasatinib after a suboptimal response to imatinib at 3 months leads to faster MMR, provides earlier deep molecular responses, and improves some outcomes in patients with chronic myeloid leukemia in the chronic phase.