Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Thorac Dis ; 16(3): 2082-2101, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38617778

RESUMEN

Background: Acute lung injury (ALI) caused by hypobaric hypoxia (HH) is frequently observed in high-altitude areas, and it is one of the leading causes of death in high-altitude-related diseases due to its rapid onset and progression. However, the pathogenesis of HH-related ALI (HHALI) remains unclear, and effective treatment approaches are currently lacking. Methods: A new mouse model of HHALI developed by our laboratory was used as the study subject (Chinese patent No. ZL 2021 1 1517241 X). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the messenger RNA (mRNA) expression levels of PDZ-binding kinase (PBK), sirtuin 1 (SIRT1), and PTEN-induced kinase 1 (PINK1) in mouse lung tissue. Hematoxylin and eosin staining was used to observe the main types of damage and damaged cells in lung tissue, and the lung injury score was used for quantification. The wet-dry (W/D) ratio was used to measure lung water content. Enzyme-linked immunosorbent assay was used to detect changes in inflammatory factors and oxidative stress markers in the lungs. Western blotting verified the expression of various mitochondrial autophagy-related proteins. The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1) method was used determined the health status of mitochondria based on changes in mitochondrial membrane potential. Transmission electron microscopy was used to directly observe the morphology of mitochondria. Multicolor immunofluorescence was used to observe the levels of mitochondrial autophagy markers. Other signaling pathways and molecular mechanisms that may play a role in epithelial cells were analyzed via through RNA sequencing. Results: Low pressure and hypoxia caused pathological changes in mouse lung tissue, mainly ALI, leading to increased levels of inflammatory factors and intensified oxidative stress response in the lungs. Overexpression of PBK was found to alleviate HHALI, and activation of the p53 protein was shown to abrogate this therapeutic effect, while activation of SIRT1 protein reactivated this therapeutic effect. The therapeutic effect of PBK on HHALI is achieved via the activation of mitochondrial autophagy. Finally, RNA sequencing demonstrated that besides mitochondrial autophagy, PBK also exerts other functions in HHALI. Conclusions: Overexpression of PBK inhibits the expression of p53 and activates SIRT1-PINK1 axis mediated mitochondrial autophagy to alleviate HHALI.

2.
Front Pediatr ; 12: 1309693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390281

RESUMEN

Background: Hepatoblastoma is the most prevalent primary hepatic malignancy in children, comprising 80% of pediatric hepatic malignancies and 1% of all pediatric malignancies. However, traditional treatments have proven inadequate in effectively curing hepatoblastoma, leading to a poor prognosis. Methods: A literature search was conducted on multiple electronic databases (PubMed and Google Scholar). A total of 86 articles were eligible for inclusion in this review. Result: This review aims to consolidate recent developments in hepatoblastoma research, focusing on the latest advances in cancer-associated genomics, epigenetic studies, transcriptional programs and molecular subtypes. We also discuss the current treatment approaches and forthcoming strategies to address cancer-associated biological challenges. Conclusion: To provide a comprehensive summary of the molecular mechanisms associated with hepatoblastoma occurrence, this review highlights three key aspects: genomics, epigenetics, and transcriptomics. Our review aims to facilitate the exploration of novel molecular mechanisms and the development of innovative clinical treatment strategies for hepatoblastoma.

3.
Cancer Sci ; 115(4): 1129-1140, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38351514

RESUMEN

Oncolytic viruses (OVs) possess the unique ability to selectively replicate within tumor cells, leading to their destruction, while also reversing the immunosuppression within the tumor microenvironment and triggering an antitumor immune response. As a result, OVs have emerged as one of the most promising approaches in cancer therapy. However, the effective delivery of intravenously administered OVs faces significant challenges imposed by various immune cells within the peripheral blood, hindering their access to tumor sites. Notably, neutrophils, the predominant white blood cell population comprising approximately 50%-70% of circulating white cells in humans, show phagocytic properties. Our investigation revealed that the majority of oncolytic vaccinia viruses (VV) are engulfed and degraded by neutrophils in the bloodstream. The depletion of neutrophils using the anti-LY6G Ab (1-A8) resulted in an increased accumulation of circulating oncolytic VV in the peripheral blood and enhanced deposition at the tumor site, consequently amplifying the antitumor effect. Neutrophils heavily rely on PI3K signaling to sustain their phagocytic process. Additionally, our study determined that the inhibition of the PI3Kinase delta isoform by idelalisib (CAL-101) suppressed the uptake of oncolytic VV by neutrophils. This inhibition led to a greater presence of oncolytic VV in both the peripheral blood and at the tumor site, resulting in improved efficacy against the tumor. In conclusion, our study showed that inhibiting neutrophil functions can significantly enhance the antitumor efficacy of intravenous oncolytic VV.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Virus Oncolíticos/fisiología , Virus Vaccinia/fisiología , Neutrófilos/patología , Viroterapia Oncolítica/métodos , Fosfatidilinositol 3-Quinasas , Neoplasias/patología , Microambiente Tumoral
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 817-828, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37498332

RESUMEN

Clinically, thymoma patients are often complicated with myasthenia gravis (MG). Dexamethasone, a glucocorticoid with anti-inflammatory effects, could be used as an immunosuppressant for thymoma-associated MG, but the mechanism of action remains to be explored. In this study, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, weighted gene co-expression network analysis (WGCNA) of potential targets was performed by screening the intersection targets of dexamethasone and thymoma-associated MG from the database. Furthermore, the key targets and core active components were identified by topological analysis of the protein-protein interaction (PPI) network. Molecular docking technology was applied to screen the complexes with stable binding of dexamethasone and core targets. Patients with thymoma were divided into two groups according to whether they received dexamethasone before operation, and immunohistochemistry and western blot were used to verify the selected target of dexamethasone in treating thymoma-associated MG. The results showed that the action pathway of dexamethasone on the disease was closely enriched to phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB/AKT), mammalian target of rapamycin (mTOR) signaling pathways. The expressions of AKT1 and its downstream molecule mTOR in the thymoma microenvironment of thymoma-associated MG patients who did not receive dexamethasone before operation were higher than those in the group receiving dexamethasone before operation. This study demonstrates that dexamethasone can promote apoptosis through the AKT-mTOR pathway for the treatment of thymoma-associated MG, as validated by network pharmacology predictions and clinical specimen experiments, and can be verified by large-scale clinical trials in the future. This study also provides theoretical support and new research perspectives for this disease.


Asunto(s)
Timoma , Neoplasias del Timo , Humanos , Timoma/complicaciones , Timoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Serina-Treonina Quinasas TOR , Dexametasona/farmacología , Dexametasona/uso terapéutico , Microambiente Tumoral
5.
Shock ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38010286

RESUMEN

ABSTRACT: The adenosine concentration and forkhead box protein (Foxp3) expression in T regulatory cells (Tregs) are increased during sepsis. However, the mechanism by which adenosine induces Foxp3 expression is incompletely understood. A cecal ligation and puncture (CLP) model was constructed using C57BL/J mice. The plasma adenosine concentration and Foxp3 expression in splenic Tregs were increased consistently for 15 days after sepsis onset. Analysis of the mean fluorescence intensity of Foxp3 and adenosine concentration in the same mice revealed a linear correlation. In the CLP model, adenosine 2a receptor (A2aR) blockade inhibited Foxp3 expression in Tregs. In vitro activation of A2aR promoted Foxp3 expression in Tregs and facilitated secretion of extracellular vesicles. Transcriptome sequencing revealed that A2aR blockade led to changes in cyclic adenosine monophosphate response element-binding protein (CREB) transcription in Tregs in our sepsis model. Use of adenosine or A2aR agonists promoted CREB expression, CREB phosphorylation at S133, Treg expression of Foxp3, and enhanced inhibition of proliferation of cluster of differentiation (CD)4+ lymphocytes. A2aR blockade or inhibition of CREB expression inhibited Foxp3 expression in Tregs. In the CLP model, use of CREB inhibitors could inhibit Foxp3 expression and reduce the bacterial load. In summary, adenosine in sepsis promotes CREB phosphorylation via A2aR which, in turn, upregulates Foxp3 expression in Tregs.

6.
Heliyon ; 9(9): e19880, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810153

RESUMEN

Here, we present a case with genetically confirmed SCN. The main symptom of the child was recurring fever. The combination of antibiotics combined with G-CSF injection was proved to be insufficient, and the patient developed "solid" liver abscess. After undergoing surgical anatomical hepatic lobectomy, the child's infection symptoms showed improvement. The postoperative culture of the purulent material from the liver infection lesion revealed an infection with Staphylococcus aureus. Our case raises the possibility of pathogen sources and routes of infection, clinical characteristics, and effective treatment for SCN patients with concomitant liver abscess.

7.
Biochem Genet ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37776467

RESUMEN

Thymoma is frequently correlated with various autoimmune diseases. However, unequivocal therapeutic targets for thymoma remain undefined, and the role of immune checkpoints in the development of thymoma-related autoimmune illnesses is unclear. We examined 39 thymoma samples and 44 normal control samples from the GEO database. Following batch correction, we identified 224 Differentially Expressed Genes (DEGs) using the Limma package. We employed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to enrich for functional pathways of DEGs. We utilized a Protein-Protein Interaction (PPI) network to identify hub genes and determine their correlation with immune cell infiltration using CIBERSORT. Real-time quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemical staining were implemented to verify identified hub genes in vivo. Simultaneously, we evaluated the prognostic relevance of the hub gene using clinical data. We determined COL1A1, COL1A2, and BGN to be the central hub genes in thymoma. Validation via RT-qPCR, Western blot, and immunohistochemical staining established significant statistical divergence between thymoma tissue and the normal thymus for only BGN. Expression levels of BGN showed strong negative correlation with the infiltration level of B cells and CD4+ T cells, yet a significant positive correlation with the level of neutrophil infiltration. We found high immune infiltration levels of macrophages, NK cells, and Th1 cells in the thymoma microenvironment in patients with a high expression of BGN. Co-localization of BGN and macrophages within thymoma tissue was discerned via tissue staining. Clinical data dictated that thymoma patients exhibiting elevated BGN expression underwent longer hospital stays, longer lengths in intensive care units, greater hospitalization costs, and extended ventilator usage; our study, augmented by clinical information, recognized BGN as possessive of diagnostic and prognostic significance in thymoma through in silico and molecular verification experiments. Our findings offered an important objective for thymoma-treated autoimmune disease comprehension, supplemented by the strong association with immune infiltration.

8.
Mol Ther Oncolytics ; 30: 216-226, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37663131

RESUMEN

CD19-targeted chimeric antigen receptor-modified T (CD19 CAR-T) cell therapy has been demonstrated as one of the most promising therapeutic strategies for treating B cell malignancies. However, it has shown limited treatment efficacy for diffuse large B cell lymphoma (DLBCL). This is, in part, due to the tumor heterogeneity and the hostile tumor microenvironment. Human interleukin-12 (IL-12), as a potent antitumor cytokine, has delivered encouraging outcomes in preclinical studies of DLBCL. However, potentially lethal toxicity associated with systemic administration precludes its clinical application. Here, an armed CD19 CAR expressing hypoxia-regulated IL-12 was developed (CAR19/hIL12ODD). In this vector, IL-12 secretion was restricted to hypoxic microenvironments within the tumor site by fusion of IL-12 with the oxygen degradation domain (ODD) of HIF1α. In vitro, CAR19/hIL12ODD-T cells could only secrete bioactive IL-12 under hypoxic conditions, accompanied by enhanced proliferation, robust IFN-γ secretion, increased abundance of CD4+, and central memory T cell phenotype. In vivo, adoptive transfer of CAR19/hIL12ODD-T cells significantly enhanced regression of large, established DLBCL xenografts in a novel immunodeficient Syrian hamster model. Notably, this targeted and controlled IL-12 treatment was without toxicity in this model. Taken together, our results suggest that armed CD19 CARs with hypoxia-controlled IL-12 (CAR19/hIL12ODD) might be a promising and safer approach for treating DLBCL.

9.
Cancer Control ; 30: 10732748231187837, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575028

RESUMEN

OBJECTIVE: Recent therapeutic advances have greatly enhanced the survival rates of patients with neuroblastoma (NB). However, the outcomes of neuroblastoma patients in China, particularly those with high-risk (HR) NB, remain limited. METHOD: We retrospectively analyzed the clinical data and outcomes of NB patients who were treated at a tertiary pediatric cancer facility in China between January 2013 and October 2021. RESULTS: A total of 117 NB patients were recruited. Patients with very low-risk (VLR), low-risk (LR), intermediate-risk (IR), and HR-NB patients made up 4%, 27%, 15%, and 54% of total patient population, respectively. Patients diagnosed between 2013 and 2018 were treated according to the protocol of Sun Yat-Sen University Cancer Center and those diagnosed between 2019 and 2021 were treated according to the COG ANBL0531 or ANBL0532 protocol with or without autologous stem cell transplantation (ASCT). The 5-year EFS and OS of all risk groups of patients were 67.29% and 77.90%, respectively. EFS and OS were significantly decreased in patients with higher risk classifications (EFS: VLR/LR vs IR vs HR: 97.22% vs 67.28% vs 51.83%; ***P = .001; OS: VLR/LR vs IR vs HR: 97.06% vs 94.12% vs 64.38%; *P = .046). In HR-NB patients treated according to the COG protocol between 2019 and 2021, the 3-year OS of patients who received tandem ASCT was significantly greater than those who did not receive ASCT (93.33% % vs 47.41%; *P = .046; log-rank test). EFS was not significantly different between patients with and without ASCT (72.16% vs 60.32%). CONCLUSION: Our findings show that patients with lower risk classification have a positive prognosis for survival. The prognosis of patients with HR-NB remains in need of improvement. ASCT may enhance OS in HR-NB patients; however, protocol adjustment may be necessary to increase EFS in these patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Neuroblastoma , Niño , Humanos , Estudios Retrospectivos , Trasplante Autólogo , Neuroblastoma/terapia , Pronóstico , Resultado del Tratamiento , Supervivencia sin Enfermedad
10.
Cancer Lett ; 568: 216303, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37422126

RESUMEN

Chimeric antigen receptor T cell immunotherapy has achieved promising therapeutic effects in the treatment of hematological malignancies. However, there are still many obstacles, including on-target off-tumor antigen expression, that prevent successful application to solid tumors. We designed a tumor microenvironment (TME) regulated system chimeric antigen receptor T (MRS.CAR-T) which can only be auto-activated in the solid TME. B7-H3 was selected as the target antigen for esophageal carcinoma. An element comprising a human serum albumin (HSA) binding peptide and a matrix metalloproteases (MMPs) cleavage site was inserted between the 5' terminal signal peptide and single chain fragment variable (scFv) of the CAR skeleton. Upon administration, HSA bound the binding peptide in MRS.B7-H3.CAR-T effectively and promoted proliferation and differentiation into memory cells. MRS.B7-H3.CAR-T was not cytotoxic in normal tissues expressing B7-H3 as the antigen recognition site in the scFv was cloaked by HSA. The anti-tumor function of MRS.B7-H3.CAR-T was recovered once the cleavage site was cleaved by MMPs in the TME. The anti-tumor efficacy associated with MRS.B7-H3.CAR-T cells was improved compared to classic B7-H3.CAR-T cells in vitro and less IFN-γ was released, suggesting a treatment that may induce less extent of cytokine release syndrome-mediated toxicity. In vivo, MRS.B7-H3.CAR-T cells had strong anti-tumor activity and were safe. MRS.CAR-T represents a novel strategy to improve the efficacy and safety of CAR-T therapy in solid tumors.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva , Carcinoma de Células Escamosas de Esófago/terapia , Antígenos de Neoplasias , Neoplasias Esofágicas/terapia , Microambiente Tumoral
11.
Nanoscale Adv ; 5(14): 3575-3588, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37441251

RESUMEN

Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a chronic autoimmune disorder characterized by inflammation. However, currently available disease-modifying anti-IBD drugs exhibit limited efficacy in IBD therapy. Furthermore, existing therapeutic approaches provide only partial relief from IBD symptoms and are associated with certain side effects. In recent years, a novel category of nanoscale membrane vesicles, known as plant-derived exosome-like nanoparticles (PDENs), has been identified in edible plants. These PDENs are abundant in bioactive lipids, proteins, microRNAs, and other pharmacologically active compounds. Notably, PDENs possess immunomodulatory, antitumor, regenerative, and anti-inflammatory properties, making them particularly promising for the treatment of intestinal diseases. Moreover, PDENs can be engineered as targeted delivery systems for the efficient transport of chemical or nucleic acid drugs to the site of intestinal inflammation. In the present study, we provided an overview of PDENs, including their biogenesis, extraction, purification, and construction strategies, and elucidated their physiological functions and therapeutic effects on IBD. Additionally, we summarized the applications and potential of PDENs in IBD treatment while highlighting the future directions and challenges in the field of emerging nanotherapeutics for IBD therapy.

12.
Animal Model Exp Med ; 6(6): 609-618, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37202901

RESUMEN

BACKGROUND: Acute pancreatitis (AP) is a severe disorder that leads to high morbidity and mortality. Appropriate reference genes are important for gene analysis in AP. This study sought to study the expression stability of several reference genes in the golden Syrian hamster, a model of AP. METHODS: AP was induced in golden Syrian hamster by intraperitoneal injection of ethanol (1.35 g/kg) and palmitoleic acid (2 mg/kg). The expression of candidate genes, including Actb, Gapdh, Eef2, Ywhaz, Rps18, Hprt1, Tubb, Rpl13a, Nono, and B2m, in hamster pancreas at different time points (1, 3, 6, 9, and 24 h) posttreatment was analyzed using quantitative polymerase chain reaction. The expression stability of these genes was calculated using BestKeeper, Comprehensive Delta CT, NormFinder, and geNorm algorithms and RefFinder software. RESULTS: Our results show that the expression of these reference genes fluctuated during AP, of which Ywhaz and Gapdh were the most stable genes, whereas Tubb, Eef2, and Actb were the least stable genes. Furthermore, these genes were used to normalize the expression of TNF-α messenger ribonucleic acid in inflamed pancreas. CONCLUSIONS: In conclusion, Ywhaz and Gapdh were suitable reference genes for gene expression analysis in AP induced in Syrian hamster.


Asunto(s)
Pancreatitis , Animales , Cricetinae , Pancreatitis/inducido químicamente , Pancreatitis/genética , Mesocricetus , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Etanol , Enfermedad Aguda , Gliceraldehído-3-Fosfato Deshidrogenasas
13.
Pharmgenomics Pers Med ; 16: 337-355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091827

RESUMEN

Objective: The mechanisms of pseudouridine synthase (PUS) are not definite in hepatocellular carcinoma (HCC), the objective of this study is to investigate the effect of PUS genes in HCC. Materials and Methods: Differentially expressed and prognostic gene of PUS enzymes was identified based on The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Profiling Interactive Analysis (GEPIA) databases. For the identified gene, pseudouridine synthase 1 (PUS1), was used for further research. The clinicopathological feature of PUS1 was analyzed by Student's t-test. Prognostic significance was explored by Kaplan-Meier (KM) analysis and Cox proportional hazards regression model. Receiver operating characteristic (ROC) curve was applied to appraise diagnostic and prognostic value. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Gene Set Enrichment Analysis (GSEA) were implemented to explore mechanism of PUS1. A Guangxi cohort was applied to verify differential expression. In vitro cell experiments were implemented to investigate the influence for proliferation, reactive oxygen species (ROS) level, migration, and invasion of HCC cells after a knockdown of PUS1. Results: PUS1 was significantly overexpressed in HCC tissues, and patients with high PUS1 were related to unpromising clinicopathological features. Survival analysis revealed high PUS1 expression was associated with a poor overall survival (OS) and 1 year-recurrence free survival (RFS), was an independent risk factor. Meanwhile, ROC curve showed that PUS1 had a diagnostic and prognostic significance to HCC. Functional enrichment analysis implied that PUS1 may be involved in metabolic pathways, mitochondrial function, non-alcoholic fatty liver disease (NAFLD), and some important carcinogenic pathways. Cell assays revealed that knockdown of PUS1 significantly constrained the migration, proliferation, invasion and improved the ROS level of HCC cells. Conclusion: PUS1 may be a prognostic biomarker and a underlying treatment target for HCC.

14.
Animal Model Exp Med ; 6(5): 489-498, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36097701

RESUMEN

BACKGROUND: SHARPIN (SHANK-associated RH domain interactor) is a component of the linear ubiquitination complex that regulates the NF-κB signaling pathway. To better understand the function of SHARPIN, we sought to establish a novel genetically engineered Syrian hamster with SHARPIN disruption using the CRISPR/Cas9 system. METHODS: A single-guide ribonucleic acid targeting exon 1 of SHARPIN gene was designed and constructed. The zygotes generated by cytoplasmic injection of the Cas9/gRNA ribonucleoprotein were transferred into pseudopregnant hamsters. Neonatal mutants were identified by genotyping. SHARPIN protein expression was detected using Western blotting assay. Splenic, mesenteric lymph nodes (MLNs), and thymic weights were measured, and organ coefficients were calculated. Histopathological examination of the spleen, liver, lung, small intestine, and esophagus was performed independently by a pathologist. The expression of lymphocytic markers and cytokines was evaluated using reverse transcriptase-quantitative polymerase chain reaction. RESULTS: All the offspring harbored germline-transmitted SHARPIN mutations. Compared with wild-type hamsters, SHARPIN protein was undetectable in SHARPIN-/- hamsters. Spleen enlargement and splenic coefficient elevation were spotted in SHARPIN-/- hamsters, with the descent of MLNs and thymuses. Further, eosinophil infiltration and structural alteration in spleens, livers, lungs, small intestines, and esophagi were obvious after the deletion of SHARPIN. Notably, the expression of CD94 and CD22 was downregulated in the spleens of knockout (KO) animals. Nonetheless, the expression of CCR3, CCL11, Il4, and Il13 was upregulated in the esophagi. The expression of NF-κB and phosphorylation of NF-κB and IκB protein significantly diminished in SHARPIN-/- animals. CONCLUSIONS: A novel SHARPIN KO hamster was successfully established using the CRISPR/Cas9 system. Abnormal development of secondary lymphoid organs and eosinophil infiltration in multiple organs reveal its potential in delineating SHARPIN function and chronic inflammation.


Asunto(s)
Sistemas CRISPR-Cas , FN-kappa B , Animales , Cricetinae , FN-kappa B/metabolismo , Mesocricetus , Sistemas CRISPR-Cas/genética , Animales Modificados Genéticamente
15.
Cancer Cell Int ; 22(1): 390, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482354

RESUMEN

BACKGROUND: Long non-coding RNA (lncRNA) LINC00460 is an onco-lncRNA in a variety of cancers, including pancreatic cancer (PC). This study is aimed to investigate the regulatory mechanisms of LINC00460 in PC. METHODS: The tumor and adjacent normal tissues were collected from 73 PC patients. The expression of LINC00460, miR-503-5p, and ANLN was detected using qRT-PCR. We then analyzed the proliferation, migration, invasion, and apoptosis/cell cycle of PC cells by performing the MTT/EdU, transwell, and flow cytometry assays, respectively. The xenograft tumor model were utilized to confirm the effect of LINC00460 knockdown on PC through anti-PD-1 therapy in vivo, and the sensitivity of PANC-1 cells to the cytotoxicity of CD8+ T cells in vitro. Western blotting was used to determine the protein levels. A co-culture model was utilized to explore the effects of exosomes on macrophages. RESULTS: LINC00460 was up-regulated in PC tissues and cells. LINC00460 knockdown suppressed cell proliferation, migration, and invasion, facilitated cell apoptosis and G0/G1 phase arrest, and inhibited the tumor growth through anti-PD-1 therapy. Both miR-503-5p down-regulation and ANLN up-regulation reversed the effects of LINC00460 knockdown on inhibiting the proliferation, migration and invasion, and on promoting the apoptosis, G0/G1 phase arrest, and the sensitivity of PC cells to the cytotoxicity of CD8+ T cells. Exosomes were uptaken by the ambient PC cells. PANC-1 cells-derived exosomal LINC00460-induced M2 macrophage polarization accelerates the cell migration and invasion. CONCLUSIONS: LINC00460 silencing attenuates the development of PC by regulating the miR-503-5p/ANLN axis and exosomal LINC00460-induced M2 macrophage polarization accelerates the migration and invasion of PANC-1 cells, thus LINC00460 may act as a possible therapeutic target for treating PC.

16.
Front Med (Lausanne) ; 9: 947729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507493

RESUMEN

Background: Hepatoblastoma (HB) is the most common liver malignancy in childhood with poor prognosis and lack of effective therapeutic targets. Single-cell transcriptome sequencing technology has been widely used in the study of malignant tumors, which can understand the tumor microenvironment and tumor heterogeneity. Materials and methods: Two children with HB and a healthy child were selected as the research subjects. Peripheral blood and tumor tissue were collected for single-cell transcriptome sequencing, and the sequencing data were compared and analyzed to describe the differences in the immune microenvironment between children with HB and normal children. Results: There were significant differences in the number and gene expression levels of natural killer cells (NK cells) between children with HB and normal children. More natural killer cells were seen in children with HB compared to normal control. KIR2DL were highly expressed in children with HB. Conclusion: Single-cell transcriptome sequencing of peripheral blood mononuclear cells (PBMC) and tumor tissue from children with HB revealed that KIR2DL was significantly up-regulated in NK cells from children with HB. HLA-C molecules on the surface of tumor cells interact with inhibitory receptor KIR2DL on the surface of NK cells, inhibiting the cytotoxicity of NK cells, resulting in immune escape of tumors. Inhibitors of related immune checkpoints to block the interaction between HLA-C and KIR2DL and enhance the cytotoxicity of NK cells, which may be a new strategy for HB treatment.

17.
Am J Cancer Res ; 12(10): 4545-4565, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36381320

RESUMEN

Cuproptosis, a newly discovered mechanism of programmed cell death, is important for detailing the metabolic aspects of cancer progression and thereby guiding cancer therapy. An exciting era of translational medicine has led to the rapid development of countless immunotherapeutic strategies. The existing successful cancer immunotherapies have sparked new hope for patients with solid and hematologic malignancies. Hence, it is important to characterize the link between the cuproptosis process and the immunity status in the tumor microenvironment (TME) in Lung Adenocarcinoma (LUAD), which may be able to predict patient's prognosis. In this study, we systematically assessed 10 cuproptosis-associated genes (CAGs) and comprehensively characterized the relationship between cuproptosis and the molecular characteristics and immune cell infiltration of tumor tissue, prognosis and clinical treatment of patients. Subsequently, the CAG_score for predicting overall survival (OS) was established and its reliable predictive ability in LUAD patients was confirmed. Next, we created a highly reliable nomogram to facilitate the clinical viability of the CAG_score. The low CAG_score group, with lower immune cell infiltration, and mutation burden, had a significantly superior OS, which was associated with a better response to immunotherapy. The present study revealed that cuproptosis play a significant role in TME regulation in LUAD. Collectively, we identified a prognostic CAGs-related signature for LUAD patients. This signature may contribute to clarifying the characteristics of TME and enable the exploration of more potent immunotherapy strategies.

18.
Oxid Med Cell Longev ; 2022: 8543720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092152

RESUMEN

Background: Bioactive compound such as interleukin-22 (IL-22) treatment is regarded as a sufficient treatment for ulcerative colitis (UC). It has been found that long noncoding RNAs (lncRNAs) expressed in many inflammatory diseases, including UC. We aimed to verify the treatment effect of bioactive compounds including IL-22 and lncRNAs in UC on colitis mice. Methods: UC mice were induced using DSS, followed by IL-22 or PBS intraperitoneally (i.p.) injection. Then, the histopathological parameters of the mice were determined. Then, RNA sequencing was performed to screen the differential lncRNAs. Quantitative real-time PCR (qRT-PCR) and lentivirus identified lncRNA-Ulcerative Colitis lncRNA (lncRNA-UCL) were regarded as the molecular regulator of the colitis mice. The correlation with lncRNA-UCL and mmu-miR-568 was validated using RNA-pulldown. Meanwhile, claudin-1 was predicted and confirmed as the target molecule of mmu-miR-568 using dual-luciferase assay. Results: IL-22 could significantly improve the histopathological features and decrease proinflammatory cytokine production in UC mice induced by DSS. It also can stimulate intestinal epithelial cell (IEC) reproduction and prevention of apoptosis. lncRNA-UCL was significantly downregulated in UC mice caused by DSS, while IL-22 treatment effectively reversed this effect. In terms of mechanism, lncRNA-UCL regulates intestinal epithelial homeostasis by sequestering mmu-miR-568 and maintaining close integrated protein expression, such as claudin-1. Conclusions: We have demonstrated the incredible role of bioactive compound, such as IL-22, in alleviating DSS-induced colitis symptoms via enhancing lncRNA-UCL expression. It can be regulated using tight junction (TJ) protein.


Asunto(s)
Claudina-1 , Colitis , Interleucinas , MicroARNs , ARN Largo no Codificante , Animales , Claudina-1/biosíntesis , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Sulfato de Dextran/toxicidad , Interleucinas/farmacología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Regulación hacia Arriba , Interleucina-22
19.
Front Mol Biosci ; 9: 887059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903153

RESUMEN

Background: Deoxythymidylate kinase (DTYMK) serves as a pyrimidine metabolic rate-limiting enzyme that catalyzes deoxythymidine monophosphate (dTMP) to generate deoxythymidine diphosphate (dTDP). It remains unclear whether DTYMK expression has the potential to predict outcome and immune cell infiltration in cancers. Methods: DTYMK expression profile was analyzed using Oncomine, TIMER, GEPIA and UALCAN databases. The influence of DTYMK on immune infiltration was examined using TIMER and TISIDB databases. DTYMK interactive gene hub and co-expressing genes were obtained and analyzed by STRING and Linkedomics, respectively. The relationship between DTYMK expression and patient prognosis was validated using GEPIA, Kaplan-Meier plotter, and PrognoScan databases. The functions of DTYMK in cancer cells were also biologically validated in vitro. Results: DTYMK expression was elevated in tumor tissues compared with their control counterparts. DTYMK expression varied in different stages and discriminatorily distributed in different immune and molecular subtypes. Higher expression of DTYMK predicted worse outcome in several cancer types such as liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD). High DTYMK expression was positively or negatively correlated with immune cell infiltration, including B cell, CD8+ cell, CD4+ T cell, macrophage, neutrophil and dendritic cell, depending on the type of cancers. Additionally, DTYMK co-expressing genes participated in pyrimidine metabolism as well as in T helper cell differentiation in LIHC and LUAD. In vitro, knockdown of DTYMK suppressed cell migration of liver and lung cancer cells. Conclusion: DTYMK might be taken as an useful prognostic and immunological marker in cancers and further investigation is warrented.

20.
J Mater Chem B ; 10(31): 5853-5872, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35876136

RESUMEN

As a group of chronic and idiopathic gastrointestinal (GI) disorders, inflammatory bowel disease (IBD) is characterized by recurrent intestinal mucosal inflammation. Oral administration is critical for the treatment of IBD. Unfortunately, it is difficult to target the bowel located in the GI tract due to multiple physical barriers. The unique physicochemical properties of nanoparticle-based drug delivery systems (DDSs) and their enhanced permeability and retention effects in the inflamed bowel, render nanomedicines to be used to implement precise drug delivery at diseased sites in IBD therapy. In this review, we described the pathophysiological features of IBD, and designed strategies to exploit these features for intestinal targeting. In addition, we introduced the types of currently developed nano-targeted carriers, including synthetic nanoparticle-based and emerging naturally derived nanoparticles (e.g., extracellular vesicles and plant-derived nanoparticles). Moreover, recent developments in targeted oral nanoparticles for IBD therapy were also highlighted. Finally, we presented challenges associated with nanotechnology and potential directions for future IBD treatment.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Nanopartículas , Administración Oral , Sistemas de Liberación de Medicamentos , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Nanomedicina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...