Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39204765

RESUMEN

Litter and root decomposition is an important source of soil organic matter and nutrients. To ascertain the contribution of litter and root to natural grassland nutrients in rocky desertification areas, from March 2017 to January 2018, the continuous soil column method, collector method, and litter decomposition method were used to study the soil nutrients, litter and root biomass, decomposition, and nutrient release of potential, moderate, and severe rocky desertification grasslands, as well as their responses to rocky desertification. The results showed that the litter and root decomposition rate showed a trend of being first fast and then slow, and the decomposition rate of litter and root was greater than 50% after 300 days. The annual litter decomposition rates of potential, moderate, and severe rocky desertification grasslands were 69.98%, 62.14%, and 49.79%, respectively, and the annual decomposition rates of root were 73.64%, 67.61%, and 64.09%, respectively. With a deepening degree of rocky desertification, the litter and root decomposition rate decreased. The decomposition coefficients, k, of litter in potential, moderate, and severe rocky desertification grasslands were 1.128, 0.896, and 0.668, respectively, and the decomposition coefficients, k, of root were 1.152, 1.018, and 0.987, respectively. The nutrient release processes of litter and root were different, and the release mode ultimately manifests as "release". In rocky desertification grasslands, the organic carbon (OC), total nitrogen (TN), total phosphorus (TP), and total potassium (TK) released by litter and root decomposition were 18.93-263.03 g·m-2·yr-1, 1.79-5.59 g·m-2·yr-1, 0.18-0.47 g·m-2·yr-1, and 0.66-3.70 g·m-2·yr-1, respectively. The contribution of root to soil nutrients was greater than that of litter. The degree of rocky desertification was negatively correlated with the biomass, decomposition rate, and nutrient return amount of litter and root. The results of this study provide direct field evidence and illustrate the contribution of litter and root decomposition in rocky desertification grasslands to soil nutrients.

2.
Dalton Trans ; 53(19): 8093-8104, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38685829

RESUMEN

The photocatalytic technique has been widely recognized as a feasible technological route for sustainable energy conversion of solar energy into chemical energy. Photocatalysts play a vital role in the whole catalytic process. In particular, organolead halide perovskites have become emerging photocatalysts, owing to their precisely tunable light absorption range, high carrier diffusion mobility, and longer carrier lifetime and diffusion length. Nevertheless, their intrinsic structural instability and high carrier recombination rate are the major bottlenecks for further development in photocatalytic applications. This Frontier is focused on the recent research about the instability mechanism of organolead halide perovskites. Then, we summarize the recently developed strategies to improve the structural stability and photocatalytic activity of organolead halide materials, with an emphasis on the construction of organolead halide crystalline catalysts with high intrinsic structural stability. Finally, an outlook and challenges of organometal halide photocatalysts are presented, demonstrating the irreplaceable role of this class of emergent materials in the field of photo-energy conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...