Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
DNA Res ; 31(2)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447059

RESUMEN

Transposable elements (TEs) mobility is capable of generating a large number of structural variants (SVs), which can have considerable potential as molecular markers for genetic analysis and molecular breeding in livestock. Our results showed that the pig genome contains mainly TE-SVs generated by short interspersed nuclear elements (51,873/76.49%), followed by long interspersed nuclear elements (11,131/16.41%), and more than 84% of the common TE-SVs (Minor allele frequency, MAF > 0.10) were validated to be polymorphic. Subsequently, we utilized the identified TE-SVs to gain insights into the population structure, resulting in clear differentiation among the three pig groups and facilitating the identification of relationships within Chinese local pig breeds. In addition, we investigated the frequencies of TEs in the gene coding regions of different pig groups and annotated the respective TE types, related genes, and functional pathways. Through genome-wide comparisons of Large White pigs and Chinese local pigs utilizing the Beijing Black pigs, we identified TE-mediated SVs associated with quantitative trait loci and observed that they were mainly involved in carcass traits and meat quality traits. Lastly, we present the first documented evidence of TE transduction in the pig genome.


Asunto(s)
Elementos Transponibles de ADN , Polimorfismo Genético , Animales , Porcinos/genética , Sitios de Carácter Cuantitativo , Elementos de Nucleótido Esparcido Corto , Genética de Población
2.
J Anim Sci Biotechnol ; 14(1): 136, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805653

RESUMEN

BACKGROUND: During approximately 10,000 years of domestication and selection, a large number of structural variations (SVs) have emerged in the genome of pig breeds, profoundly influencing their phenotypes and the ability to adapt to the local environment. SVs (≥ 50 bp) are widely distributed in the genome, mainly in the form of insertion (INS), mobile element insertion (MEI), deletion (DEL), duplication (DUP), inversion (INV), and translocation (TRA). While studies have investigated the SVs in pig genomes, genome-wide association studies (GWAS)-based on SVs have been rarely conducted. RESULTS: Here, we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools, with 53.95% of the SVs being reported for the first time. These high-quality SVs were used to recover the population genetic structure, confirming the accuracy of genotyping. Potential functional SV loci were then identified based on positional effects and breed stratification. Finally, GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions. We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7, with FKBP5 containing the most significant SV locus for almost all traits. In addition, we found several significant loci in intramuscular fat, abdominal circumference, heart weight, and liver weight, etc. CONCLUSIONS: We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits, 7 skeletal traits, and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.

3.
Front Genet ; 13: 877646, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480309

RESUMEN

Alternative splicing (AS) is a key step in the post-transcriptional regulation of gene expression that can affect intramuscular fat (IMF). In this study, longissimus dorsi muscles from 30 pigs in high- and low- IMF groups were used to perform Oxford Nanopore Technologies (ONT) full-length sequencing and Illumina strand-specific RNA-seq. A total of 43,688 full-length transcripts were identified, with 4,322 novel genes and 30,795 novel transcripts. Using AStalavista, a total of 14,728 AS events were detected in the longissimus dorsi muscle. About 17.79% of the genes produced splicing isoforms, in which exon skipping was the most frequent AS event. By analyzing the expression differences of mRNAs and splicing isoforms, we found that differentially expressed mRNAs with splicing isoforms could participate in skeletal muscle development and fatty acid metabolism, which might determine muscle-related traits. SERBP1, MYL1, TNNT3, and TNNT1 were identified with multiple splicing isoforms, with significant differences in expression. AS events occurring in IFI6 and GADD45G may cause significant differences in gene expression. Other AS events, such as ONT.15153.3, may regulate the function of ART1 by regulating the expression of different transcripts. Moreover, co-expression and protein-protein interaction (PPI) analysis indicated that several genes (MRPL27, AAR2, PYGM, PSMD4, SCNM1, and HNRNPDL) may be related to intramuscular fat. The splicing isoforms investigated in our research provide a reference for the study of alternative splicing regulation of intramuscular fat deposition.

4.
Nature ; 522(7556): 368-72, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25938715

RESUMEN

Knowledge of the structure and dynamics of RNA molecules is critical to understanding their many biological functions. Furthermore, synthetic RNAs have applications as therapeutics and molecular sensors. Both research and technological applications of RNA would be dramatically enhanced by methods that enable incorporation of modified or labelled nucleotides into specifically designated positions or regions of RNA. However, the synthesis of tens of milligrams of such RNAs using existing methods has been impossible. Here we develop a hybrid solid-liquid phase transcription method and automated robotic platform for the synthesis of RNAs with position-selective labelling. We demonstrate its use by successfully preparing various isotope- or fluorescently labelled versions of the 71-nucleotide aptamer domain of an adenine riboswitch for nuclear magnetic resonance spectroscopy or single-molecule Förster resonance energy transfer, respectively. Those RNAs include molecules that were selectively isotope-labelled in specific loops, linkers, a helix, several discrete positions, or a single internal position, as well as RNA molecules that were fluorescently labelled in and near kissing loops. These selectively labelled RNAs have the same fold as those transcribed using conventional methods, but they greatly simplify the interpretation of NMR spectra. The single-position isotope- and fluorescently labelled RNA samples reveal multiple conformational states of the adenine riboswitch. Lastly, we describe a robotic platform and the operation that automates this technology. Our selective labelling method may be useful for studying RNA structure and dynamics and for making RNA sensors for a variety of applications including cell-biological studies, substance detection, and disease diagnostics.


Asunto(s)
Fluorescencia , Marcaje Isotópico/métodos , ARN/química , ARN/síntesis química , Adenina/análisis , Adenina/química , Adenina/metabolismo , Aptámeros de Nucleótidos/análisis , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Automatización/métodos , Secuencia de Bases , Técnicas Biosensibles , ADN/genética , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Técnicas In Vitro , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN/análisis , ARN/genética , Riboswitch/genética , Robótica , Moldes Genéticos , Transcripción Genética
5.
Cell ; 155(3): 594-605, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243017

RESUMEN

Nuclear export of unspliced and singly spliced viral mRNA is a critical step in the HIV life cycle. The structural basis by which the virus selects its own mRNA among more abundant host cellular RNAs for export has been a mystery for more than 25 years. Here, we describe an unusual topological structure that the virus uses to recognize its own mRNA. The viral Rev response element (RRE) adopts an "A"-like structure in which the two legs constitute two tracks of binding sites for the viral Rev protein and position the two primary known Rev-binding sites ~55 Å apart, matching the distance between the two RNA-binding motifs in the Rev dimer. Both the legs of the "A" and the separation between them are required for optimal RRE function. This structure accounts for the specificity of Rev for the RRE and thus the specific recognition of the viral RNA.


Asunto(s)
Transporte Activo de Núcleo Celular , VIH-1/química , ARN Mensajero/química , ARN Viral/química , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/química , Secuencia de Bases , Sitios de Unión , Núcleo Celular/metabolismo , Células HEK293 , VIH-1/genética , Humanos , Datos de Secuencia Molecular , Poro Nuclear/metabolismo , Conformación de Ácido Nucleico , Pliegue del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo
6.
J Biomol NMR ; 51(1-2): 89-103, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21947918

RESUMEN

Analogous to the recently introduced ARTSY method for measurement of one-bond (1)H-(15)N residual dipolar couplings (RDCs) in large perdeuterated proteins, we introduce methods for measurement of base (13)C-(1)H and (15)N-(1)H RDCs in protonated nucleic acids. Measurements are based on quantitative analysis of intensities in (1)H-(15)N and (13)C-(1)H TROSY-HSQC spectra, and are illustrated for a 71-nucleotide adenine riboswitch. Results compare favorably with those of conventional frequency-based measurements in terms of completeness and convenience of use. The ARTSY method derives the size of the coupling from the ratio of intensities observed in two TROSY-HSQC spectra recorded with different dephasing delays, thereby minimizing potential resonance overlap problems. Precision of the RDC measurements is limited by the signal-to-noise ratio, S/N, achievable in the 2D TROSY-HSQC reference spectrum, and is approximately given by 30/(S/N) Hz for (15)N-(1)H and 65/(S/N) Hz for (13)C-(1)H. The signal-to-noise ratio of both (1)H-(15)N and (1)H-(13)C spectra greatly benefits when water magnetization during the experiments is not perturbed, such that rapid magnetization transfer from bulk water to the nucleic acid, mediated by rapid amino and hydroxyl hydrogen exchange coupled with (1)H-(1)H NOE transfer, allows for fast repetition of the experiment. RDCs in the mutated helix 1 of the riboswitch are compatible with nucleotide-specifically modeled, idealized A-form geometry and a static orientation relative to the helix 2/3 pair, which differs by ca 6° relative to the X-ray structure of the native riboswitch.


Asunto(s)
Ácidos Nucleicos/química , Algoritmos , Isótopos de Carbono , Hidrógeno , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular/métodos , Riboswitch
7.
Methods ; 52(2): 180-91, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20554045

RESUMEN

Among the greatest advances in biology today are the discoveries of various roles played by RNA in biological processes. However, despite significant advances in RNA structure determination using X-ray crystallography [1] and solution NMR [2-4], the number of bona fide RNA structures is very limited, in comparison with the growing number of known functional RNAs. This is because of great difficulty in growing crystals or/and obtaining phase information, and severe size constraints on structure determination by solution NMR spectroscopy. Clearly, there is an acute need for new methodologies for RNA structure determination. The prevailing approach for structure determination of RNA in solution is a "bottom-up" approach that was basically transplanted from the approach used for determining protein structures, despite vast differences in both structural features and chemical compositions between these two types of biomacromolecules. In this chapter, we describe a new method, which has been reported recently, for rapid global structure determination of RNAs using solution-based NMR spectroscopy and small-angle X-ray scattering. The method treats duplexes as major building blocks of RNA structures. By determining the global orientations of the duplexes and the overall shape, the global structure of an RNA can be constructed and further regularized using Xplor-NIH. The utility of the method was demonstrated in global structure determination of two RNAs, a 71-nt and 102-nt RNAs with an estimated backbone RMSD ∼3.0Å. The global structure opens door to high-resolution structure determination in solution.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , ARN/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Modelos Moleculares , Conformación de Ácido Nucleico
8.
Proc Natl Acad Sci U S A ; 107(4): 1385-90, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20080629

RESUMEN

The 3(') untranslated region (3(') UTR) of turnip crinkle virus (TCV) genomic RNA contains a cap-independent translation element (CITE), which includes a ribosome-binding structural element (RBSE) that participates in recruitment of the large ribosomal subunit. In addition, a large symmetric loop in the RBSE plays a key role in coordinating the incompatible processes of viral translation and replication, which require enzyme progression in opposite directions on the viral template. To understand the structural basis for the large ribosomal subunit recruitment and the intricate interplay among different parts of the molecule, we determined the global structure of the 102-nt RBSE RNA using solution NMR and small-angle x-ray scattering. This RNA has many structural features that resemble those of a tRNA in solution. The hairpins H1 and H2, linked by a 7-nucleotide linker, form the upper part of RBSE and hairpin H3 is relatively independent from the rest of the structure and is accessible to interactions. This global structure provides insights into the three-dimensional layout for ribosome binding, which may serve as a structural basis for its involvement in recruitment of the large ribosomal subunit and the switch between viral translation and replication. The experimentally determined three-dimensional structure of a functional element in the 3(') UTR of an RNA from any organism has not been previously reported. The RBSE structure represents a prototype structure of a new class of RNA structural elements involved in viral translation/replication processes.


Asunto(s)
Regiones no Traducidas 3' , Carmovirus/química , Carmovirus/metabolismo , Elementos de Facilitación Genéticos , Conformación de Ácido Nucleico , ARN Viral/química , Ribosomas/metabolismo , Secuencia de Bases , Carmovirus/genética , Modelos Moleculares , Datos de Secuencia Molecular , Biosíntesis de Proteínas , ARN Viral/metabolismo , Proteínas Virales/biosíntesis , Proteínas Virales/genética
9.
J Am Chem Soc ; 131(30): 10507-15, 2009 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-19722627

RESUMEN

Determining architectures of multicomponent proteins or protein complexes in solution is a challenging problem. Here we report a methodology that simultaneously uses residual dipolar couplings (RDC) and the small-angle X-ray scattering (SAXS) restraints to mutually orient subunits and define the global shape of multicomponent proteins and protein complexes. Our methodology is implemented in an efficient algorithm and demonstrated using five examples. First, we demonstrate the general approach with simulated data for the HIV-1 protease, a globular homodimeric protein. Second, we use experimental data to determine the structures of the two-domain proteins L11 and gammaD-Crystallin, in which the linkers between the domains are relatively rigid. Finally, complexes with K(d) values in the high micro- to millimolar range (weakly associating proteins), such as a homodimeric GB1 variant, and with K(d) values in the nanomolar range (tightly bound), such as the heterodimeric complex of the ILK ankyrin repeat domain (ARD) and PINCH LIM1 domain, respectively, are evaluated. Furthermore, the proteins or protein complexes that were determined using this method exhibit better solution structures than those obtained by either NMR or X-ray crystallography alone as judged based on the pair-distance distribution functions (PDDF) calculated from experimental SAXS data and back-calculated from the structures.


Asunto(s)
Proteínas/química , Proteasa del VIH/química , Proteasa del VIH/metabolismo , Humanos , Modelos Moleculares , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Ribosómicas/química , Dispersión del Ángulo Pequeño , Programas Informáticos , Soluciones , Difracción de Rayos X , gamma-Cristalinas/química
10.
J Mol Biol ; 393(3): 717-34, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19666030

RESUMEN

We report a "top-down" method that uses mainly duplexes' global orientations and overall molecular dimension and shape restraints, which were extracted from experimental NMR and small-angle X-ray scattering data, respectively, to determine global architectures of RNA molecules consisting of mostly A-form-like duplexes. The method is implemented in the G2G (from global measurement to global structure) toolkit of programs. We demonstrate the efficiency and accuracy of the method by determining the global structure of a 71-nt RNA using experimental data. The backbone root-mean-square deviation of the ensemble of the calculated global structures relative to the X-ray crystal structure is 3.0+/-0.3 A using the experimental data and is only 2.5+/-0.2 A for the three duplexes that were orientation restrained during the calculation. The global structure simplifies interpretation of multidimensional nuclear Overhauser spectra for high-resolution structure determination. The potential general application of the method for RNA structure determination is discussed.


Asunto(s)
Conformación de Ácido Nucleico , ARN/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Emparejamiento Base , Bases de Datos de Ácidos Nucleicos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Soluciones
11.
J Biol Chem ; 284(9): 5836-44, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19117955

RESUMEN

The LIM-only adaptor PINCH (the particularly interesting cysteine- and histidine-rich protein) plays a pivotal role in the assembly of focal adhesions (FAs), supramolecular complexes that transmit mechanical and biochemical information between extracellular matrix and actin cytoskeleton, regulating diverse cell adhesive processes such as cell migration, cell spreading, and survival. A key step for the PINCH function is its localization to FAs, which depends critically on the tight binding of PINCH to integrin-linked kinase (ILK). Here we report the solution NMR structure of the core ILK.PINCH complex (28 kDa, K(D) approximately 68 nm) involving the N-terminal ankyrin repeat domain (ARD) of ILK and the first LIM domain (LIM1) of PINCH. We show that the ILK ARD exhibits five sequentially stacked ankyrin repeat units, which provide a large concave surface to grip the two contiguous zinc fingers of the PINCH LIM1. The highly electrostatic interface is evolutionally conserved but differs drastically from those of known ARD and LIM bound to other types of protein domains. Consistently mutation of a hot spot in LIM1, which is not conserved in other LIM domains, disrupted the PINCH binding to ILK and abolished the PINCH targeting to FAs. These data provide atomic insight into a novel modular recognition and demonstrate how PINCH is specifically recruited by ILK to mediate the FA assembly and cell-extracellular matrix communication.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Adhesiones Focales/fisiología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Repetición de Anquirina , Sitios de Unión , Calorimetría , Movimiento Celular , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Proteínas con Dominio LIM , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transfección , Dedos de Zinc
12.
J Phys Chem B ; 111(49): 13807-13, 2007 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-18020439

RESUMEN

A 4-micros molecular dynamics simulation of the second beta-hairpin of the B1 domain of streptococcal protein G is used to characterize the free energy surface and to evaluate different configurational entropy estimators. From the equilibrium folding-unfolding trajectory, 200 000 conformers are clustered according to their root-mean-square deviation (RMSD). The height of the free energy barrier between pairs of clusters is found to be significantly correlated with their pairwise RMSD. Relative free energies and relative configurational entropies of the clusters are determined by explicit evaluation of the partition functions of the different clusters. These entropies are used to evaluate different entropy estimators for the largest 20 clusters as well as a subensemble comprising exclusively extended conformers. It is found that the quasi-harmonic entropy estimator operating in dihedral angle space performs better than the one using Cartesian coordinates. A recent generalization of the quasi-harmonic approach that computes Shannon entropies of probability distributions obtained by projecting the conformers along the eigenvectors of the covariance matrix performs similarly well. For the best entropy estimators, a linear correlation coefficient between 0.92 and 0.97 is found. Unexpectedly, when correlations between dihedral angles are neglected, the agreement with the reference entropies improved.


Asunto(s)
Entropía , Péptidos/química , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína
13.
J Magn Reson ; 189(1): 90-103, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17892961

RESUMEN

We present a detailed description of a theory and a program called 3P. "3P" stands for periodicity, planarity, and pixel. The 3P program is based on the intrinsic periodic correlations between residual dipolar couplings (RDCs) and in-plane internuclear vectors, and between RDCs and the orientation of peptide planes relative to an alignment tensor. The program extracts accurate rhombic, axial components of the alignment tensor without explicit coordinates, and discrete peptide plane orientations, which are utilized in combination with readily available phi/psi angles to determine the three-dimensional backbone structures of proteins. The 3P program uses one alignment tensor. We demonstrate the utility and robustness of the program, using both experimental and synthetic data sets, which were added with different levels of noise or were incomplete. The program is interfaced to Xplor-NIH via a "3P" module and is available to the public. The limitations and differences between our program and existing methods are also discussed.


Asunto(s)
Modelos Teóricos , Resonancia Magnética Nuclear Biomolecular/métodos , Péptidos/química , Proteínas/química , Algoritmos , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Conformación Proteica , Ubiquitina/química
14.
J Magn Reson ; 174(2): 219-22, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15862237

RESUMEN

A novel processing scheme is presented that converts a two-dimensional double-quantum NMR spectrum into a single-quantum correlation spectrum. The covariance-like spectrum is computed from the 2D Fourier transform spectrum by emphasizing contributions that fulfill the double-quantum condition resulting in a symmetric spectrum that is easier to analyze. The method is demonstrated for the 2D INADEQUATE experiment.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Metanol/química , Procesamiento de Señales Asistido por Computador , Isótopos de Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA