Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Environ Pollut ; 357: 124394, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901819

RESUMEN

Microplastics are ubiquitous pollutants in the global marine environment. However, few studies have adequately explored the different toxic mechanisms of microplastics (MPs) and nanoplastics (NPs) in aquatic organisms. The sea cucumber, Apostichopus japonicus, is a key organism in the marine benthic ecosystem due to its crucial roles in biogeochemical cycles and food web. This study investigated the bioaccumulation and adverse effects of polystyrene micro- and nanoplastics (PS-M/NPs) of different sizes (20 µm, 1 µm and 80 nm) in the regenerated intestine of A. japonicus using multi-omics analysis. The results showed that after 30-day exposure at the concentration of 0.1 mg L-1, PS-MPs and PS-NPs accumulated to 155.41-175.04 µg g-1 and 337.95 µg g-1, respectively. This excessive accumulation led to increased levels of antioxidases (SOD, CAT, GPx and T-AOC) and reduced activities of immune enzymes (AKP, ACP and T-NOS), indicating oxidative damage and compromised immunity in the regenerated intestine. PS-NPs had more profound negative impacts on cell proliferation and differentiation compared to PS-MPs. Transcriptomic analysis revealed that PS-NPs primarily affected pathways related to cellular components, e.g., ribosome, and oxidative phosphorylation. In comparison, PS-MPs had greater influences on actin-related organization and organic compound metabolism. In the PS-M/NPs-treated groups, differentially expressed metabolites were mainly amino acids, fatty acids, glycerol phospholipid, and purine nucleosides. Additionally, microbial community reconstruction in the regenerated intestine was severely disrupted by the presence of PS-M/NPs. In the PS-NPs group, Burkholderiaceae abundance significantly increased while Rhodobacteraceae abundance decreased. Correlation analyses demonstrated that intestinal regeneration of A. japonicus was closely linked to its enteric microorganisms. These microbiota-host interactions were notably affected by different PS-M/NPs, with PS-NPs exposure causing the most remarkable disruption of mutual symbiosis. The multi-omic approaches used here provide novel insights into the size-dependent toxicity of PS-M/NPs and highlight their detrimental effects on invertebrates in M/NPs-polluted marine benthic ecosystems.

2.
Plants (Basel) ; 12(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37653869

RESUMEN

Maize, as a glycophyte, is hypersensitive to salinity, but the salt response mechanism of maize remains unclear. In this study, the physiological, biochemical, and molecular responses of two contrasting inbred lines, the salt-tolerant QXH0121 and salt-sensitive QXN233 lines, were investigated in response to salt stress. Under salt stress, the tolerant QXH0121 line exhibited good performance, while in the sensitive QXN233 line, there were negative effects on the growth of the leaves and roots. The most important finding was that QXH0121 could reshift Na+ from shoots into long roots, migrate excess Na+ in shoots to alleviate salt damage to shoots, and also improve K+ retention in shoots, which were closely associated with the enhanced expression levels of ZmHAK1 and ZmNHX1 in QXH0121 compared to those in QXN233 under salt stress. Additionally, QXH0121 leaves accumulated more proline, soluble protein, and sugar contents and had higher SOD activity levels than those observed in QXN233, which correlated with the upregulation of ZmP5CR, ZmBADH, ZmTPS1, and ZmSOD4 in QXH0121 leaves. These were the main causes of the higher salt tolerance of QXH0121 in contrast to QXN233. These results broaden our knowledge about the underlying mechanism of salt tolerance in different maize varieties, providing novel insights into breeding maize with a high level of salt resistance.

3.
Front Plant Sci ; 14: 1160571, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180378

RESUMEN

Shikonin derivatives are natural naphthoquinone compounds and the main bioactive components produced by several boraginaceous plants, such as Lithospermum erythrorhizon and Arnebia euchroma. Phytochemical studies utilizing both L. erythrorhizon and A. euchroma cultured cells indicate the existence of a competing route branching out from the shikonin biosynthetic pathway to shikonofuran. A previous study has shown that the branch point is the transformation from (Z)-3''-hydroxy-geranylhydroquinone to an aldehyde intermediate (E)-3''-oxo-geranylhydroquinone. However, the gene encoding the oxidoreductase that catalyzes the branch reaction remains unidentified. In this study, we discovered a candidate gene belonging to the cinnamyl alcohol dehydrogenase family, AeHGO, through coexpression analysis of transcriptome data sets of shikonin-proficient and shikonin-deficient cell lines of A. euchroma. In biochemical assays, purified AeHGO protein reversibly oxidized (Z)-3''-hydroxy-geranylhydroquinone to produce (E)-3''-oxo-geranylhydroquinone followed by reversibly reducing (E)-3''-oxo-geranylhydroquinone to (E)-3''-hydroxy-geranylhydroquinone, resulting in an equilibrium mixture of the three compounds. Time course analysis and kinetic parameters showed that the reduction of (E)-3''-oxo-geranylhydroquinone was stereoselective and efficient in presence of NADPH, which determined that the overall reaction proceeded from (Z)-3''-hydroxy-geranylhydroquinone to (E)-3''-hydroxy-geranylhydroquinone. Considering that there is a competition between the accumulation of shikonin and shikonofuran derivatives in cultured plant cells, AeHGO is supposed to play an important role in the metabolic regulation of the shikonin biosynthetic pathway. Characterization of AeHGO should help expedite the development of metabolic engineering and synthetic biology toward production of shikonin derivatives.

4.
Biomater Adv ; 151: 213473, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37245344

RESUMEN

Zein has enormous potential for application in biomedical field due to biodegradation and biocompatibility, we have recently prepared zein gel as a possible 3D printing ink. Our previous studies found that the pore structure in zein material can reduce early inflammation, promote the polarization of macrophages toward the M2 phenotype, and accelerate nerve regeneration. To further explore the role of zein in nerve repair, we used 4D printing technique to create nerve conduits with zein protein gel, and designed 2 types of tri-segment conduits with different degradation rates. Structural parts printed in support baths with higher water content show faster degradation rates than those printed in support baths with lower water content. The conduits that degraded quickly at both ends and slowly in the middle (CB75-CB40-CB75) and the conduits that degraded slowly at both ends and quickly in the middle (CB40-CB75-CB40) were 4D printed, respectively. Animal experiments suggest that the CB75-CB40-CB75 conduit is better for nerve repair, which may be because its degradation pattern can match to the pattern of nerve regeneration better. Our new strategy through 4D printing indicated that fine modulation in conduit degradation can affect efficacy of nerve repair significantly.


Asunto(s)
Tejido Nervioso , Zeína , Ratas , Animales , Ratas Sprague-Dawley , Zeína/química , Tinta , Nervio Ciático/cirugía , Nervio Ciático/fisiología
5.
Micromachines (Basel) ; 14(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241646

RESUMEN

A surface-potential-based analytical large-signal model, which is applicable to both ballistic and quasi-ballistic transport in InGaAs high electron mobility transistors, is developed. Based on the one-flux method and a new transmission coefficient, a new two-dimensional electron gas charge density is derived, while the dislocation scattering is novelly taken into account. Then, a unified expression for Ef valid in all the regions of gate voltages is determined, which is utilized to directly calculate the surface potential. The flux is used to derive the drain current model incorporating important physical effects. Moreover, the gate-source capacitance Cgs and gate-drain capacitance Cgd are obtained analytically. The model is extensively validated with the numerical simulations and measured data of the InGaAs HEMT device with the gate length of 100 nm. The model is in excellent agreement with the measurements under I-V, C-V, small-signal conditions, and large-signal conditions.

6.
Molecules ; 28(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050025

RESUMEN

In this work, TiO2-MXene/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) composite was utilized as an electrode material for the sensitive electrochemical detection of baicalein. The in-situ growth of TiO2 nanoparticles on the surface of MXene nanosheets can effectively prevent their aggregation, thus presenting a significantly large specific surface area and abundant active sites. However, the partial oxidation of MXene after calcination could reduce its conductivity. To address this issue, herein, PEDOT:PSS films were introduced to disperse the TiO2-MXene materials. The uniform and dense films of PEDOT:PSS not only improved the conductivity and dispersion of TiO2-MXene but also enhanced its stability and electrocatalytic activity. With the advantages of a composite material, TiO2-MXene/PEDOT:PSS as an electrode material demonstrated excellent electrochemical sensing ability for baicalein determination, with a wide linear response ranging from 0.007 to 10.0 µM and a lower limit of detection of 2.33 nM. Furthermore, the prepared sensor displayed good repeatability, reproducibility, stability and selectivity, and presented satisfactory results for the determination of baicalein in human urine sample analysis.


Asunto(s)
Flavanonas , Humanos , Reproducibilidad de los Resultados , Flavanonas/orina
7.
Environ Pollut ; 325: 121453, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36934965

RESUMEN

Antibiotics and heavy metals can have a negative impact on the nitrogen (N) cycle and microbial metabolism in coastal aquaculture environment. An indoor simulated culture experiment was conducted to explore how sulfadiazine and lead influence the N cycling in aquatic environment. Specifically, the experiment involved adding sulfadiazine (SDZ), lead (Pb), a combination of SDZ and Pb (SP), and a control group (CK). The fluxes and contents of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N) in sediment-water interface and sediments, the abundance of N cycle function genes (amoA_AOB, hzsA, nar, nirK, nirS, norB and nosZ) and microbiota in sediments were analyzed. The results showed that the presence of SDZ and Pb inhibited the nitrification function gene and nitrifiers abundance in surface sediment, and thus leading to more accumulation of NH4+ and NO2- in overlying water. Pb exposure increased the abundances of denitrifying bacteria stimulated the first three steps of denitrification in the sediment, resulting in more removal of NO3- from the sediment, but possibly had the risk of releasing more greenhouse gas N2O. Conversely, the presence of SDZ ultimately inhibited denitrification and anammox bacterial activities in the sediment. This study revealed how heavy metal and antibiotic impair the microbial communities and N cycling function gene expression, leading to the deterioration of typical coastal aquaculture environments.


Asunto(s)
Desnitrificación , Metales Pesados , Antibacterianos/toxicidad , Antibacterianos/metabolismo , Agua/metabolismo , Dióxido de Nitrógeno/metabolismo , Plomo/metabolismo , Ciclo del Nitrógeno , Bacterias/metabolismo , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Nitrógeno/metabolismo , Sulfadiazina/metabolismo
8.
Plant Physiol Biochem ; 196: 587-595, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36780721

RESUMEN

Shikonin is a red naphthoquinone natural product from plants with high economical and medical values. The para-hydroxybenzoic acid geranyltransferase (PGT) catalyzes the key regulatory step of shikonin biosynthesis. PGTs from Lithospermum erythrorhizon have been well-characterized and used in industrial shikonin production. However, its perennial medicinal plant Arnebia euchroma accumulates much more pigment and the underlying mechanism remains obscure. Here, we discovered and characterized the different isoforms of AePGTs. Phylogenetic study and structure modeling suggested that the N-terminal of AePGT6 contributed to its highest activity among 7 AePGTs. Indeed, AePGT2 and AePGT3 fused with 60 amino acids from the N-terminal of AePGT6 showed even higher activity than AePGT6, while native AePGT2 and AePGT3 don't have catalytic activity. Our result not only provided a mechanistic explanation of high shikonin contents in Arnebia euchroma but also engineered a best-performing PGT to achieve the highest-to-date production of 3-geranyl-4-hydroxybenzoate acid, an intermedium of shikonin.


Asunto(s)
Boraginaceae , Naftoquinonas , Filogenia , Boraginaceae/genética , Boraginaceae/metabolismo , Naftoquinonas/química , Naftoquinonas/metabolismo , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo
9.
Environ Pollut ; 319: 121015, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610653

RESUMEN

Micro/nano-plastics (M/NPs) are emerging contaminants in aquatic environment, however, little knowledge regarding the adverse effects of functionalized NPs has been documented so far. This study investigated the accumulation of different polystyrene nanoplastics (PS-NPs, i.e., plain PS, carboxyl-functional PS-COOH and amino-functional PS-NH2) at two particle sizes of 100 nm and 200 nm, and evaluated the impacts on oxidative stress, energy metabolism and mitochondrial pathway responses in intestine and respiratory tree of Apostichopus japonicus during the 20-d exposure experiment. The results showed that there were significant interactions of particle size and nanoplastic type on the accumulation of different PS-NPs. Exposure to NPs significantly increased the production of malondialdehyde, glutathione and reactive oxygen species, as well as the activities of antioxidant enzymes including glutathione reductase, superoxide dismutase and catalase, resulting in various degrees of oxidative damage in sea cucumber. The significant decrease in adenosine triphosphate content and increases in alkaline phosphatase and lactate dehydrogenase activities suggested that NPs impaired energy metabolism and modified their energy allocation. After 20-d exposure, the complex I, II and III activities in mitochondrial respiratory chain were significantly inhibited. Meanwhile, the Bax and Caspase-3 gene expression were significantly up-regulated, and Bacl-2 was down-regulated, indicating the toxicity on mitochondrial pathway of A. japonicus. The calculated IBR values elucidated the greater detriment to mitochondrial pathway than oxidative stress and energy metabolism. For 100 nm particle size, plain PS has stronger influence on all the biomarkers compared to PS-COOH/NH2, however, the opposite trends were observed in 200 nm PS-NPs. Furthermore, 100 nm PS-NPs were recognized to be more hazardous to sea cucumber than 200 nm microbeads. These findings provide new insights for understanding the differentiated toxic effects of functionalized NPs in marine invertebrates.


Asunto(s)
Nanopartículas , Pepinos de Mar , Stichopus , Contaminantes Químicos del Agua , Animales , Bioacumulación , Metabolismo Energético , Microplásticos/toxicidad , Nanopartículas/toxicidad , Estrés Oxidativo , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Mitocondrias/metabolismo
10.
Biomed Mater ; 18(2)2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36649654

RESUMEN

The identification of degraded products of implanted scaffolds is desirable to avoid regulatory concerns.In vivoidentification of products produced by the degradation of natural protein-based scaffolds is complex and demands the establishment of a routine analytical method. In this study, we developed a method for the identification of peptides produced by the degradation of zein bothin vitroandin vivousing high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Forin vitroexperiments, zein was degraded enzymatically and analyzed produced peptides.In vitrostudy showed cytocompatibility of peptides present in the hydrolysate of zein with no induction of apoptosis and cell senescence. Forin vivoexperiment, zein gels were prepared and subcutaneously implanted in rats. Peptides produced by the degradation of zein were identified and few were selected as targeted (unique peptides) and two peptides were synthesized as the reference sequence of these peptides. Further, peptide analysis using HPLC-MS/MS of different organs was performed after 2 and 8 weeks of implantation of zein gel in rats. It was found that zein-originated peptides were accumulated in different organs. QQHIIGGALF or peptides with same fractions were identified as unique peptides. These peptides were also found in control rats with regular rat feed, which means the degradation of implanted zein biomaterial produced food related peptides of non-toxic nature. Furthermore, hemotoxylin and eosin (H&E) staining exhibited normal features. Overall, zein degraded products showed cytocompatibility and did not induce organ toxicity, and QQHIIGGALF can act as a standard peptide for tracing and determining zein degradation. The study also provides the feasibility of complex analysis on identification and quantification of degradation products of protein-based scaffolds.


Asunto(s)
Espectrometría de Masas en Tándem , Zeína , Ratas , Animales , Cromatografía Líquida de Alta Presión/métodos , Zeína/química , Péptidos/química , Proteínas
11.
Biomater Adv ; 145: 213225, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36527960

RESUMEN

Zein is a biocompatible and biodegradable corn protein with promising properties for biomedical applications. It is hydrophobic with the ability to self-assemble in an aqueous medium. It can also form a gel in hydroalcoholic solvents at higher concentrations. Few studies have investigated the biomedical significance of zein gels. Herein, we exploited the injectability and water-responsive increase in stiffness of zein gel to achieve hemostasis by physical blockage of the wound and clot formation. The release of components from the gel further aided blood clotting and gave a higher clot strength than a natural clot, which can prevent rebleeding. Rabbit aortic injury and swine femoral artery injury models were used to evaluate the hemostatic efficacy of the zein gel. Zein gel was effective in both hemostatic models without applying external compression due to an in situ increase in stiffness, while the control (Celox™ Gauze) required external compression at the wound site. The zein gel was easily removed after hemostasis due to hydrophobic self-assembly. Overall, zein gel is proposed as an effective hemostatic product for any wound shape owing to its good shape adaptability and rapid in situ blood-responsive stiffness increase.


Asunto(s)
Hemostáticos , Zeína , Porcinos , Animales , Conejos , Hemostáticos/farmacología , Zeína/química , Hemostasis , Geles , Vendajes
12.
Bioact Mater ; 23: 343-352, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36474653

RESUMEN

Four-dimensional (4D) printing is a promising technology that provides solutions for compelling needs in various fields. Most of the reported 4D printed systems are based on the temporal shape transformation of printed subjects. Induction of temporal heterogenicity in functions in addition to shape may extend the scope of 4D printing. Herein, we report a 4D printing approach using plant protein (zein) gel inspired by the amyloid fibrils formation mechanism. The printing of zein gel in a specialized layered-Carbopol supporting bath with different water concentrations in an ethanol-water mixture modulates hydrophobic and hydrogen bonding that causes temporal changes in functions. The part of the construct printed in a supporting bath with higher water content exhibits higher drug loading, faster drug release and degradation than those printed in the supporting bath with lower water content. Tri-segment conduit and butterfly-shaped construct with two asymmetrical wings are printed using this system to evaluate biomedical function as nerve conduit and drug delivery system. 4D printed conduits are also effective as a drug-eluting urethral stent in the porcine model. Overall, this study extends the concept of 4D printing beyond shape transformation and presents an approach of fabricating specialized baths for 4D printing that can also be extended to other materials to obtain 4D printed medical devices with translational potential.

13.
ACS Appl Mater Interfaces ; 14(47): 52670-52683, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36379044

RESUMEN

Photothermal therapy (PTT) is regarded as one of the potential techniques to replace surgery in the treatment of tumors. Polyaniline (PANI) shows better biocompatibility than inorganic reagents, which has been widely used in tumor photoacoustic (PA) imaging and PTT. However, the poor water solubility and nonspecific aggregation of PANI nanoparticles severely restricted their biomedical application. In addition, it is difficult to control the photothermal effect just on cancer cells. Herein, we develop tumor pH-responsive PANI-Gel/Cu assemblies, which can achieve targeted and precise ablation of tumors. Due to the high hydrophilicity of gelatin, the PANI-Gel/Cu assemblies show excellent dispersion in physiological solutions and long-term stability. By taking advantage of the self-doping effect between the carboxyl groups in gelatin and the imine part of the PANI skeleton, the photothermal characteristics of PANI-Gel/Cu assemblies can be promoted effectively by the acid tumor microenvironment, and the PA imaging of PANI-Gel/Cu assemblies can also be activated by tumor pH. Consequently, both the PTT enhancement and PA signal amplification can be triggered under a tumor microenvironment, and PANI-Gel/Cu assemblies can be targeted to cancer cells with the RGD sequences in their gelatin skeleton. In vivo imaging-guided PTT to A549 cancer shows precise treatment with little harm to normal cells, and PANI-Gel/Cu assemblies can disassemble into tiny particles (<15 nm) under laser irradiation. This work overcomes the intrinsic limitation of PANI materials, i.e., poor water solubility and nonspecific aggregation, meanwhile providing a pH-active PANI-based platform for precise and effective ablation of cancer.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Fototerapia/métodos , Hipertermia Inducida/métodos , Terapia Fototérmica , Técnicas Fotoacústicas/métodos , Gelatina , Agua , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Concentración de Iones de Hidrógeno , Línea Celular Tumoral , Microambiente Tumoral
14.
World J Clin Cases ; 10(22): 7642-7652, 2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36158479

RESUMEN

Imaging techniques are useful tools in the diagnosis and treatment of pancreaticobiliary maljunction (PBM). PBM is a precancerous lesion often relative to the disease of the pancreas and biliary tract, for example, cholecystolithiasis, protein plugs, and pancreatitis. For patients with PBM, early diagnosis and timely treatment are highly important, which is largely dependent on imaging techniques. The continuous development of imaging techniques, including endoscopic retrograde cholangiopancreatography, magnetic resonance cholangiopancreatography, computed tomography, ultrasound, and intraoperative cholangiography, has provided appropriate diagnostic and therapeutic tools for PBM. Imaging techniques, including non-invasive and invasive, have distinct advantages and disadvantages. The purpose of this paper is to review the application of various imaging techniques in the diagnosis and treatment of PBM.

15.
Int J Pharm ; 627: 122206, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36126824

RESUMEN

Recently, biomedical applications of organogels have been increasing; however, there is a demand for bio-based polymers. Here, we report self-assembled zein organogels in N-methyl pyrrolidone (NMP), Dimethyl sulfoxide (DMSO), and glycerol formal (GF). The gel formation was driven by the solvent's polarity and the hydrogen bonding component of Hansen Solubility Parameters was important in promoting gelation. Gels exhibited shear-thinning and thixotropic properties. Furthermore, water-induced self-assembly of zein allows mechanically robust in situ implant formation by solvent exchange. Ciprofloxacin was incorporated as a model drug and sustained release depending upon the solvent exchange rate was observed. In situ implants in agarose gel retained antibacterial efficacy against S. aureus for more than 14 days. Zein-based organogels were further applied as 3D printing ink and it was found that zein gel in DMSO had superior printability than gels prepared in NMP and GF. Using three solvents to prepare organogels can enable the encapsulation of various drugs and facilitate the preparation of composite gels with other biocompatible polymers. These organogel systems can further be used for developing 3D printed drug delivery systems or scaffolds for tissue engineering.


Asunto(s)
Zeína , Dimetilsulfóxido , Tinta , Preparaciones de Acción Retardada , Staphylococcus aureus , Sefarosa , Excipientes , Geles , Solventes , Polímeros , Agua , Impresión Tridimensional , Antibacterianos , Ciprofloxacina
16.
Front Pharmacol ; 13: 871262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935821

RESUMEN

Background: In the first-line treatment of biliary tract cancers (BTCs), XELOX (capecitabine plus oxaliplatin) showed comparable clinical efficacy and safety to gemcitabine and oxaliplatin (GEMOX), with fewer visits and better treatment management. Our study aims to investigate the cost-effectiveness of XELOX and GEMOX as the first-line therapy for BTCs from the perspective of the Chinese healthcare systems and to provide valuable suggestions for clinical decision-making. Methods: A Markov model was developed using the phase 3 randomized clinical trial (ClinicalTrials.gov number, NCT01470443) to evaluate the cost-effectiveness of XELOX and GEMOX. Quality-adjusted life-years (QALYs) and incremental cost-effectiveness ratios (ICERs) were used as the primary outcomes of the model. Uncertainty was assessed using univariate and probabilistic sensitivity analysis. Results: The QALYs for the XELOX and GEMOX groups were 0.66 and 0.54, respectively. In China, the total cost of XELOX treatment is US $12,275.51, which is lower than that of the GEMOX regimen. In addition, XELOX is more effective than GEMOX, making it the preferred regimen. A sensitivity analysis determined that XELOX therapy has a stable economic advantage in China. Conclusion: Compared to GEMOX, XELOX is a more cost-effective treatment as a first-line treatment for advanced BTC from the perspective of the Chinese health service system.

17.
Int J Biol Macromol ; 205: 110-117, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35149100

RESUMEN

Trauma-related excessive bleeding is one of the leading causes of death. Chitosan (CS) sponges have unique advantages in the treatment of massive bleeding, but their application is limited by poor stability and toxic crosslinking agent. In this work, chitosan/polyvinylpyrrolidone/zein (CS/PVP/Zein) sponges with macroporous structure were prepared, which exhibited rapid water absorption capacity and water-triggered expanding property with low cytotoxicity and low hemolysis ratio. In vitro blood coagulation experiments showed that CS/PVP/Zein sponges could clot blood significantly faster than commercial surgical gauze. Further investigation of the hemostatic mechanism suggested that the CS/PVP/Zein sponges could accelerate coagulation by promoting attachment of erythrocytes, activation of platelets, and rapid plasma protein absorption. Prepared sponges were also found effective in the rat femoral artery transection model to control bleeding. Overall, the CS/PVP/Zein sponges exhibited the potential to control trauma-related hemorrhage.


Asunto(s)
Quitosano , Hemostáticos , Zeína , Animales , Quitosano/química , Quitosano/farmacología , Hemostasis , Hemostáticos/química , Povidona/farmacología , Ratas , Zeína/farmacología
18.
Acta Biomater ; 140: 289-301, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843952

RESUMEN

Zein is a biodegradable material with great potential in biomedical applications. However, as a plant-derived protein material, body's immune response is the key factor to determine its clinical performance. Herein, for the first time, the zein-induced immune response is evaluated systemically and locally, comparing with typical materials including alginate (ALG), poly(lactic-co-glycolic) acid (PLGA) and polystyrene (PS). Zein triggers an early inflammatory response consistent with the non-degradable PS, but this response decreases to the same level of the biosafe ALG and PLGA with zein degradation. Changing sphere sizes, pore structure and encapsulating dexamethasone can effectively modulate the zein-induced immune response, especially the pore structure which also inhibits neutrophil recruitment and promotes macrophages polarizing towards M2 phenotype. Thus, porous zein conduits with high and low porosity are further fabricated for the 15 mm sciatic nerve defect repair in rats. The conduits with high porosity induce more M2 macrophages to accelerate nerve regeneration with shorter degradation period and better nerve repair efficacy. These findings suggest that the pore structure in zein materials can alleviate the zein-induced early inflammation and promote M2 macrophage polarization to accelerate nerve regeneration. STATEMENT OF SIGNIFICANCE: Zein is a biodegradable material with great potential in biomedical applications. However, as a plant protein, its possible immune response in vivo is always the key issue. Until now, the systemic study on the immune responses of zein in vivo is still very limited, especially as an implant. Herein, for the first time, the zein-induced immune response was evaluated systemically and locally, comparing with typical biomaterials including alginate, poly(lactic-co-glycolic) acid and polystyrene. Changing sphere sizes, pore structure and encapsulating dexamethasone could effectively modulate the zein-induced immune response, especially the pore structure which also inhibited neutrophil recruitment and promoted macrophages polarizing towards M2 phenotype. Furthermore, the pore structure in zein nerve conduits was proved to alleviate the early inflammation and promote M2 macrophage polarization to accelerate nerve regeneration.


Asunto(s)
Zeína , Animales , Inmunidad , Regeneración Nerviosa/fisiología , Ratas , Ratas Sprague-Dawley , Nervio Ciático/fisiología , Zeína/química , Zeína/farmacología
19.
Sci Rep ; 11(1): 21639, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737270

RESUMEN

Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley Additive exPlanations) method to provide insights into the model's outcome or prediction. MODEL-2 (AUROC: 0.822; 95% confidence interval [CI] 0.783-0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 0.784-0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the occurrence of SBP.


Asunto(s)
Predicción/métodos , Cirrosis Hepática/microbiología , Peritonitis/microbiología , Adulto , Ascitis/complicaciones , Infecciones Bacterianas/epidemiología , Proteína C-Reactiva/metabolismo , Femenino , Fibrosis/complicaciones , Humanos , Cirrosis Hepática/complicaciones , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Modelos Teóricos , Valor Predictivo de las Pruebas
20.
Biomed Mater ; 16(6)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34517347

RESUMEN

As a novel bone substitute material, zein-based scaffolds (ZS) should have suitable mechanical properties and porosity. ZS has shown good compressive properties matching cancellous bone, but there is still a demand to improve its mechanical properties, especially tensile and bending properties without adding plasticizers. The present study explored two simple and environment-friendly factors for this purpose: fiber reinforcement and quenching. Addition of electrospun zein fibers enhanced all mechanical properties significantly including compressive, tensile, and bending moduli; compressive and bending strengths of ZS with both higher (70-80%) and lower (50-60%) porosities, no matter whether heating treated or not treated. Especially, all these parameters were further enhanced significantly by addition of heating treated fibers. AFM provided evidence that high temperature modification could significantly alter the micro-elastic properties of zein electrospun fibers, i.e., increased stiffness of fibers. Quenching treatment also enhanced compressive, tensile, and bending strengths significantly. Finally, quenching treated ZS were implanted into critical-sized bone defects (15 mm) of the rabbit model to compare the repair efficacy with a commercial ß-tricalcium phosphate product. The results demonstrated that there were no remarkable differences in bone reconstructions between these two materials.


Asunto(s)
Sustitutos de Huesos/química , Andamios del Tejido/química , Zeína/química , Animales , Sustitutos de Huesos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas Electroquímicas , Ensayo de Materiales , Ratones , Porosidad , Conejos , Radio (Anatomía)/efectos de los fármacos , Radio (Anatomía)/patología , Ingeniería de Tejidos , Zeína/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...