Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JASA Express Lett ; 2(2): 024001, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36154256

RESUMEN

A microcrack localization method based on a static component (SC) induced by a primary A0 Lamb wave is proposed. Based on the bilinear stress-strain constitutive model, a two-dimensional finite element model is built to investigate the interaction between microcracks and Lamb waves. The A0 Lamb wave at low frequency is selected to be the primary Lamb wave, which is beneficial to microcracks localization. Based on the time of flight of the generated SC pulse, an indicator named normalized amplitude index is defined for finding the location and number of microcracks. Simulation results show that one or multiple microcracks can be effectively located.

2.
Ultrasonics ; 124: 106770, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35643054

RESUMEN

Using the nonlinear interaction effect between ultrasonic Lamb waves and microcracks to detect and locate microcracks has the advantages of fast detection speed and high sensitivity. In this paper, a method for microcrack localization based on cross-shaped sensor clusters in a plate is proposed by combining nonlinear ultrasonic Lamb wave technology and time difference of arrival (TDOA) technology. The antisymmetric (A0) mode at low frequency is chosen as the primary Lamb wave to simplify the complication of the dispersion and multi-mode properties of Lamb waves. The selected mode pair (A0-s0) weakens the influence of the cumulative growth effect of higher harmonics induced by the inherent material nonlinearity on the microcrack characteristic signals. Pulse inversion technique and cross correlation function are used to extract the TDOAs of the nonlinear characteristic signals including microcrack information. The cross-shaped sensor clusters approach proposed for the first time can achieve reliable and fast microcrack localization without being affected by the duration of the excitation signal, and a priori knowledge of group velocities of primary wave modes or generated harmonics. Experimental and numerical results validate the proposed method in isotropic and anisotropic plates. This paper provides a new idea for nonlinear ultrasonic nondestructive evaluation and structural health monitoring of microcracks in plates.

3.
Materials (Basel) ; 13(15)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722464

RESUMEN

In this paper, characterization of the orientation of a microcrack is quantitatively investigated using the directivity of second harmonic radiated by the secondary sound source (SSS) induced by the nonlinear interaction between an incident ultrasonic transverse wave (UTW) and a microcrack. To this end, a two-dimensional finite element (FE) model is established based on the bilinear stress-strain constitutive relation. Under the modulation of contact acoustic nonlinearity (CAN) to the incident UTW impinging on the microcrack examined, the microcrack itself is treated as a SSS radiating the second harmonic. Thus, the directivity of the second harmonic radiated by the SSS is inherently related to the microcrack itself, including its orientation. Furthermore, the effects of the stiffness difference between the compressive and tensile phases in the bilinear stress-strain model, and the UTW driving frequency, as well as the radius of the sensing circle on the SSS directivity are discussed. The FE results show that the directivity pattern of the second harmonic radiated by the SSS is closely associated with the microcrack orientation, through which the microcrack orientation can be characterized without requiring a baseline signal. It is also found that the SSS directivity varies sensitively with the driving frequency of the incident UTW, while it is insensitive to the stiffness difference between the compressive and tensile phases in the bilinear stress-strain model and the radius of the sensing circle. The results obtained here demonstrate that the orientation of a microcrack can be characterized using the directivity of the SSS induced by the interaction between the incident UTW and the microcrack.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...