Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170487, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38296079

RESUMEN

Oxygenated organic molecules (OOMs) are recognized as important precursors for new particle formation (NPF) in the urban atmosphere. The paper theoretically studied the formation of OOMs by styrene oxidation processes initiated by OH radicals, focusing on the OOMs nucleation mechanism. The results found that in the presence of an H2SO4 molecule, lowly oxygenated organic molecules containing a benzene ring (LOMBs) can form stable clusters and grow to the scale of a critical nucleus through pi-pi stacking and OH hydrogen bonding. In addition, LOMBs are more readily generated in a styrene-oxidized system in the presence/absence of NOx than highly oxygenated organic molecules (HOMs). The reaction of OH radicals with other aromatics containing a branched chain on the benzene ring produces LOMBs to varying degrees, with pi-pi stacking playing an essential role. This result suggests that, in the presence of H2SO4 molecules, LOMBs may play a more significant role in promoting nucleation than HOMs. Our findings serve as a pivotal foundation for future investigations into the oxidation and nucleation processes of diverse aromatics in urban environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA