Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691832

RESUMEN

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Asunto(s)
Colitis , Sulfato de Dextran , Factor 2 Relacionado con NF-E2 , FN-kappa B , Polisacáridos , Animales , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/administración & dosificación , Sulfato de Dextran/efectos adversos , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Humanos , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/metabolismo , Células RAW 264.7 , FN-kappa B/metabolismo , FN-kappa B/genética , Ratones Endogámicos C57BL , Sustancias Protectoras/farmacología , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Estrés Oxidativo/efectos de los fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/inmunología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/inducido químicamente , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Mucina 2/genética , Mucina 2/metabolismo
2.
BMC Plant Biol ; 24(1): 414, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760680

RESUMEN

BACKGROUND: Variations in hydraulic conductivity may arise from species-specific differences in the anatomical structure and function of the xylem, reflecting a spectrum of plant strategies along a slow-fast resource economy continuum. Spruce (Picea spp.), a widely distributed and highly adaptable tree species, is crucial in preventing soil erosion and enabling climate regulation. However, a comprehensive understanding of the variability in anatomical traits of stems and their underlying drivers in the Picea genus is currently lacking especially in a common garden. RESULTS: We assessed 19 stem economic properties and hydraulic characteristics of 17 Picea species grown in a common garden in Tianshui, Gansu Province, China. Significant interspecific differences in growth and anatomical characteristics were observed among the species. Specifically, xylem hydraulic conductivity (Ks) and hydraulic diameter exhibited a significant negative correlation with the thickness to span ratio (TSR), cell wall ratio, and tracheid density and a significant positive correlation with fiber length, and size of the radial tracheid. PCA revealed that the first two axes accounted for 64.40% of the variance, with PC1 reflecting the trade-off between hydraulic efficiency and mechanical support and PC2 representing the trade-off between high embolism resistance and strong pit flexibility. Regression analysis and structural equation modelling further confirmed that tracheid size positively influenced Ks, whereas the traits DWT, D_r, and TSR have influenced Ks indirectly. All traits failed to show significant phylogenetic associations. Pearson's correlation analysis demonstrated strong correlations between most traits and longitude, with the notable influence of the mean temperature during the driest quarter, annual precipitation, precipitation during the wettest quarter, and aridity index. CONCLUSIONS: Our results showed that xylem anatomical traits demonstrated considerable variability across phylogenies, consistent with the pattern of parallel sympatric radiation evolution and global diversity in spruce. By integrating the anatomical structure of the stem xylem as well as environmental factors of origin and evolutionary relationships, our findings provide novel insights into the ecological adaptations of the Picea genus.


Asunto(s)
Clima , Picea , Madera , Xilema , Picea/anatomía & histología , Picea/fisiología , Picea/crecimiento & desarrollo , Madera/anatomía & histología , Xilema/anatomía & histología , Xilema/fisiología , China , Especificidad de la Especie , Tallos de la Planta/anatomía & histología , Tallos de la Planta/fisiología , Tallos de la Planta/crecimiento & desarrollo
3.
Sci Rep ; 14(1): 11290, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760385

RESUMEN

Larch, a prominent afforestation, and timber species in northeastern China, faces growth limitations due to drought. To further investigate the mechanism of larch's drought resistance, we conducted full-length sequencing on embryonic callus subjected to PEG-simulated drought stress. The sequencing results revealed that the differentially expressed genes (DEGs) primarily played roles in cellular activities and cell components, with molecular functions such as binding, catalytic activity, and transport activity. Furthermore, the DEGs showed significant enrichment in pathways related to protein processing, starch and sucrose metabolism, benzose-glucuronic acid interconversion, phenylpropyl biology, flavonoid biosynthesis, as well as nitrogen metabolism and alanine, aspartic acid, and glutamic acid metabolism. Consequently, the transcription factor T_transcript_77027, which is involved in multiple pathways, was selected as a candidate gene for subsequent drought stress resistance tests. Under PEG-simulated drought stress, the LoMYB8 gene was induced and showed significantly upregulated expression compared to the control. Physiological indices demonstrated an improved drought resistance in the transgenic plants. After 48 h of PEG stress, the transcriptome sequencing results of the transiently transformed LoMYB8 plants and control plants exhibited that genes were significantly enriched in biological process, cellular component and molecular function. Function analyses indicated for the enrichment of multiple KEGG pathways, including energy synthesis, metabolic pathways, antioxidant pathways, and other relevant processes. The pathways annotated by the differential metabolites mainly encompassed signal transduction, carbohydrate metabolism, amino acid metabolism, and flavonoid metabolism.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Polietilenglicoles , Estrés Fisiológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polietilenglicoles/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente , Transcriptoma , Perfilación de la Expresión Génica
4.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 249-255, 2024 Apr 01.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38597085

RESUMEN

Complicated crown root fracture is a serious combined fracture of the enamel, dentin, and cementum in dental trauma. The treatment method is complicated. During the procedure, the condition of pulp, periodontal, and tooth body should be thoroughly evaluated, and a multidisciplinary approach combined with sequential treatment is recommended. This case reported the different treatment and repair processes of one case of two affected teeth after complicated crown root fracture of upper anterior teeth, including regrafting of broken crown after flap surgery at the first visit, direct resin repair to remove broken fragments, and pulp treatment and post-crown repair at the second visit. After 18 months of follow-up, the preservation treatment of the affected teeth with complicated crown root fracture was achieved. Therefore, fragment reattachment and post-crown restoration are feasible treatment options for children with complicated crown root fracture.


Asunto(s)
Fracturas de los Dientes , Raíz del Diente , Niño , Humanos , Incisivo/lesiones , Corona del Diente/lesiones , Fracturas de los Dientes/terapia , Exposición de la Pulpa Dental/terapia , Coronas
5.
Adv Mater ; : e2403328, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38586929

RESUMEN

Metal-organic frameworks (MOFs) have emerged as promising platforms for photocatalytic hydrogen evolution reaction (HER) due to their fascinating physiochemical properties. Rationally engineering the compositions and structures of MOFs can provide abundant opportunities for their optimization. In recent years, high-entropy materials (HEMs) have demonstrated great potential in the energy and environment fields. However, there is still no report on the development of high-entropy MOFs (HE-MOFs) for photocatalytic HER in aqueous solution. Herein, the authors report the synthesis of a novel p-type HE-MOFs single crystal (HE-MOF-SC) and the corresponding HE-MOFs nanosheets (HE-MOF-NS) capable of realizing visible-light-driven photocatalytic HER. Both HE-MOF-SC and HE-MOF-NS exhibit higher photocatalytic HER activity than all the single-metal MOFs, which are supposed to be ascribed to the interplay between the different metal nodes in the HE-MOFs that enables more efficient charge transfer. Moreover, impressively, the HE-MOF-NS demonstrates much higher photocatalytic activity than the HE-MOF-SC due to its thin thickness and enhanced surface area. At optimum conditions, the rate of H2 evolution on the HE-MOF-NS is ≈13.24 mmol h-1 g-1, which is among the highest values reported for water-stable MOF photocatalysts. This work highlights the importance of developing advanced high-entropy materials toward enhanced photocatalysis.

6.
Nano Lett ; 24(17): 5206-5213, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647212

RESUMEN

Single Atoms Catalysts (SACs) have emerged as a class of highly promising heterogeneous catalysts, where the traditional bottom-up synthesis approaches often encounter considerable challenges in relation to aggregation issues and poor stability. Consequently, achieving densely dispersed atomic species in a reliable and efficient manner remains a key focus in the field. Herein, we report a new facile electrochemical knock-down strategy for the formation of SACs, whereby the metal Zn clusters are transformed into single atoms. While a defect-rich substrate plays a pivotal role in capturing and stabilizing isolated Zn atoms, the feasibility of this novel strategy is demonstrated through a comprehensive investigation, combining experimental and theoretical studies. Furthermore, when studied in exploring for potential applications, the material prepared shows a remarkable improvement of 58.21% for the Li+ storage and delivers a capacity over 300 Wh kg-1 after 500 cycles upon the transformation of Zn clusters into single atoms.

7.
Angew Chem Int Ed Engl ; : e202403996, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38679568

RESUMEN

Decreasing perovskite nanocrystal size increases radiative recombination due to the quantum confinement effect, but also increases the Auger recombination rate which leads to carrier imbalance in the emitting layers of electroluminescent devices. Here, we overcome this trade-off by increasing the exciton effective mass without affecting the size, which is realized through the trace Cd2+ doping of formamidinium lead bromide perovskite nanocrystals. We observe an ~2.7 times increase in the exciton binding energy benefiting from a slight distortion of the [BX6]4- octahedra caused by doping in the case of that the Auger recombination rate is almost unchanged. As a result, bright color-saturated green emitting perovskite nanocrystals with a photoluminescence quantum yield of 96% are obtained. The light-emitting devices based on those nanocrystals reached a high external quantum efficiency (EQE) of 29.4% corresponding to a current efficiency of 123 cd A-1, and showed dramatically improved device lifetime, with a narrow bandwidth of 22 nm and Commission Internationale de I'Eclairage coordinates of (0.20, 0.76) for color-saturated green emission for the electroluminescence peak centered at 534 nm, thus being fully compliant with the latest standard for wide color gamut displays.

8.
J Cardiothorac Surg ; 19(1): 217, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627813

RESUMEN

BACKGROUND: Cerebral protection strategies have been investigated since the introduction of aortic arch surgery and have been modified over the centuries. However, the cerebral protective effects of unilateral and bilateral antegrade cerebral perfusion are similar, with opportunities for further improvement. METHODS: A total of 30 patients who underwent total arch surgery were enrolled in this study. Patients were assigned to the novel continuous whole-brain or unilateral antegrade cerebral perfusion group according to the cerebral perfusion technique used. Preoperative clinical data and 1-year postoperative follow-up data were collected and analyzed. RESULTS: There were no significant differences between the two groups in terms of the incidence of permanent neurological deficit, mortality, or therapeutic efficacy. However, the incidence of temporary neurological dysfunction in the novel whole-brain perfusion group was significantly lower than that in the unilateral antegrade cerebral perfusion group. CONCLUSIONS: In this study, the branch-first approach with a novel whole-brain perfusion strategy had no obvious disadvantages compared with unilateral antegrade cerebral perfusion in terms of cerebral protection and surgical safety. These findings suggest that this new technique is feasible and has application value for total arch surgery.


Asunto(s)
Aorta Torácica , Circulación Cerebrovascular , Humanos , Aorta Torácica/cirugía , Encéfalo , Perfusión/métodos , Paro Circulatorio Inducido por Hipotermia Profunda , Resultado del Tratamiento , Complicaciones Posoperatorias/prevención & control
9.
Heliyon ; 10(5): e27040, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439854

RESUMEN

Toona sinensis (A. Juss.) Roem, a multipurpose economic tree, is widely cultivated across Asia, but its high-yielding mature leaves are largely overlooked. This study systematically analysed the flavonols in the mature leaves of T. sinensis from 44 different geographic locations across China, using HPLC-DAD and HPLC-ESI-MS2 techniques. In total, 18 flavonols were detected, among which 6 (f1, f3, f7, f14, f15, and f17) were firstly identified in this plant. Significant variations in quality among different T. sinensis varieties were observed (p < 0.01). Through OPLS-DA analysis, all samples could be clearly categorised into two distinct geographical groups. The northern varieties (N1-N20) exhibited concise flavonol fingerprints with higher total flavonol content (TFC) (727.55 ± 22.79 mg/100 g fresh weight, FW), predominantly non-acylated flavonols (705.95 ± 21.65 mg/100 g FW), particularly quercetin glycosides (614.60 ± 22.76 mg/100 g FW). In contrast, the southern varieties (S1-S24) presented more intricate flavonol profiles with lower TFC (622.81 ± 21.82 mg/100 g FW) and balanced amounts of quercetin (344.75 ± 16.41 mg/100 g FW) and kaempferol glycosides (278.06 ± 12.29 mg/100 g FW). Notably, the southern samples possessed higher content of acylated flavonols (184.50 ± 12.87 mg/100 g FW), especially galloylated ones, which contributed to their heightened antioxidant activities. Quercetin 3-O-rhamnoside (f11') and kaempferol 3-O-galloyglucoside (f11) were determined to be the crucial biomarkers for quality discrimination. Considering quality control of mature T. sinensis leaves as potential resources for natural flavonol extraction, this study suggested that their northern/southern geographic origins should be distinguished first. Additionally, the flavonol profiles allow for discriminating the origin and assessing the quality of T. sinensis.

10.
ACS Appl Mater Interfaces ; 16(11): 14357-14363, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38440977

RESUMEN

Infrared absorption provides the intrinsic vibrational information on chemical bonds, which is important for identifying molecular moieties. To enhance the sensitivity of infrared absorption, plasmonic antennas have been widely used to localize and concentrate mid-infrared light into nanometer-scale hotspots at desired wavelengths. Here, instead of inorganic plasmonic antennas, we have demonstrated surface-enhanced infrared absorption (SEIRA) using single plasmonic antennas based on a conducting polymer. With commercially available PEDOT:PSS (poly(ethylenedioxythiophene):poly(styrenesulfonate)), the organic plasmonic antennas are in the fashion of single PEDOT:PSS micropillars. The plasmonic resonance of single PEDOT:PSS micropillar antennas can be easily tuned by the micropillar diameter or by the interantenna gap across the mid-infrared frequencies. These organic plasmonic antennas show the ability to enhance the molecular vibrations of CBP (4,4'-bis(N-carbazolyl)-1,1'-biphenyl) molecules with a thickness of about 50 nm, illustrating the good SEIRA sensitivity (with SEIRA sensitivity up to ∼7800) at the single antenna level. Our findings provide another material choice for mid-infrared plasmonic antennas toward SEIRA applications.

11.
BMC Plant Biol ; 24(1): 217, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532319

RESUMEN

Catalpa bungei is a precious timber species distributed in North China where drought often occurs. To clarify adaptive responses of C. bungei to partial- and full- root-zone drought under the influence of nitrogen forms, a two-factor experiment was conducted in which well-watered (WW), partial root-zone drought in horizontal direction (H-PRD) and in vertical direction (V-PRD), and full root-zone drought (FRD) were combined with nitrate-nitrogen (NN) and ammonium-nitrogen (AN) treatments. C. bungei responded to FRD by sharply closing stomata, decreasing gas exchange rate and increasing leaf instantaneous water use efficiency (WUEi). Under FRD condition, the growth of seedlings was severely inhibited and the effect of N forms was covered up by the drastic drought effect. In comparison, stomata conductance and gas exchanges were moderately inhibited by PRDs. WUEi in V-PRD treatment was superior to H-PRD due to the active stomata regulation resulting from a higher ABA level and active transcription of genes in abscisic acid (ABA) signaling pathway under V-PRD. Under both PRDs and FRD, nitrate benefited antioxidant defense, stomata regulation and leaf WUEi. Under V-PRD, WUEi in nitrate treatment was superior to that in ammonium treatment due to active stomata regulation by signaling network of nitric oxide (NO), Ca2+ and ABA. Under FRD, WUEi was higher in nitrate treatment due to the favoring photosynthetic efficiency resulting from active NO signal and antioxidant defense. The interactive effect of water and N forms was significant on wood xylem development. Superoxide dismutase (SOD) and catalase (CAT) largely contributes to stress tolerance and xylem development.


Asunto(s)
Nitratos , Nitrógeno , Nitrógeno/metabolismo , Sequías , Antioxidantes , Agua/metabolismo
12.
Sci Rep ; 14(1): 4165, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378870

RESUMEN

This study aimed to investigate the associations between the clinical characteristics and effectiveness of anti-PD-1 inhibitors in patients with EGFR-sensitive mutations, aiming to identify the potential subgroup of patients who might benefit from anti-PD-1 inhibitor treatment. Patients with advanced non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR)-sensitive mutations who received subsequent anti-PD-1 inhibitors in combination with chemotherapy/antiangiogenic agents or alone after progression to tyrosine kinase inhibitors (TKIs) were screened. Clinical characteristics, including hematological parameters, were investigated for potential correlations with clinical outcomes. Subgroup and multivariate analyses were used for further confirmation of the relationship. Kaplan-Meier curves and Cox survival regression models using the log-rank test were used for progression-free survival (PFS) and overall survival (OS) assessments between the groups. Multiple regression analysis was performed using the standard regression coefficient values. The Wilcoxon test was used for the analysis of the variation in NLR. P ≤ 0.05 was considered to indicate statistical significance. This study was a retrospective study. Twenty-two patients met the inclusion criteria and were included in the study. The median PFS was 3.05 months (95% CI, 2.9-10.2 months). The median OS was 7.30 months (95% CI, 5.2-18.1 months). PFS in low neutrophil to lymphocyte ratio (NLR ≤ 4) was significantly longer than high NLR (NLR > 4, 5.7 months versus 2.0 months, HR, 0.35, 95% CI, 0.08-0.63, P = 0.0083). The OS in the low NLR group was also significantly better than that in the high NLR group (OS, 21.3 months versus 5.0 months, HR, 0.33; 95% CI, 0.09-0.74; P = 0.0163). In the multivariate analysis, NLR was the only significant factor for OS benefits (ß = 3.535, 95% CI, 1.175-10.636, P = 0.025). Further investigation revealed that front-line TKIs exposure may contribute to the elevation or decrease of NLR, and finally lead to different efficacy outcomes by anti-PD-1 inhibitors. The findings suggest that a portion of advanced NSCLC patients with low NLR characteristics (NLR ≤ 4), even those harboring EGFR-sensitive mutations, could benefit from anti-PD-1 inhibitors as further line treatment after progression to EGFR-TKIs.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Estudios Retrospectivos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neutrófilos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Pronóstico , Antineoplásicos/uso terapéutico , Linfocitos , Receptores ErbB , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico
13.
Medicine (Baltimore) ; 103(8): e36959, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394494

RESUMEN

The present study was conducted to characterize the clinicopathologic characteristics, immunohistochemical staining results, and immune checkpoint inhibitors (ICIs) efficacy in patients with SMARCA4-deficient/TP53 mutant lung cancer. Patients diagnosed with advanced or metastatic undifferentiated lung cancer harboring SMARCA4-deficient and TP53 mutations, however, without targetable sensitive mutations were retrieved from the electronic medical record system. Descriptive statistics were used to describe the baseline characteristics and clinical features including age, gender, eastern cooperative oncology group performance status, disease stage, smoking status, chief complaint, site of the primary mass, tumor size, gross type, symptoms, local invasion, and metastatic sizes. Immunological markers and potential drive genes were detected by immunohistochemical staining and next generation sequencing. Efficacy and safety profile of ICIs in included patients was evaluated with progression-free survival and overall survival. Between January 2019 and September 2022, there were 4 patients included within the inclusion criteria in the present study. Biomarkers including CK, CK7, and integrase interactor 1 were detected positive, however, other immunological markers including CK20, CD56, P63, P40, NapsinA, TTF-1, CgA, Syn, BRG1, or PD-L1 were detected negative among them. Results of next generation sequencing panel were failed to discover any targetable sensitive mutations. A total of 4 mutation types of TP53, including p.C141Y, p.S240G, p.E339X (terminator acquired), and p.L130F detected for the patients, respectively. Microsatellite stability status, as well as low tumor mutation burden was identified among all the patients. Median progression-free survival for ICIs as first line treatment and median overall survival were 3.25 months (range from 1.3 to 6.8 months), and 6.0 months (range from 2.7 to 9.6 months), respectively. Our results indicated that advanced lung cancer patients harboring co-occurring SMARCA4-deficient/TP53 mutations might respond to ICIs treatment, though within negative programmed cell death-ligand 1 expression or low tumor mutation burden. However, hyperprogressive disease by ICIs may also happen for such patients. The mutation types of TP53 might play a role during the exposure of ICIs, however, need further identification in basic experiments.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Inmunoterapia/métodos , Biomarcadores de Tumor/genética , Mutación , Antígeno B7-H1 , Proteína p53 Supresora de Tumor/genética , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
14.
Food Chem ; 443: 138554, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306912

RESUMEN

This study aimed to investigate the flavor changes in Huangshan floral mushroom by different enzyme treatments. Seven enzyme groups were used to hydrolyze its protein to obtain protein hydrolysates (FPHs). Flavourzyme composite with dispase hydrolysates (FDHs) were selected for ultrafiltration to obtain peptides (FPs) with different molecular weights (Mw). Changes in flavor were investigated using HPLC, LC-MS, GC-MS, amino acid analysis and sensory evaluation. Color parameters and DPPH-scavenging activity were also determined. The results revealed that flavor characteristics of FPHs obtained from different enzyme treatments varied. FDHs presented the highest degree of hydrolysis (DH) (58.61 ± 1.55) %, rich 5'-nucleotides (8.61 ± 0.43 mg/mL), volatile compounds (28.54 ± 0.11 µg/g) and free amino acids (FAAs) (7.73 ± 0.51 mg/g). Further tests suggested that FPs with small Mw (<1K, 1-3 K) were optimal for the development of novel flavors, thus providing application value for rational utilization of Huangshan floral mushroom.


Asunto(s)
Agaricales , Agaricales/metabolismo , Péptidos/química , Hidrólisis , Péptido Hidrolasas/metabolismo , Antioxidantes/química , Hidrolisados de Proteína/química
15.
Small ; : e2309427, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240468

RESUMEN

As cost-effective catalysts, platinum (Pt) single-atom catalysts (SACs) have attracted substantial attention. However, most studies indicate that Pt SACs in acidic hydrogen evolution reaction (HER) follow the slow Volmer-Heyrovsky (VH) mechanism instead of the fast kinetic Volmer-Tafel (VT) pathway. Here, this work propose that the VH mechanism in Pt SACs can be switched to the faster VT pathway for efficient HER by correlating Pt single atoms (SAs) with Pt clusters (Cs). Our calculations reveal that the correlation between Pt SAs and Cs significantly impacts the electronic structure of exposed Pt atoms, lowering the adsorption barrier for atomic hydrogen and enabling a faster VT mechanism. To validate these findings, this work purposely synthesize three catalysts: l-Pt@MoS2 , m-Pt@MoS2 and h-Pt@MoS2 with low, moderate, and high Pt-loading, having different distributions of Pt SAs and Cs. The m-Pt@MoS2 catalyst with properly correlating Pt SAs and Cs exhibits outstanding performance with an overpotential of 47 mV and Tafel slope of 32 mV dec-1 . Further analysis of the Tafel values confirms that the m-Pt@MoS2 sample indeed follows the VT reaction mechanism, aligning with the theoretical findings. This study offers a deep understanding of the synergistic mechanism, paving a way for designing novel-advanced catalysts.

16.
Sci Total Environ ; 916: 170185, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244619

RESUMEN

The preparation of waste plastics-derived catalysts is an effective strategy for the waste reclamation. However, plastic-derived material is unsuitable for wastewater purification due to its small specific surface area (SSA) and inadequate active sites (such as N/O sites). Herein, we synthesized graphene-like nanosheets using g-C3N4 as the self-sacrificing soft template and plastic as the carbon precursor. Consequently, this strategy greatly promoted the efficiencies of the emerging organic pollutants degradation with the SSA and N content of the plastic-derived biochar increasing up to 1043.4 m2/g and 17.53 at.%, respectively. In detail, 100 % sulfadiazine (SD) removal could be achieved in 180 s via the activation of peroxymonosulfate (PMS) and the catalytic activity is far higher than previous research. Mechanism experiments corroborated that such a striking performance was attributed to the generation of SO4•-, O2•- and 1O2. Meanwhile, kinds of plastic precursors, even medical waste (i.e., masks, gauze, operating caps and degreasing cotton) were also applicable. And the practical application of the plastic-derived catalyst was further demonstrated by treating pollutants in a continuous flow mode with in situ fabricated membrane. This work provides valuable insights into waste plastics processing and water pollutants removal.

17.
Int J Biol Macromol ; 261(Pt 1): 129672, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278397

RESUMEN

In this study, a novel homogeneous polysaccharide (HVP-1) was purified from the Volvariella volvacea. Its structural characteristics and anti-oxidant activity in vitro were further evaluated. The results revealed that HVP-1 was composed of mannose, glucose, galactose and arabinose in a molar ratio (mol %) of 55.37: 15.74: 25.20: 3.69. Its main chain consisted of →4)-ß-D-Galp-(1→, →6)-α-D-Glcp-(1→, →3)-α-D-Glcp-(1→, →4)-ß-D-Manp-(1→ and →3,6)-ß-D-Manp-(1→. The branched structure α-L-Araf-(1→, →2)-ß-D-Glcp-(1→ and →6)-ß-D-Manp-(1→ were connected to →3,6)-ß-D-Manp-(1→ through the O-3 position. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that HVP-1 had porous sheet-like structure with a triple helix conformation. Anti-oxidant activity experiments showed that HVP-1 alleviated H2O2-induced oxidative damage by reducing the accumulation of reactive oxygen species, increasing the activity of related enzymes in cells, and activating the Nrf2/HO-1 signaling pathway. These results suggested that HVP-1 had the potential to be used as a natural anti-oxidant in functional foods and pharmaceuticals.


Asunto(s)
Agaricales , Antioxidantes , Antioxidantes/farmacología , Peróxido de Hidrógeno , Polisacáridos/farmacología , Polisacáridos/química
18.
Small ; 20(12): e2307902, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37950404

RESUMEN

A rational design of sulfur host is the key to conquering the"polysulfide shuttle effects" by accelerating the polysulfide conversion. Since the process involves solid-liquid-solid multistep phase transitions, purposely-engineered heterostructure catalysts with various active regions for catalyzing conversion steps correspondingly are beneficial to promote the overall conversion process. However, the functionalities of the materials surface and interface in heterostructure catalysts remain unclear. In this work, an Mo2C/MoC catalyst with abundant Mo2C surface-interface-MoC surface tri-active-region is developed by in situ converting the MoZn-metal organic framework. The experimental and simulation studies demonstrate the interface can catch long-chain polysulfides and promote their conversion. Instead, the Mo2C and MoC tend to accommodate the short-chain polysulfide and accelerate their conversion and the Li2S dissociation. Benefitting from the high catalytic ability, the Li-S battery assembled with the Mo2C/MoC-S cathode shows more discrete redox reactions and delivers a high initial capacity of 1603.6 mAh g-1 at 1 C charging-discharging rate, which is over twofolds of the one assembled using individual hosts, and 80.4% capacity can be maintained after 1000 cycles at 3 C rate. This work has demonstrated a novel synergy between the interface and material surface, which will help the future design of high-performance Li-S batteries.

19.
Transplant Cell Ther ; 30(2): 189.e1-189.e13, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939900

RESUMEN

Acute graft-versus-host disease (aGVHD) represents a fatal severe complication after allogeneic hematopoietic stem cell transplantation. As a promising cell therapeutic strategy of aGVHD, the mechanism of mesenchymal stem cells (MSC) to ameliorate aGVHD has not been fully clarified, especially in the field of intestinal homeostasis including the intestinal microbiome involved in the pathogenesis of aGVHD. The present study aimed to explore the effect of MSC on intestinal homeostasis including the intestinal barrier and intestinal microbiome and its metabolites, as well as the role of intestinal microbiome in the preventive process of hAMSCs ameliorating aGVHD. The preventive effects of human amniotic membrane-derived MSC (hAMSCs) was assessed in humanized aGVHD mouse models. Immunohistochemistry and RT-qPCR were used to evaluate intestinal barrier function. The 16S rRNA sequencing and targeted metabolomics assay were performed to observe the alternation of intestinal microbiome and the amounts of medium-chain fatty acids (MCFAs) and short-chain fatty acids (SCFAs), respectively. Flow cytometry was performed to analyze the frequencies of T immune cells. Through animal experiments, we found that hAMSCs had the potential to prevent aGVHD. HAMSCs could repair the damage of intestinal barrier structure and function, as well as improve the dysbiosis of intestinal microbiome induced by aGVHD, and meanwhile, upregulate the concentration of metabolites SCFAs, so as to reshape intestinal homeostasis. Gut microbiota depletion and fecal microbial transplantation confirmed the involvement of intestinal microbiome in the preventive process of hAMSCs on aGVHD. Our findings showed that hAMSCs prevented aGVHD in an intestinal microbiome-dependent manner, which might shed light on a new mechanism of hAMSCs inhibiting aGVHD and promote the development of new prophylaxis regimes for aGVHD prevention.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Amnios/metabolismo , Amnios/patología , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Factores Inmunológicos/metabolismo , Enfermedad Injerto contra Huésped/prevención & control , Células Madre Mesenquimatosas/metabolismo
20.
Hypertens Res ; 47(2): 291-301, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37670003

RESUMEN

Not only systolic blood pressure (SBP) but also diastolic blood pressure (DBP) increases the risk of recurrence in the short- or long-term outcomes of stroke. The interaction between DBP and antiplatelet treatment for China stroke patients is unclear. This multicenter, observational cohort study included 2976 minor ischemic stroke patients. Patients accepted single antiplatelet therapy (SAPT) or dual antiplatelet therapy (DAPT) after arrival, and baseline DBP levels were trichotomized into <90 mmHg, 90-110 mmHg and ≥110 mmHg. We explore the interaction effect between antiplatelet therapy and DBP on 90-days composite vascular events. A total of 257 (8.6%) patients reached a composite vascular event during follow-up. The interaction term between DBP levels and treatment group (SAPT vs. DAPT) was significant (P for interaction = 0.013). DAPT's adjusted HR for composite events in patients with DBP between 90 and 110 mmHg was 0.56 (95% confidence interval, 0.36 0.88; P = 0.011) and DBP ≥ 110 mmHg was 4.35 (95% confidence interval, 1.11-19.94; P = 0.046). The association between treatment and DBP was still consistent after propensity score matching of the baseline characteristics. The interaction term of DBP × treatment was not significant for the safety outcomes of severe bleeding (P for interaction = 0.301) or hemorrhage stroke (P for interaction = 0.831). In this cohort study based on the real world, patients with a DBP between 90 and 110 mmHg received a greater benefit from 90 days of DAPT than those with lower and higher baseline DBP. REGISTRATION: ( https://www.chictr.org.cn ; Unique identifier: ChiCTR1900025214).


Asunto(s)
Inhibidores de Agregación Plaquetaria , Accidente Cerebrovascular , Humanos , Presión Sanguínea , Inhibidores de Agregación Plaquetaria/uso terapéutico , Inhibidores de Agregación Plaquetaria/farmacología , Estudios de Cohortes , Accidente Cerebrovascular/tratamiento farmacológico , China , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA