Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Small ; : e2400680, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126237

RESUMEN

Understanding the growth mechanisms of nanomaterials is crucial for effectively controlling their morphology which may affect their properties. Here, the growth process of indium nanoplates is studied using in situ liquid cell transmission electron microscopy. Quantitative analysis shows that the growth of indium nanoplate is limited by surface reaction. Besides, the growth process has two stages, which is different from that of other metal nanoplates reported previously. At the first stage, indium particles transform gradually from face-centered cubic to body-centered tetragonal (bct) structure as the seeds grow. At the second stage, the seeds grow faster than at the first stage and form indium triangular nanoplates. Indium triangular nanoplates have a bct structure with {011}-twin, which is found to form through kinetic reactions. In addition, the shape evolution of truncated triangle nanoplate with multiple twin planes is studied. The growth rate of truncated edge changes with the varied number of re-entrant grooves. The present work provides valuable insights into the growth mechanism of metal nanoplates with low-symmetric structure and the role of twin planes in the shape evolution of plate-like metal nanomaterials.

2.
Epilepsia ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140981

RESUMEN

OBJECTIVE: Pharmacological activation of neuronal Kv7 channels by the antiepileptic drug retigabine (RTG; ezogabine) has been proven effective in treating partial epilepsy. However, RTG was withdrawn from the market due to the toxicity caused by its phenazinium dimer metabolites, leading to peripheral skin discoloration and retinal abnormalities. To address the undesirable metabolic properties of RTG and prevent the formation of phenazinium dimers, we made chemical modifications to RTG, resulting in a new RTG derivative, 1025c, N,N'-{4-[(4-fluorobenzyl) (prop-2-yn-1-yl)amino]-1,2-phenylene}bis(3,3-dimethylbutanamide). METHODS: Whole-cell recordings were used to evaluate Kv7 channel openers. Site-directed mutagenesis and molecular docking were adopted to investigate the molecular mechanism underlying 1025c and Kv7.2 interactions. Mouse seizure models of maximal electroshock (MES), subcutaneous pentylenetetrazol (scPTZ), and PTZ-induced kindling were utilized to test compound antiepileptic activity. RESULTS: The novel compound 1025c selectively activates whole-cell Kv7.2/7.3 currents in a concentration-dependent manner, with half-maximal effective concentration of .91 ± .17 µmol·L-1. The 1025c compound also causes a leftward shift in Kv7.2/7.3 current activation toward a more hyperpolarized membrane potential, with a shift of the half voltage of maximal activation (ΔV1/2) of -18.6 ± 3.0 mV. Intraperitoneal administration of 1025c demonstrates dose-dependent antiseizure activities in assays of MES, scPTZ, and PTZ-induced kindling models. Moreover, through site-directed mutagenesis combined with molecular docking, a key residue Trp236 has been identified as critical for 1025c-mediated activation of Kv7.2 channels. Photostability experiments further reveal that 1025c is more photostable than RTG and is unable to dimerize. SIGNIFICANCE: Our findings demonstrate that 1025c exhibits potent and selective activation of neuronal Kv7 channels without being metabolized to phenazinium dimers, suggesting its developmental potential as an antiseizure agent for therapy.

3.
J Pharmacol Exp Ther ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168650

RESUMEN

Genetic loss-of-function mutations of Nav1.7 channel, abundantly expressed in peripheral nociceptive neurons, cause congenital insensitivity to pain (CIP) in humans, indicating that selective inhibition of the channel may lead to potential therapy of pain disorders. In this study, we investigated a novel compound, 5-chloro-N-(cyclopropylsulfonyl)-2-fluoro-4-(2-(8-(furan-2-ylmethyl)-8-azaspiro [4.5] decan-2-yl) ethoxy) benzamide (QLS-278) that inhibits Nav1.7 channel and exhibits anti-nociceptive activity. Compound QLS-278 exhibits inactivation- and concentration-dependent inhibition of macroscopic currents of Nav1.7 channels stably expressed in HEK293 cells with an IC50 of 1.2 {plus minus} 0.2 µM. QLS-278 causes a hyperpolarization shift of the channel inactivation and delays recovery from inactivation, without an obvious effect on voltage-dependent activation. In mouse DRG neurons, QLS-278 suppresses native TTX-sensitive Nav currents and also reduces neuronal firing. Moreover, QLS-278 dose-dependently relieves neuropathic pain induced by spared nerve injury and inflammatory pain induced by formalin without significant alteration of spontaneous locomotor activity in mice. Altogether, our identification of the novel compound QLS-278 may hold developmental potential for the treatment of chronic pain. Significance Statement QLS-278, a novel voltage-gated sodium Nav1.7 channel blocker, inhibits native TTX-S Na+ current and reduces action potential firings in DRG sensory neurons. QLS-278 also exhibits antinociceptive activity in mouse models of pain, thus demonstrating potential for the development of a treatment for chronic pain.

4.
Medicine (Baltimore) ; 103(29): e39041, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029027

RESUMEN

Recent studies have shown systemic inflammatory response, serum glucose, and serum potassium are associated with poor prognosis in spontaneous intracerebral hemorrhage (SICH). This retrospective study aimed to investigate the association of systemic immune-inflammatory index (SII) and serum glucose-potassium ratio (GPR) with the severity of disease and the poor prognosis of patients with SICH at 3 months after hospital discharge. We reviewed the clinical data of 105 patients with SICH, assessed the extent of their disease using Glasgow Coma Scale score, National Institutes of Health Stroke Scale (NIHSS) score, and hematoma volume, and categorized them into a good prognosis group (0-3 scores) and a poor prognosis group (4-6 scores) based on their mRS scores at 3 months after hospital discharge. Demographic characteristics, clinical, laboratory, and imaging data at admission were compared between the 2 groups, bivariate correlations were analyzed using Spearman's correlation coefficients, multivariate logistic regression analysis was used to determine the independent risk factors for poor prognosis of patients with SICH, and finally, SII, GPR, and platelet/lymphocyte ratio (PLR) were examined using the subject's work characteristics (ROC) curve, lymphocyte/monocyte ratio (LMR), and neutrophil/lymphocyte ratio (NLR) for their predictive efficacy for poor prognosis. Patients in the poor prognosis group had significantly higher SII and serum GPR than those in the good prognosis group, and Spearman analysis showed that SII and serum GPR were significantly correlated with the admission Glasgow Coma Scale score as well as the NIHSS score and that SII and GPR increased with the increase in mRS score. Multivariate logistic regression analysis showed that admission NIHSS score, hematoma volume SII, GPR, NLR, and PLR were independently associated with poor patient prognosis. Analysis of the subjects' work characteristic curves showed that the areas under the SII, GPR, NLR, PLR, LMR, and coSII-GPR curves were 0.838, 0.837, 0.825, 0.718, 0.616, and 0.883. SII and GRP were significantly associated with disease severity and short-term prognosis in SICH patients 3 months after discharge, and SII and GPR had better predictive value compared with NLR, PLR, and LMR. In addition, coSII-GPR, a joint indicator based on SII and GPR, can improve the predictive accuracy of poor prognosis 3 months after discharge in patients with SICH.


Asunto(s)
Glucemia , Hemorragia Cerebral , Potasio , Humanos , Masculino , Femenino , Pronóstico , Estudios Retrospectivos , Persona de Mediana Edad , Hemorragia Cerebral/sangre , Hemorragia Cerebral/mortalidad , Hemorragia Cerebral/inmunología , Anciano , Glucemia/análisis , Potasio/sangre , Índice de Severidad de la Enfermedad , Inflamación/sangre , Factores de Riesgo
5.
Nano Lett ; 24(28): 8741-8751, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38953486

RESUMEN

The degradation of oncoproteins mediated by proteolysis-targeting chimera (PROTAC) has emerged as a potent strategy in cancer therapy. However, the clinical application of PROTACs is hampered by challenges such as poor water solubility and off-target adverse effects. Herein, we present an ultrasound (US)-activatable PROTAC prodrug termed NPCe6+PRO for actuating efficient sono-immunotherapy in a spatiotemporally controllable manner. Specifically, US irradiation, which exhibits deep-tissue penetration capability, results in Ce6-mediated generation of ROS, facilitating sonodynamic therapy (SDT) and inducing immunogenic cell death (ICD). Simultaneously, the generated ROS cleaves the thioketal (TK) linker through a ROS-responsive mechanism, realizing the on-demand activation of the PROTAC prodrug in deep tissues. This prodrug activation results in the degradation of the target protein BRD4, while simultaneously reversing the upregulation of PD-L1 expression associated with the SDT process. In the orthotopic mouse model of pancreatic tumors, NPCe6+PRO effectively suppressed tumor growth in conjunction with US stimulation.


Asunto(s)
Inmunoterapia , Neoplasias Pancreáticas , Profármacos , Animales , Profármacos/farmacología , Profármacos/uso terapéutico , Profármacos/química , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/inmunología , Ratones , Humanos , Línea Celular Tumoral , Proteolisis/efectos de los fármacos , Terapia por Ultrasonido/métodos , Antígeno B7-H1 , Factores de Transcripción , Proteínas de Ciclo Celular , Especies Reactivas de Oxígeno/metabolismo , Proteínas que Contienen Bromodominio
6.
Artículo en Inglés | MEDLINE | ID: mdl-38968018

RESUMEN

Large-scale datasets with point-wise semantic and instance labels are crucial to 3D instance segmentation but also expensive. To leverage unlabeled data, previous semi-supervised 3D instance segmentation approaches have explored self-training frameworks, which rely on high-quality pseudo labels for consistency regularization. They intuitively utilize both instance and semantic pseudo labels in a joint learning manner. However, semantic pseudo labels contain numerous noise derived from the imbalanced category distribution and natural confusion of similar but distinct categories, which leads to severe collapses in self-training. Motivated by the observation that 3D instances are non-overlapping and spatially separable, we ask whether we can solely rely on instance consistency regularization for improved semi-supervised segmentation. To this end, we propose a novel self-training network InsTeacher3D to explore and exploit pure instance knowledge from unlabeled data. We first build a parallel base 3D instance segmentation model DKNet, which distinguishes each instance from the others via discriminative instance kernels without reliance on semantic segmentation. Based on DKNet, we further design a novel instance consistency regularization framework to generate and leverage high-quality instance pseudo labels. Experimental results on multiple large-scale datasets show that the InsTeacher3D significantly outperforms prior state-of-the-art semi-supervised approaches.

7.
Nat Chem ; 16(8): 1286-1294, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38862641

RESUMEN

Conjugated organic photoredox catalysts (OPCs) can promote a wide range of chemical transformations. It is challenging to predict the catalytic activities of OPCs from first principles, either by expert knowledge or by using a priori calculations, as catalyst activity depends on a complex range of interrelated properties. Organic photocatalysts and other catalyst systems have often been discovered by a mixture of design and trial and error. Here we report a two-step data-driven approach to the targeted synthesis of OPCs and the subsequent reaction optimization for metallophotocatalysis, demonstrated for decarboxylative sp3-sp2 cross-coupling of amino acids with aryl halides. Our approach uses a Bayesian optimization strategy coupled with encoding of key physical properties using molecular descriptors to identify promising OPCs from a virtual library of 560 candidate molecules. This led to OPC formulations that are competitive with iridium catalysts by exploring just 2.4% of the available catalyst formulation space (107 of 4,500 possible reaction conditions).

8.
Hum Genomics ; 18(1): 55, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822443

RESUMEN

BACKGROUND: Although CDKN2A alteration has been explored as a favorable factor for tumorigenesis in pan-cancers, the association between CDKN2A point mutation (MUT) and intragenic deletion (DEL) and response to immune checkpoint inhibitors (ICIs) is still disputed. This study aims to determine the associations of CDKN2A MUT and DEL with overall survival (OS) and response to immune checkpoint inhibitors treatment (ICIs) among pan-cancers and the clinical features of CDKN2A-altered gastric cancer. METHODS: This study included 45,000 tumor patients that underwent tumor sequencing across 33 cancer types from four cohorts, the MSK-MetTropism, MSK-IMPACT, OrigiMed2020 and TCGA cohorts. Clinical outcomes and genomic factors associated with response to ICIs, including tumor mutational burden, copy number alteration, neoantigen load, microsatellite instability, tumor immune microenvironment and immune-related gene signatures, were collected in pan-cancer. Clinicopathologic features and outcomes were assessed in gastric cancer. Patients were grouped based on the presence of CDKN2A wild type (WT), CDKN2A MUT, CDKN2A DEL and CDKN2A other alteration (ALT). RESULTS: Our research showed that CDKN2A-MUT patients had shorter survival times than CDKN2A-WT patients in the MSK MetTropism and TCGA cohorts, but longer OS in the MSK-IMPACT cohort with ICIs treatment, particularly in patients having metastatic disease. Similar results were observed among pan-cancer patients with CDKN2A DEL and other ALT. Notably, CDKN2A ALT frequency was positively related to tumor-specific objective response rates to ICIs in MSK MetTropism and OrigiMed 2020. Additionally, individuals with esophageal carcinoma or stomach adenocarcinoma who had CDKN2A MUT had poorer OS than patients from the MSK-IMPACT group, but not those with adenocarcinoma. We also found reduced levels of activated NK cells, T cells CD8 and M2 macrophages in tumor tissue from CDKN2A-MUT or DEL pan-cancer patients compared to CDKN2A-WT patients in TCGA cohort. Gastric cancer scRNA-seq data also showed that CDKN2A-ALT cancer contained less CD8 T cells but more exhausted T cells than CDKN2A-WT cancer. A crucial finding of the pathway analysis was the inhibition of three immune-related pathways in the CDKN2A ALT gastric cancer patients, including the interferon alpha response, inflammatory response, and interferon gamma response. CONCLUSIONS: This study illustrates the CDKN2A MUT and DEL were associated with a poor outcome across cancers. CDKN2A ALT, on the other hand, have the potential to be used as a biomarker for choosing patients for ICI treatment, notably in esophageal carcinoma and stomach adenocarcinoma.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/inmunología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Masculino , Femenino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Anciano , Pronóstico , Variaciones en el Número de Copia de ADN/genética , Mutación/genética , Inestabilidad de Microsatélites
9.
Adv Mater ; 36(30): e2402322, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718226

RESUMEN

Novel strategies to facilitate tumor-specific drug delivery and restore immune attacks remain challenging in overcoming the current limitations of chemoimmunotherapy. An antitumor chemoimmunotherapy system comprising bioorthogonal reaction-ready group tetrazine (TZ) modified with an anti-PD-L1 antibody (αPD-L1TZ) and TZ-activatable prodrug vinyl ether-doxorubicin (DOX-VE) for self-reinforced anti-tumor chemoimmunotherapy is proposed. The αPD-L1TZ effectively disrupts the PD-L1/PD-1 interaction and activates the DOX prodrug in situ through the bioorthogonal click reaction of TZ and VE. Conversely, the activated DOX upregulates PD-L1 on the surface of tumor cells, facilitating tumor accumulation of αPD-L1TZ and enhancing DOX-VE activation. Furthermore, the activated DOX-induced immunogenic cell death of tumor cells, substantially improving the response efficiency of αPD-L1 in an immune-suppressive tumor microenvironment. Thus, PD-L1 blocking and bioorthogonal in situ prodrug activation synergistically enhance the antitumor efficacy of the chemoimmunotherapy system. Therefore, the system significantly enhances αPD-L1 tumor accumulation and prodrug activation and induces a robust immunological memory effect to prevent tumor recurrence and metastasis. Thus, a feasible chemoimmunotherapy combination regimen is presented.


Asunto(s)
Antígeno B7-H1 , Doxorrubicina , Inmunoterapia , Profármacos , Profármacos/química , Profármacos/farmacología , Profármacos/uso terapéutico , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Inmunoterapia/métodos , Animales , Ratones , Línea Celular Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
10.
J Colloid Interface Sci ; 671: 354-373, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815372

RESUMEN

Berberine (Ber), an isoquinoline alkaloid, is a potential drug therapy for ulcerative colitis (UC) because of its anti-inflammatory activity, high biological safety, and few side effects. Nevertheless, its clinical application is hindered by its limited water solubility and low bioavailability. Currently, compared to synthetic nanocarriers, exosomes as carriers possess advantages such as low toxicity, high stability, and high specificity. Human placental mesenchymal stem cell-derived exosomes (HplMSC-Exos) have emerged as a promising drug delivery system, offering intrinsic anti-inflammatory and antioxidant activities. Therefore, we engineered MSC-Exos loaded with Ber (Exos-Ber) to enhance the solubility and bioavailability of Ber and for colon targeting, revealing a novel approach for treating UC with natural compounds. Structurally and functionally, Exos-Ber closely resembled unmodified Exos. Both in vitro and in vivo investigations confirmed the antioxidant and anti-inflammatory properties of Exos-Ber. Notably, Exos-Ber exhibited reparative effects on injured epithelial cells and reduced cellular apoptosis. Furthermore, Exos-Ber concurrently demonstrated anti-inflammatory and antioxidant activities, contributing to the mitigation of UC, possibly through its modulation of the MAPK signaling pathway. Overall, our findings demonstrate the potential of Exos-Ber as a promising therapeutic option for alleviating UC, highlighting its capacity to enhance the clinical applicability of Ber.


Asunto(s)
Berberina , Colitis Ulcerosa , Exosomas , Células Madre Mesenquimatosas , Exosomas/metabolismo , Exosomas/química , Colitis Ulcerosa/terapia , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Berberina/farmacología , Berberina/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Humanos , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Células Cultivadas , Femenino , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos
11.
Respir Med ; 229: 107673, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38763447

RESUMEN

OBJECTIVE: Limited evidence on home care and need for long-term individualized follow-up highlight the importance of developing an Internet-based follow-up platform to support caregivers of children with Bronchiolitis Obliterans (BO). This Study aims to explore and test the potential benefits of this platform by comparing family management, medication compliance and clinical systems. STUDY DESIGN AND METHODS: A two-arm, single-blind randomized controlled trial was conducted on 168 children with BO and their families from January 2022 to October 2022. Families were randomly divided into Internet-based follow-up group and conventional follow-up group with a ratio of 1:1. Scores of family management measures (FaMM), 8-item of Morisky Medication Adherence (8-MMAS) and BO clinical symptoms of both groups were collected at three points of time: the day of discharge (T1), 3 months after discharge (T2), and 6 months after discharge (T3). The changes of each group due to intervention were compared by repeated-measures ANOVA. RESULTS: 90 families completed the trial, including 48 in the Internet-based follow-up group and 42 in the conventional follow-up group. The results showed a significant difference in the group-by-time interaction on the scores of Child's Daily Life, Condition Management Ability and Parental Mutuality (p < 0.05). No group-by-time effect was found on the scores of View of Condition Impact and Family Life Difficulty. Scores of BO clinical symptoms and MMAS-8 showed intra-group, inter-group, and group-by-time effects. CONCLUSIONS: The Internet-based follow-up platform can empower caregivers in enhancing effective family management, improving medication compliance in children with BO, and relieving patients' clinical symptoms. TRIAL REGISTRATION: Chinese Clinical Trials Registry of ChiCTR2200065121 (04/28/2022).

12.
PLoS One ; 19(5): e0303199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38723048

RESUMEN

This paper presents an optimized preparation process for external ointment using the Definitive Screening Design (DSD) method. The ointment is a Traditional Chinese Medicine (TCM) formula developed by Professor WYH, a renowned TCM practitioner in Jiangsu Province, China, known for its proven clinical efficacy. In this study, a stepwise regression model was employed to analyze the relationship between key process factors (such as mixing speed and time) and rheological parameters. Machine learning techniques, including Monte Carlo simulation, decision tree analysis, and Gaussian process, were used for parameter optimization. Through rigorous experimentation and verification, we have successfully identified the optimal preparation process for WYH ointment. The optimized parameters included drug ratio of 24.5%, mixing time of 8 min, mixing speed of 1175 rpm, petroleum dosage of 79 g, liquid paraffin dosage of 6.7 g. The final ointment formulation was prepared using method B. This research not only contributes to the optimization of the WYH ointment preparation process but also provides valuable insights and practical guidance for designing the preparation processes of other TCM ointments. This advanced DSD method enhances the screening approach for identifying the best preparation process, thereby improving the scientific rigor and quality of TCM ointment preparation processes.


Asunto(s)
Aprendizaje Automático , Pomadas , Reología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/administración & dosificación , Medicina Tradicional China , Composición de Medicamentos/métodos , Dodecil Sulfato de Sodio/química , Método de Montecarlo
13.
Molecules ; 29(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611956

RESUMEN

The rational design of covalent organic frameworks (COFs) with hydrochromic properties is of significant value because of the facile and rapid detection of water in diverse fields. In this report, we present a thiazole-linked COF (TZ-COF-6) sensor with a large surface area, ultrahigh stability, and excellent crystallinity. The sensor was synthesized through a simple three-component reaction involving amine, aldehyde, and sulfur. The thiazole and methoxy groups confer strong basicity to TZ-COF-6 at the nitrogen sites, making them easily protonated reversibly by water. Therefore, TZ-COF-6 displayed color change visible to the naked eye from yellow to red when protonated, along with a red shift in absorption in the ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) when exposed to water. Importantly, the water-sensing process was not affected by polar organic solvents, demonstrating greater selectivity and sensitivity compared to other COF sensors. Therefore, TZ-COF-6 was used to detect trace amounts of water in organic solvents. In strong polar solvents, such as N,N-dimethyl formamide (DMF) and ethanol (EtOH), the limit of detection (LOD) for water was as low as 0.06% and 0.53%, respectively. Even after 8 months of storage and 15 cycles, TZ-COF-6 retained its original crystallinity and detection efficiency, displaying high stability and excellent cycle performance.

14.
Acta Pharm Sin B ; 14(3): 1457-1466, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38487010

RESUMEN

Cognitive dysfunction is a core symptom common in psychiatric disorders including depression that is primarily managed by antidepressants lacking efficacy in improving cognition. In this study, we report a novel dual serotonin transporter and voltage-gated potassium Kv7/KCNQ/M-channel inhibitor D01 (a 2-methyl-3-aryloxy-3-heteroarylpropylamines derivative) that exhibits both anti-depression effects and improvements in cognition. D01 inhibits serotonin transporters (Ki = 30.1 ± 6.9 nmol/L) and M channels (IC50 = 10.1 ± 2.4 µmol/L). D01 also reduces the immobility duration in the mouse FST and TST assays in a dose-dependent manner without a stimulatory effect on locomotion. Intragastric administrations of D01 (20 and 40 mg/kg) can significantly shorten the immobility time in a mouse model of chronic restraint stress (CRS)-induced depression-like behavior. Additionally, D01 dose-dependently improves the cognitive deficit induced by CRS in Morris water maze test and increases the exploration time with novel objects in normal or scopolamine-induced cognitive deficits in mice, but not fluoxetine. Furthermore, D01 reverses the long-term potentiation (LTP) inhibition induced by scopolamine. Taken together, our findings demonstrate that D01, a dual-target serotonin reuptake and M channel inhibitor, is highly effective in the treatment-resistant depression and cognitive deficits, thus holding potential for development as therapy of depression with cognitive deficits.

15.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38398956

RESUMEN

We have developed a manufacturing process for micromirrors based on microelectromechanical systems (MEMS) technology. The process involves designing an electrostatic vertically comb-driven actuator and utilizing a self-alignment process to produce a height difference between the movable comb structure and the fixed comb structure of the micromirror. To improve the stability of the micromirror, we propose four instability models in micromirror operation with the quasi-static driving principle and structure of the micromirror considered, which can provide a basic guarantee for the performance of vertical comb actuators. This analysis pinpoints factors leading to instability, including the left and right gap of the movable comb, the torsion beams of the micromirror, and the comb-to-beams distance. Ultimately, the voltages at which device failure occurs can be determined. We successfully fabricated a one-dimensional micromirror featuring a 0.8 mm mirror diameter and a 30 µm device layer thickness. The height difference between the movable and fixed comb structures was 10 µm. The micromirror was able to achieve a static mechanical angle of 2.25° with 60 V@DC. Stable operation was observed at voltages below 60 V, in close agreement with the theoretical calculations and simulations. At the driving voltage of 80 V, we observed the longitudinal displacement movement of the comb fingers. Furthermore, at a voltage of 129 V, comb adhesion occurred, resulting in device failure. This failure voltage corresponds to the lateral torsional failure voltage.

16.
J Med Chem ; 67(8): 6344-6364, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38393821

RESUMEN

Enhancing α7 nAChR function serves as a therapeutic strategy for cognitive disorders. Here, we report the synthesis and evaluation of 2-arylamino-thiazole-5-carboxylic acid amide derivatives 6-9 that as positive allosteric modulators (PAMs) activate human α7 nAChR current expressed in Xenopus ooctyes. Among the 4-amino derivatives, a representative atypical type I PAM 6p exhibits potent activation of α7 current with an EC50 of 1.3 µM and the maximum activation effect on the current over 48-fold in the presence of acetylcholine (100 µM). The structure-activity relationship (SAR) analysis reveals that the 4-amino group is crucial for the allosteric activation of α7 currents by compound 6p as the substitution of 4-methyl group results in its conversion to compound 7b (EC50 = 2.1 µM; max effect: 58-fold) characterized as a typical type I PAM. Furthermore, both 6p and 7b are able to rescue auditory gating deficits in mouse schizophrenia-like model of acoustic startle prepulse inhibition.


Asunto(s)
Tiazoles , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Regulación Alostérica/efectos de los fármacos , Relación Estructura-Actividad , Humanos , Tiazoles/farmacología , Tiazoles/química , Tiazoles/síntesis química , Tiazoles/uso terapéutico , Ratones , Xenopus laevis , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Ácidos Carboxílicos/síntesis química , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Masculino , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo
17.
J Med Chem ; 67(5): 3885-3908, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38278140

RESUMEN

Oncolytic peptides represent promising novel candidates for anticancer treatments. In our efforts to develop oncolytic peptides possessing both high protease stability and durable anticancer efficiency, three rounds of optimization were conducted on the first-in-class oncolytic peptide LTX-315. The robust synthetic method, in vitro and in vivo anticancer activity, and anticancer mechanism were investigated. The D-type peptides represented by FXY-12 possessed significantly improved proteolytic stability and sustained anticancer efficiency. Strikingly, the novel hybrid peptide FXY-30, containing one FXY-12 and two camptothecin moieties, exhibited the most potent in vitro and in vivo anticancer activities. The mechanism explorations indicated that FXY-30 exhibited rapid membranolytic effects and induced severe DNA double-strand breaks to trigger cell apoptosis. Collectively, this study not only established robust strategies to improve the stability and anticancer potential of oncolytic peptides but also provided valuable references for the future development of D-type peptides-based hybrid anticancer chemotherapeutics.


Asunto(s)
Antineoplásicos , Antineoplásicos/farmacología , Oligopéptidos/farmacología , Péptidos/farmacología , Apoptosis , Péptido Hidrolasas , Línea Celular Tumoral
18.
Mol Pharmacol ; 105(3): 224-232, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38164605

RESUMEN

The Kv4.3 channel features fast N-type inactivation and also undergoes a slow C-type inactivation. The gain-of-function mutations of Kv4.3 channels cause an inherited disease called Brugada syndrome (BrS), characterized by a shortened duration of cardiac action potential repolarization and ventricular arrhythmia. The sulfonylurea drug gliquidone, an ATP-dependent K+ channel antagonist, is widely used for the treatment of type 2 diabetes. Here, we report a novel role of gliquidone in inhibiting Kv4.3 and Kv4.3/KChIP2 channels that encode the cardiac transient outward K+ currents responsible for the initial phase of action potential repolarization. Gliquidone results in concentration-dependent inhibition of both Kv4.3 and Kv4.3/KChIP2 fast or steady-state inactivation currents with an IC50 of approximately 8 µM. Gliquidone also accelerates Kv4.3 channel inactivation and shifts the steady-state activation to a more depolarizing direction. Site-directed mutagenesis and molecular docking reveal that the residues S301 in the S4 and Y312A and L321A in the S4-S5 linker are critical for gliquidone-mediated inhibition of Kv4.3 currents, as mutating those residues to alanine significantly reduces the potency for gliquidone-mediated inhibition. Furthermore, gliquidone also inhibits a gain-of-function Kv4.3 V392I mutant identified in BrS patients in voltage- and concentration-dependent manner. Taken together, our findings demonstrate that gliquidone inhibits Kv4.3 channels by acting on the residues in the S4 and the S4-S5 linker. Therefore, gliquidone may hold repurposing potential for the therapy of Brugada syndrome. SIGNIFICANCE STATEMENT: We describe a novel role of gliquidone in inhibiting cardiac Kv4.3 currents and the channel gain-of-function mutation identified from patients with Brugada syndrome, suggesting its repurposing potential for therapy for the heart disease.


Asunto(s)
Síndrome de Brugada , Diabetes Mellitus Tipo 2 , Compuestos de Sulfonilurea , Humanos , Síndrome de Brugada/genética , Simulación del Acoplamiento Molecular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Potenciales de Acción
19.
J Biol Chem ; 300(2): 105595, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154600

RESUMEN

The temperature-sensitive Ca2+-permeable TRPV3 ion channel is robustly expressed in the skin keratinocytes, and its gain-of-function mutations are involved in the pathology of skin lesions. Here, we report the identification of an antispasmodic agent flopropione that alleviates skin inflammation by selective inhibition of TRPV3. In whole-cell patch clamp recordings, flopropione selectively inhibits macroscopic TRPV3 currents in a concentration-dependent manner with an IC50 value of 17.8 ± 3.5 µM. At the single-channel level, flopropione inhibits TRPV3 channel open probability without alteration of its unitary conductance. In an in vivo mouse model of skin inflammation induced by the skin sensitizer DNFB, flopropione also alleviates dorsal skin lesions and ear skin swelling. Further molecular docking combined with site-directed mutagenesis reveals that two residues E501 and I505 in the channel S2-helix are critical for flopropione-mediated inhibition of TRPV3. Taken together, our findings demonstrate that the spasmolytic drug flopropione as a selective inhibitor of TRPV3 channel not only provides a valuable tool molecule for understanding of TRPV3 channel pharmacology but also holds repurposing potential for therapy of skin disorders, such as dermatitis and pruritus.


Asunto(s)
Dermatitis , Propiofenonas , Canales Catiónicos TRPV , Animales , Ratones , Dermatitis/tratamiento farmacológico , Queratinocitos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Parasimpatolíticos/farmacología , Parasimpatolíticos/uso terapéutico , Propiofenonas/farmacología , Propiofenonas/uso terapéutico , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Ratones Endogámicos C57BL , Masculino , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Piel/efectos de los fármacos
20.
Mar Drugs ; 21(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38132943

RESUMEN

Aberrantly high dietary cholesterol intake and intestinal cholesterol uptake lead to dyslipidemia, one of the risk factors for cardiovascular diseases (CVDs). Based on previous studies, laminarin, a polysaccharide found in brown algae, has hypolipidemic activity, but its underlying mechanism has not been elucidated. In this study, we investigated the effect of laminarin on intestinal cholesterol uptake in vitro, as well as the lipid and morphological parameters in an in vivo model of high-fat diet (HFD)-fed mice, and addressed the question of whether Niemann-Pick C1-like 1 protein (NPC1L1), a key transporter mediating dietary cholesterol uptake, is involved in the mechanistic action of laminarin. In in vitro studies, BODIPY-cholesterol-labeled Caco-2 cells were examined using confocal microscopy and a fluorescence reader. The results demonstrated that laminarin inhibited cholesterol uptake into Caco-2 cells in a concentration-dependent manner (EC50 = 20.69 µM). In HFD-fed C57BL/6J mice, laminarin significantly reduced the serum levels of total cholesterol (TC), total triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). It also decreased hepatic levels of TC, TG, and total bile acids (TBA) while promoting the excretion of fecal cholesterol. Furthermore, laminarin significantly reduced local villous damage in the jejunum of HFD mice. Mechanistic studies revealed that laminarin significantly downregulated NPC1L1 protein expression in the jejunum of HFD-fed mice. The siRNA-mediated knockdown of NPC1L1 attenuated the laminarin-mediated inhibition of cholesterol uptake in Caco-2 cells. This study suggests that laminarin significantly improves dyslipidemia in HFD-fed mice, likely by reducing cholesterol uptake through a mechanism that involves the downregulation of NPC1L1 expression.


Asunto(s)
Dieta Alta en Grasa , Dislipidemias , Humanos , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Colesterol en la Dieta/metabolismo , Proteína Niemann-Pick C1/metabolismo , Células CACO-2 , Ratones Endogámicos C57BL , Colesterol/metabolismo , Triglicéridos/metabolismo , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...