Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 10(1): e0115607, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25635838

RESUMEN

We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT) micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8-12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300 mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic event. We demonstrate the ability to consistently identify areas of myocardial infarct in mice and provide functional cardiac information using a delayed contrast enhancement technique.


Asunto(s)
Diagnóstico por Imagen/métodos , Infarto del Miocardio/diagnóstico por imagen , Nanotubos de Carbono , Daño por Reperfusión/diagnóstico por imagen , Animales , Medios de Contraste , Modelos Animales de Enfermedad , Humanos , Imagenología Tridimensional , Yohexol/toxicidad , Ratones , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/patología , Daño por Reperfusión/inducido químicamente , Daño por Reperfusión/patología , Tomografía Computarizada por Rayos X , Microtomografía por Rayos X
3.
Acad Radiol ; 18(5): 588-93, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21377908

RESUMEN

RATIONALE AND OBJECTIVES: Challenges remain in the imaging of the lungs of free-breathing mice. Although computed tomographic (CT) imaging is near optimal from a contrast perspective, the rapid respiration rate, limited temporal resolution, and inflexible x-ray pulse control of most micro-CT scanners limit their utility in pulmonary imaging. Carbon nanotubes (CNTs) have permitted the development of field emission cathodes, with rapid switching and precise pulse control. The goal of this study was to explore the utility of a CNT-based micro-CT system for application in quantitative pulmonary imaging. MATERIALS AND METHODS: Twelve CB57/B6 mice were imaged during peak inspiration and end-exhalation using the CNT micro-CT system. The respiratory trace was derived from a sensor placed underneath the abdomen of the animal. Animals were allowed to breathe freely during the imaging under isoflurane anesthesia. Images were reconstructed using isotropic voxels of 77-µm resolution (50 kVp, 400 projections, 30-ms x-ray pulse). Lung volumes were measured with region-growing techniques and thresholds derived from the surrounding air and soft tissues. Basic functional parameters, including tidal volume, functional reserve capacity and minute volume, were also calculated. RESULTS: The average scan time was 13.4 ± 1.8 minutes for each phase of the respiratory cycle. Mean lung volumes at peak inspiration and end-expiration were 0.23 ± 0.026 and 0.11 ± 0.024 mL, respectively. The average minute volume was 11.93 ± 2.64 mL/min. CONCLUSIONS: The results of this study demonstrate the utility of a CNT-based micro-CT system in acquiring prospectively gated images from free-breathing mice for obtaining physiologic data. This technique provides an alternative to breath-hold techniques requiring intubation and offers greater dose efficiency than retrospective gating techniques.


Asunto(s)
Pulmón/diagnóstico por imagen , Nanotubos de Carbono , Tomografía Computarizada por Rayos X , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Respiración , Volumen de Ventilación Pulmonar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...