Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 52(6): 1113-21, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23327333

RESUMEN

Various fluorescence experiments and computer simulations were utilized to gain further understanding of thromboxane A(2) synthase (TXAS), which catalyzes an isomerization of prostaglandins H(2) to give rise to thromboxane A(2) along with a fragmentation reaction to 12-L-hydroxy-5,8,10-heptadecatrienoic acid and malondialdehyde. In this study, 2-p-toluidinylnaphthalene-6-sulfonic acid (TNS) was utilized as a probe to assess the spatial relationship and binding dynamics of ligand-TXAS interactions by steady-state and time-resolved fluorescence spectroscopy. The proximity between TNS and each of the five tryptophan (Trp) residues in TXAS was examined through the fluorescence quenching of Trp by TNS via an energy transfer process. The fluorescence quenching of Trp by TNS was abolished in the W65F mutant, indicating that Trp65 is the major contributor to account for energy transfer with TNS. Furthermore, both competitive binding experiments and the computer-simulated TXAS structure with clotrimazole as a heme ligand strongly suggest that TXAS has a large active site that can simultaneously accommodate TNS and clotrimazole without mutual interaction between TNS and heme. Displacement of TNS by Nile Red, a fluorescence dye sensitive to environmental polarity, indicates that the TNS binding site in TXAS is likely to be hydrophobic. The Phe cluster packing near the binding site of TNS may be involved in facilitating the binding of multiple ligands to the large active site of TXAS.


Asunto(s)
Colorantes Fluorescentes , Hemo/metabolismo , Naftalenosulfonatos/metabolismo , Proteínas Recombinantes/metabolismo , Tromboxano-A Sintasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Simulación por Computador , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Oxazinas , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Tromboxano-A Sintasa/química , Tromboxano-A Sintasa/genética , Triptófano/química , Triptófano/metabolismo
2.
Pharmacogenet Genomics ; 22(9): 653-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22735388

RESUMEN

BACKGROUND: Thromboxane A synthase (TXAS) metabolizes the cyclooxygenase product prostaglandin (PG) H2 into thromboxane H2 (TXA2), a potent inducer of blood vessel constriction and platelet aggregation. Nonsynonymous polymorphisms in the TXAS gene have the potential to alter TXAS activity and affect TXA2 generation. OBJECTIVES: The aim of this study was to assess the functional effects of genetic variants in the TXAS protein, including K258E, L357V, Q417E, E450K, and T451N. METHODS: Wild-type TXAS and the variant proteins were expressed in a bacterial system and purified by affinity and hydroxyapatite chromatography. The two characteristic catalytic activities of TXAS were assayed in each of the purified recombinant proteins: isomerization of PGH2 to TXA2 and fragmentation of PGH2 to 12-hydroxyheptadecatrienoic acid and malondialdehyde. RESULTS: All of the variants showed both isomerization and fragmentation activities. The Km values of the variants ranged from 27 to 52 µmol/l PGH2 (wild-type value: 32 µmol/l PGH2); the Vmax values of the variants ranged from 18 to 40 U/mg (wild-type value: 41 U/mg). The kinetic differences were largest for the L357V variant, whose Vmax/Km ratio was just 27% of the wild-type value. CONCLUSION: The increased Km and decreased Vmax values observed with L357V suggest that this variant may generate less TXA2 at the low levels of PGH2 expected in vivo, raising the possibility of attenuated signaling through the thromboxane pathway.


Asunto(s)
Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polimorfismo de Nucleótido Simple/genética , Tromboxano-A Sintasa/genética , Tromboxano-A Sintasa/metabolismo , Biocatálisis , Electroforesis en Gel de Poliacrilamida , Humanos , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Prostaglandina H2/química , Prostaglandina H2/metabolismo , Tromboxano B2/biosíntesis , Tromboxano-A Sintasa/química
3.
J Am Chem Soc ; 133(46): 18870-9, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21978190

RESUMEN

In an aim to probe the structure-function relationship of prostacyclin synthase (PGIS), resonance Raman (RR) spectroscopy and molecular dynamic (MD) simulation approaches have been exploited to characterize the heme conformation and heme-protein matrix interactions for human PGIS (hPGIS) and zebrafish PGIS (zPGIS) in the presence and absence of ligands. The high-frequency RR (1300-1700 cm(-1)) indicates that the heme group is in the ferric, six-coordinate, low-spin state for both resting and ligand-bound hPGIS/zPGIS. The low-frequency RR (300-500 cm(-1)) and MD simulation reveal a salient difference in propionate-protein matrix interactions between hPGIS and zPGIS, as evident by a predominant propionate bending vibration at 386 cm(-1) in resting hPGIS, but two vibrations near 370 and 387 cm(-1) in resting zPGIS. Upon binding of a substrate analogue (U46619, U51605, or U44069), both hPGIS and zPGIS induce a distinctive perturbation of the propionate-protein matrix interactions, resulting in similar Raman shifts to ~381 cm(-1). On the contrary, the bending vibration remains unchanged upon binding of inhibitor/ligand (minoxidil, clotrimazole, or miconazole), indicating that these inhibitors/ligands do not interfere with the propionate-protein matrix interactions. These results, together with subtle changes in vinyl bending modes, demonstrate drastically different RR shifts with heme conformational changes in both hPGIS and zPGIS upon different ligand bindings, suggesting that PGIS exhibits a ligand-specific heme conformational change to accommodate the substrate binding. This substrate-induced modulation of the heme conformation may confer high product fidelity upon PGIS catalysis.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Oxidorreductasas Intramoleculares/química , Simulación de Dinámica Molecular , Prostaglandina H2/química , Prostaglandinas Sintéticas/química , Espectrometría Raman , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/metabolismo , Ligandos , Modelos Moleculares , Estructura Molecular , Prostaglandina H2/metabolismo , Prostaglandinas Sintéticas/metabolismo
4.
Biochemistry ; 48(5): 917-28, 2009 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-19187034

RESUMEN

Prostacyclin synthase (PGIS) is a membrane-bound class III cytochrome P450 that catalyzes an isomerization of prostaglandin H(2), an endoperoxide, to prostacyclin. We report here the characterization of the PGIS intermediates in reactions with other peroxides, peracetic acid (PA), and iodosylbenzene. Rapid-scan stopped-flow experiments revealed an intermediate with an absorption spectrum similar to that of compound ES (Cpd ES), which is an oxo-ferryl (Fe(IV)O) plus a protein-derived radical. Cpd ES, formed upon reaction with PA, has an X-band (9 GHz) EPR signal of g = 2.0047 and a half-saturation power, P(1/2), of 0.73 mW. High-field (130 GHz) EPR reveals the presence of two species of tyrosyl radicals in Cpd ES with their g-tensor components (g(x), g(y), g(z)) of 2.00970, 2.00433, 2.00211 and 2.00700, 2.00433, 2.00211 at a 1:2 ratio, indicating that one is involved in hydrogen bonding and the other is not. The line width of the g = 2 signal becomes narrower, while its P(1/2) value becomes smaller as the reaction proceeds, indicating migration of the unpaired electron to an alternative site. The rate of electron migration ( approximately 0.2 s(-1)) is similar to that of heme bleaching, suggesting the migration is associated with the enzymatic inactivation. Moreover, a g = 6 signal that is presumably a high-spin ferric species emerges after the appearance of the amino acid radical and subsequently decays at a rate comparable to that of enzymatic inactivation. This loss of the g = 6 species thus likely indicates another pathway leading to enzymatic inactivation. The inactivation, however, was prevented by the exogenous reductant guaiacol. The studies of PGIS with PA described herein provide a mechanistic model of a peroxidase reaction catalyzed by the class III cytochromes P450.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Radicales Libres/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Ácido Peracético/metabolismo , Peroxidasas/metabolismo , Tirosina/análogos & derivados , Catálisis , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/clasificación , Humanos , Oxidorreductasas Intramoleculares/química , Yodobencenos/metabolismo , Modelos Químicos , Ácido Peracético/química , Peroxidasas/química , Peróxidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tirosina/metabolismo
5.
FEBS J ; 275(9): 2305-14, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18397321

RESUMEN

Prostacyclin synthase (PGIS) is a member of the cytochrome P450 family in which the oxyferrous complexes are generally labile in the absence of substrate. At 4 degrees C, the on-rate constants and off-rate constants of oxygen binding to PGIS in solution are 5.9 x 10(5) m(-1).s(-1) and 29 s(-1), respectively. The oxyferrous complex decays to a ferric form at a rate of 12 s(-1). We report, for the first time, a stable oxyferrous complex of PGIS in a transparent sol-gel monolith. The encapsulated ferric PGIS retained the same spectroscopic features as in solution. The binding capabilities of the encapsulated PGIS were demonstrated by spectral changes upon the addition of O-based, N-based and C-based ligands. The peroxidase activity of PGIS in sol-gel was three orders of magnitude slower than that in solution owing to the restricted diffusion of the substrate in sol-gel. The oxyferrous complex in sol-gel was observable for 24 h at room temperature and displayed a much red-shifted Soret peak. Stabilization of the ferrous-carbon monoxide complex in sol-gel was observed as an enrichment of the 450-nm species over the 420-nm species. This result suggests that the sol-gel method may be applied to other P450s to generate a stable intermediate in the di-oxygen activation.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Matriz Extracelular/química , Compuestos Ferrosos/química , Oxidorreductasas Intramoleculares/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Compuestos Ferrosos/metabolismo , Oxidorreductasas Intramoleculares/genética , Cinética , Ligandos , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Transición de Fase , Estructura Terciaria de Proteína , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Soluciones , Espectrofotometría Ultravioleta
6.
Biochemistry ; 47(1): 405-20, 2008 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-18052254

RESUMEN

Fully coupled nitric oxide synthase (NOS) catalyzes formation of nitric oxide (NO), l-citrulline, NADP+, and water from l-arginine, NADPH, and oxygen. Uncoupled or partially coupled NOS catalyzes the synthesis of reactive oxygen species such as superoxide, hydrogen peroxide, and peroxynitrite, depending on the availability of cofactor tetrahydrobiopterin (BH4) and l-arginine during catalysis. We identified three distinct oxygen-induced radical intermediates in the ferrous endothelial NOS oxygenase domain (eNOSox) with or without BH4 and/or l-arginine [Berka, V., Wu, G., Yeh, H. C., Palmer, G., and Tsai, A.-L. (2004) J. Biol. Chem. 279, 32243-32251]. The effects of BH4 and l-arginine on the oxygen-induced radical intermediates in the isolated neuronal NOS oxygenase domain (nNOSox) have been similarly investigated by single-turnover stopped-flow and rapid-freeze quench EPR kinetic measurements in the presence or absence of dithiothreitol (DTT). Like for eNOSox, we found different radical intermediates in the reaction of ferrous nNOSox with oxygen. (1) nNOSox (without BH4 or l-Arg) produces superoxide in the presence or absence of DTT. (2) nNOSox (with BH4 and l-Arg) yields a typical BH4 radical in a manner independent of DTT. (3) nNOSox (with BH4 and without l-Arg) yields a new radical. Without DTT, EPR showed a mixture of superoxide and biopterin radicals. With DTT, a new approximately 75 G wide radical EPR was observed, different from the radical formed by eNOSox. (4) The presence of only l-arginine in nNOSox (without BH4 but with l-Arg) caused conversion of approximately 70% of superoxide radical to a novel radical, explaining how l-arginine decreases the level of superoxide production in nNOSox (without BH4 but with l-Arg). The regulatory role of l-arginine in nNOS is thus very different from that in eNOS where substrate was only to decrease the rate of formation of superoxide but not the total amount of radical. The role of DTT is also different. DTT prevents oxidation of BH4 in both isoforms, but in nNOS, DTT also inhibits oxidation of two key cysteines in nNOSox to prevent the loss of substrate binding. This new role of thiol found only for nNOS may be significant in neurodegenerative diseases.


Asunto(s)
Arginina/metabolismo , Biopterinas/análogos & derivados , Óxido Nítrico Sintasa de Tipo I/metabolismo , Oxígeno/metabolismo , Animales , Arginina/química , Arginina/genética , Biopterinas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico Sintasa de Tipo I/genética , Oxidación-Reducción , Oxígeno/química , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo
7.
J Biol Chem ; 283(5): 2917-26, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18032380

RESUMEN

Prostacyclin synthase (PGIS) is a cytochrome P450 (P450) enzyme that catalyzes production of prostacyclin from prostaglandin H(2). PGIS is unusual in that it catalyzes an isomerization rather than a monooxygenation, which is typical of P450 enzymes. To understand the structural basis for prostacyclin biosynthesis in greater detail, we have determined the crystal structures of ligand-free, inhibitor (minoxidil)-bound and substrate analog U51605-bound PGIS. These structures demonstrate a stereo-specific substrate binding and suggest features of the enzyme that facilitate isomerization. Unlike most microsomal P450s, where large substrate-induced conformational changes take place at the distal side of the heme, conformational changes in PGIS are observed at the proximal side and in the heme itself. The conserved and extensive heme propionate-protein interactions seen in all other P450s, which are largely absent in the ligand-free PGIS, are recovered upon U51605 binding accompanied by water exclusion from the active site. In contrast, when minoxidil binds, the propionate-protein interactions are not recovered and water molecules are largely retained. These findings suggest that PGIS represents a divergent evolution of the P450 family, in which a heme barrier has evolved to ensure strict binding specificity for prostaglandin H(2), leading to a radical-mediated isomerization with high product fidelity. The U51605-bound structure also provides a view of the substrate entrance and product exit channels.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Oxidorreductasas Intramoleculares/química , Secuencia de Aminoácidos , Animales , Clonación Molecular , Cristalografía por Rayos X , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Inhibidores Enzimáticos/farmacología , Epoprostenol/biosíntesis , Hemo/química , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Ligandos , Minoxidil/farmacología , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Prostaglandinas H/metabolismo , Conformación Proteica , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática , Especificidad por Sustrato , Termodinámica , Pez Cebra/genética , Pez Cebra/metabolismo
8.
Arch Biochem Biophys ; 461(2): 159-68, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17459323

RESUMEN

Prostacyclin synthase (PGIS) and thromboxane synthase (TXAS) are atypical cytochrome P450s. They do not require NADPH or dioxygen for isomerization of prostaglandin H(2) (PGH(2)) to produce prostacyclin (PGI(2)) and thromboxane A(2) (TXA(2)). PGI(2) and TXA(2) have opposing actions on platelet aggregation and blood vessel tone. In this report, we use a lipid hydroperoxide, 15-hydroperoxyeicosatetraenoic acid (15-HPETE), to explore the active site characteristics of PGIS and TXAS. The two enzymes transformed 15-HPETE not only into 13-hydroxy-14,15-epoxy-5,8,11-eicosatrienoic acid (13-OH-14,15-EET), like many microsomal P450s, but also to 15-ketoeicosatetraenoic acid (15-KETE) and 15-hydroxyeicosatetraenoic acid (15-HETE). 13-OH-14,15-EET and 15-KETE result from homolytic cleavage of the O-O bond, whereas 15-HETE results from heterolytic cleavage, a common peroxidase pathway. About 80% of 15-HPETE was homolytically cleaved by PGIS and 60% was homolytically cleaved by TXAS. The V(max) of homolytic cleavage is 3.5-fold faster than heterolytic cleavage for PGIS-catalyzed reactions (1100 min(-1)vs. 320 min(-1)) and 1.4-fold faster for TXAS (170 min(-1)vs. 120 min(-1)). Similar K(M) values for homolytic and heterolytic cleavages were found for PGIS ( approximately 60 microM 15-HPETE) and TXAS ( approximately 80 microM 15-HPETE), making PGIS a more efficient catalyst for the 15-HPETE reaction.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Leucotrienos/metabolismo , Peróxidos Lipídicos/metabolismo , Tromboxano-A Sintasa/metabolismo , Catálisis , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/aislamiento & purificación , Humanos , Oxidorreductasas Intramoleculares/biosíntesis , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/aislamiento & purificación
9.
J Mol Biol ; 364(3): 266-74, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17020766

RESUMEN

Prostacyclin synthase (PGIS) catalyzes an isomerization of prostaglandin H(2) to prostacyclin, a potent mediator of vasodilation and anti-platelet aggregation. Here, we report the crystal structure of human PGIS at 2.15 A resolution, which represents the first three-dimensional structure of a class III cytochrome P450. While notable sequence divergence has been recognized between PGIS and other P450s, PGIS exhibits the typical triangular prism-shaped P450 fold with only moderate structural differences. The conserved acid-alcohol pair in the I helix of P450s is replaced by residues G286 and N287 in PGIS, but the distinctive disruption of the I helix and the presence of a nearby water channel remain conserved. The side-chain of N287 appears to be positioned to facilitate the endoperoxide bond cleavage, suggesting a functional conservation of this residue in O-O bond cleavage. A combination of bent I helix and tilted B' helix creates a channel extending from the heme distal pocket, which seemingly allows binding of various ligands; however, residue W282, placed in this channel at a distance of 8.4 A from the iron with its indole side-chain lying parallel with the porphyrin plane, may serve as a threshold to exclude most ligands from binding. Additionally, a long "meander" region protruding from the protein surface may impede electron transfer. Although the primary sequence of the PGIS cysteine ligand loop diverges significantly from the consensus, conserved tertiary structure and hydrogen bonding pattern are observed for this region. The substrate-binding model was constructed and the structural basis for prostacyclin biosynthesis is discussed.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Oxidorreductasas Intramoleculares/química , Modelos Moleculares , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Hemo/química , Humanos , Enlace de Hidrógeno , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
10.
Prostaglandins Leukot Essent Fatty Acids ; 75(6): 397-402, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17000094

RESUMEN

Prostanoids (PG) play important roles in vascular, pulmonary, reproductive and renal physiology. Little is known about their roles in the embryonic development. Using the oviparous zebrafish embryo as a model, we determined the temporal expression of PGs synthesized from exogenous prostaglandin H(2). Prostaglandin E(2) is the major PG throughout first 120 h post-fertilization (hpf), whereas prostaglandin F(2)(alpha) is at a lower but also a constant level. Reverse transcription-polymerase chain reaction (RT-PCR) showed that transcripts of cytosolic and membrane-bound PGE synthases were evident during the 120 hpf period. Compared with thromboxane A(2), the level of prostacyclin (PGI(2))is higher at first 24 hpf, the stage before the formation of blood vessel. RT-PCR showed that transcript of prostacyclin synthase appeared at 7 hpf whereas thromboxane synthase appeared at 48 hpf, suggesting that PGI(2) has additional functions besides hemostasis. Interestingly, level of prostaglandin D(2) (PGD(2)) followed an exponential decay over 120 hpf with a rate constant of 0.048 h(-1) and transcript of lipocalin-type PGD synthase was expressed at a higher level at early stage of development, suggesting that PGD(2) is highly regulated during embryogenesis.


Asunto(s)
Desarrollo Embrionario , Prostaglandinas/metabolismo , Pez Cebra/embriología , Animales , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandina-Endoperóxido Sintasas/metabolismo , Prostaglandinas/análisis , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra/metabolismo
11.
Arch Biochem Biophys ; 444(2): 165-73, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16297851

RESUMEN

Understanding the docking mechanism of the common substrate, prostaglandin H(2) (PGH(2)), into the active sites of different cyclooxygenase(COX)-downstream synthases is a key step toward uncovering the molecular basis of the isomerization of PGH(2) to different prostanoids. A high-resolution NMR spectroscopy was used to determine the conformational changes and solution 3D structure of U44069, a PGH(2) analogue, bound to one of the COX-downstream synthases-an engineered thromboxane A(2) synthase (TXAS). The dynamic binding was clearly observed by (1)D NMR titration. The detailed conformational change and 3D structure of U44069 bound to the TXAS were demonstrated by 2D (1)H NMR experiments using transferred NOEs. Through the assignments for the 2D (1)H NMR spectra, TOCSY, DQF-COSY, NOESY, and the structural calculations based on the NOE constraints, they demonstrated that the widely open conformation with a triangle shape of the free U44069 changed to a compact structure with an oval shape when bound to the TXAS. The putative substrate-binding pocket of the TXAS model fits the conformation of the TXAS-bound U44069 appropriately, but could not fit the free form of U44069. It was the first to provide structural information for the dynamic docking of the PGH(2) mimic of the TXAS in solution, and to imply that PGH(2) undergoes conformational changes when bound to different COX-downstream synthases, which may play important roles in the isomerization of PGH(2) to different prostanoids. The NMR technique can be used as a powerful tool to determine the conformations of PGH(2) bound to other COX-downstream synthases.


Asunto(s)
Materiales Biomiméticos/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Modelos Moleculares , Endoperóxidos de Prostaglandinas Sintéticos/química , Prostaglandina H2/análogos & derivados , Tromboxano-A Sintasa/química , Sitios de Unión , Materiales Biomiméticos/análisis , Simulación por Computador , Endoperóxidos de Prostaglandinas Sintéticos/análisis , Prostaglandina-Endoperóxido Sintasas/análisis , Prostaglandina-Endoperóxido Sintasas/química , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Soluciones , Especificidad por Sustrato , Tromboxano-A Sintasa/análisis , Tromboxano-A Sintasa/genética
12.
Hum Mutat ; 26(4): 394-5, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16134166

RESUMEN

Thromboxane synthase (TBXAS1), a cytochrome P450 enzyme, converts prostaglandin H2 into thromboxane A2, a potent vasoconstrictor and inducer of platelet aggregation. Thromboxane A2 has been implicated in modulating cell cytotoxicity and in tumor growth and metastasis. Twelve coding-region variants were identified in the human TBXAS1 gene in 48 African-American and 46 Caucasian individuals, of which eight were amino-acid substitutions. The latter were confirmed in an independent Caucasian population (n=94 unrelated individuals). We performed an evolutionary analysis of patterns of nucleotide diversity and identified patterns of amino acid replacement in human-mouse comparisons consistent with purifying selection on an inter-species time scale using the McDonald-Kreitman test. We also observed patterns of nucleotide diversity within humans consistent with purifying selection acting on existing polymorphism using Tajima's D within coding regions. These evolutionary tests suggest that some of the rare coding variations observed in the human population are deleterious. We used two sequence-homology-based software programs and molecular modeling to predict the potential impact of these polymorphisms on TBXAS1 function. The c.772C>T (p.Lys258Glu), c.1249C>G (p.Gln417Glu), and c.1348G>A (p.Glu450Lys) substitutions are predicted as most likely to alter protein function; another, c.1352C>A (p.Thr451Asn), may also affect function. Given the evolutionary evidence, these variants may be functional and therefore of relevance for disease endpoints related to inflammation and angiogenesis, as well as for the pharmacogenetics of non-steroidal anti-inflammatory drugs.


Asunto(s)
Negro o Afroamericano/genética , Polimorfismo Genético , Selección Genética , Tromboxano-A Sintasa/genética , Población Blanca/genética , Sustitución de Aminoácidos/genética , Variación Genética , Haplotipos , Humanos
13.
Biochim Biophys Acta ; 1738(1-3): 121-32, 2005 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-16406803

RESUMEN

Prostacyclin is a potent mediator of vasodilation and anti-platelet aggregation. It is synthesized from prostaglandin H(2) by prostacyclin synthase (PGIS), a member of Family 8 in the cytochrome P450 superfamily. Unlike most P450s, which require exogenous reducing equivalents and an oxygen molecule for mono-oxygenation, PGIS catalyzes an isomerization with an initial step of endoperoxide bond cleavage of prostaglandin H(2) (PGH(2)). The low abundance of PGIS in natural tissues necessitates heterologous expression for studies of structure/function relationships and reaction mechanism. We report here a high-yield prokaryotic system for expression of enzymatically active human PGIS. The PGIS cDNA is modified by replacing the hydrophobic amino-terminal sequence with the more hydrophilic amino-terminal sequence from P450 2C5 and by adding a four-histidine tag at the carboxyl terminus. The resulting recombinant PGIS associates with host cell membranes and was purified to electrophoretic homogeneity by nickel affinity, hydroxyapatite and CM Sepharose column chromatography. The recombinant PGIS, with a heme:protein ratio of 0.9:1, catalyzes prostacyclin formation at a K(m) of 13.3 muM PGH(2) and a V(max) of 980 per min. The dithionite-reduced PGIS binds CO with an on-rate of 5.6 x 10(5) M(-1) s(-1) and an off-rate of 15 s(-1). The ferrous-CO complex of PGIS is very short-lived and decays at a rate of 0.7 s(-1). Spectral binding assays showed that imidazole binds weakly to PGIS (K(d) approximately 0.5 mM,) but clotrimazole, a bulky and rigid imidazole derivative, binds strongly (K(d) approximately 1 microM). The transient nature of the CO complex and the weak imidazole binding seem to support an earlier proposal that PGIS active site has a limited space, but the tight binding of clotrimazole argues against this view. It appears that the heme distal pocket of PGIS is fairly adaptable to ligands of various structures. UV-visible absorption, magnetic circular dichroism and electron paramagnetic resonance spectra indicate that PGIS has a typical low-spin heme with a hydrophobic active site. PGIS catalyzes homolytic scission of the peroxide bond of a test substrate, 10-hydroperoxyoctadeca-8,12-dienoic acid, accompanied by formation of a heme intermediate with a Compound II-like optical spectrum.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Hemo/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Peróxidos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dicroismo Circular , Sistema Enzimático del Citocromo P-450/genética , Espectroscopía de Resonancia por Spin del Electrón , Histidina/genética , Histidina/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Oxidorreductasas Intramoleculares/genética , Cinética , Ligandos , Ácidos Linoleicos/metabolismo , Datos de Secuencia Molecular , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrofotometría Ultravioleta/métodos
14.
Blood ; 104(1): 135-42, 2004 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15010374

RESUMEN

Besides its well-recognized role in hemostasis and thrombosis, thromboxane A(2) synthase (TXAS) is proposed to be involved in thrombopoiesis and lymphocyte differentiation. To evaluate its various physiologic roles, we generated TXAS-deleted mice by gene targeting. TXAS(-/-) mice had normal bone marrow megakaryocytes, normal blood platelet counts, and normal CD4 and CD8 lymphocyte counts in thymus and spleen. Platelets from TXAS(-/-) mice failed to aggregate or generate thromboxane B(2) in response to arachidonic acid (AA) but produced increased prostaglandin-E(2) (PGE(2)), PGD(2), and PGF(2 alpha). AA infusion caused a progressive drop of mean arterial pressure (MAP), cardiac arrest, and death in wild-type (WT) mice but did not induce shock in TXAS(-/-) mice or in WT and TXAS(-/-) mice treated with antagonist to the thromboxane-prostanoid (TP) receptor. The TXAS(-/-) mice were able to maintain normal MAP upon AA insult when TP was present but were unable to do so when TP was blocked by an antagonist, suggesting a role of endoperoxide accumulation in influencing MAP. We conclude that TXAS is not essential for thrombopoiesis and lymphocyte differentiation. Its deficiency causes a mild hemostatic defect and protects mice against arachidonate-induced shock and death. The TXAS-deleted mice will be valuable for investigating the roles of arachidonate metabolic shunt in various pathophysiologic processes.


Asunto(s)
Ácido Araquidónico/farmacología , Trombopoyesis/fisiología , Tromboxano-A Sintasa/fisiología , Animales , Ácido Araquidónico/metabolismo , Tiempo de Sangría , Eliminación de Gen , Marcación de Gen , Genotipo , Hemodinámica/efectos de los fármacos , Hemodinámica/fisiología , Hemostasis/genética , Hemostasis/fisiología , Isoenzimas , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/fisiología , Bazo/citología , Bazo/metabolismo , Subgrupos de Linfocitos T/citología , Trombopoyesis/genética , Tromboxano-A Sintasa/deficiencia , Tromboxano-A Sintasa/genética , Timo/citología , Timo/metabolismo
15.
Biochemistry ; 43(6): 1560-8, 2004 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-14769032

RESUMEN

Hydroperoxides induce formation of a tyrosyl radical on Tyr385 in prostaglandin H synthase (PGHS). The Tyr385 radical initiates hydrogen abstraction from arachidonic acid, thereby mechanistically connecting the peroxidase and cyclooxygenase activities. In both PGHS isoforms the tyrosyl radical undergoes a time-dependent transition from a wide doublet to a wide singlet species; pretreatment with cyclooxygenase inhibitors results in a third type of signal, a narrow singlet [Tsai, A.-L.; Kulmacz, R. J. (2000) Prost. Lipid Med. 62, 231-254]. These transitions have been interpreted as resulting from Tyr385 ring rotation, but could also be due to radical migration from Tyr385 to another tyrosine residue. PATHWAYS analysis of PGHS crystal structures identified four tyrosine residues with favorable predicted electronic coupling: residues 148, 348, 404, and 504 (ovine PGHS-1 numbering). We expressed recombinant PGHS-2 proteins containing single Tyr --> Phe mutations at the target residues, a quadruple mutant with all four tyrosines mutated, and a quintuple mutant, which also contains a Y385F mutation. All mutants bind heme and display appreciable peroxidase activity, and with the exception of the quintuple mutant, all retain cyclooxygenase activity, indicating that neither of the active sites is significantly perturbed. Reaction of the Y148F, Y348F, and Y404F mutants with EtOOH generates a wide singlet EPR signal similar to that of native PGHS-2. However, reaction of the Y504F and the quadruple mutants with peroxide yields persistent wide doublets, and the quintuple mutant is EPR silent. Nimesulide pretreatment of Y504F and the quadruple mutant results in an abnormally small amount of wide doublet signal, with no narrow singlet being formed. Therefore, the formation of an alternative tyrosine radical on Tyr504 probably accounts for the transition from a wide doublet to a wide singlet in native PGHS-2 and for formation of a narrow singlet in complexes of PGHS-2 with cyclooxygenase inhibitors.


Asunto(s)
Radicales Libres/química , Isoenzimas/química , Prostaglandina-Endoperóxido Sintasas/química , Tirosina/química , Unión Competitiva/genética , Catálisis , Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa/química , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón/genética , Electroforesis en Gel de Poliacrilamida , Humanos , Immunoblotting , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Cinética , Proteínas de la Membrana , Mutagénesis Sitio-Dirigida , Peroxidasas/química , Peroxidasas/genética , Prostaglandina-Endoperóxido Sintasas/genética , Unión Proteica/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sulfonamidas/química , Tirosina/genética
16.
DNA Cell Biol ; 22(8): 479-87, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14565864

RESUMEN

Thromboxane A(2) synthase (TXAS) converts prostaglandin H(2) to thromboxane A(2), a potent inducer of vaso-constriction and platelet aggregation. TXAS expression level is cell type preferential; high in hematopoietic cells and low in nonhematopoietic cells. We previously showed that p45 NF-E2 activated the TXAS promoter in hematopoietic cells via binding to the nucleotides -86/-77 from the transcriptional start site [Yaekashiwa and Wang (2002) J. Biol. Chem. 277, 22497-22508]. We reported here that, by transient transfection analysis, this region was also critical for TXAS trans-activation in the A549 and WI-38 lung cells. Mutation of the NF-E2 site greatly reduced TXAS promoter activity in these two types of cells. Using stably transfected A549 cells, we showed that an NF-E2 mutation retained only 0.25% of the wild-type promoter activity. Ecotopic expression of NF-E2 related factors showed that Nrf2, but not Nrf1, Nrf3, or Bach1, activated TXAS promoter in a dose-dependent manner. Furthermore, chromatin immunoprecipitation assay using the stably transfected A549 cells demonstrated that Nrf2 bound the TXAS NF-E2 site in vivo. TXAS gene thus utilizes the same cis-acting element but different trans-acting factors to confer cell-preferential expression. We also showed that forced expression of p300 upregulated TXAS gene in a dose-dependent manner. Mutation of NF-E2 site, but not TATA or initiator site, abolished the p300-mediated activation of TXAS gene.


Asunto(s)
Proteínas de Unión al ADN/farmacología , Pulmón/metabolismo , Tromboxano-A Sintasa/genética , Transactivadores/farmacología , Línea Celular , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Factor 2 Relacionado con NF-E2 , Transfección , Células Tumorales Cultivadas
17.
Arch Biochem Biophys ; 416(1): 38-46, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12859980

RESUMEN

Thromboxane A2 synthase (TXAS) binds to the endoplasmic reticulum membrane and catalyzes both an isomerization of prostaglandin H2 (PGH2) to form thromboxane A2 (TXA2) and a fragmentation of PGH2 to form 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and malondialdehyde (MDA). TXAS is a non-classic cytochrome P450 in that it does not require molecular oxygen or an external electron donor for catalysis. Difficulty in obtaining crystals from the membrane-bound TXAS prompted us to modify the protein to a soluble form. Results from site-directed mutagenesis, hydropathy analysis, and homology modeling led us to identify a putative membrane association segment near the end of helix F in TXAS. We report here the generation of a soluble form of TXAS by deletion of the amino-terminal membrane-anchoring domain and replacement of the helix F and F-G loop region with the corresponding region of the structurally characterized microsomal P450 2C5. The resultant TXAS/2C5 chimera is expressed in bacteria as a cytosolic and monomeric protein. Addition of an amino-terminal leader sequence to enhance expression and a tetra-histidine segment at the carboxyl-terminus to facilitate purification yielded approximately 4 mg of nearly homogeneous TXAS/2C5 per liter of bacterial culture. The TXAS/2C5 chimera contains heme at nearly a 1:1 molar ratio and catalyzes the formation of TXA2, MDA, and HHT at a 1:1:1 ratio, although with a reduced catalytic activity compared to wild type TXAS. TXAS/2C5 exhibits electronic absorption spectra similar to wild type TXAS and has similar affinities toward distal heme ligands such as imidazole and U44069. The chimera was mono-dispersive and thus is promising for crystallization trials.


Asunto(s)
Membranas Intracelulares/metabolismo , Ingeniería de Proteínas/métodos , Tromboxano-A Sintasa/genética , Tromboxano-A Sintasa/metabolismo , Secuencia de Aminoácidos , Expresión Génica , Hemo/metabolismo , Humanos , Imidazoles/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Endoperóxidos de Prostaglandinas Sintéticos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Solubilidad , Tromboxano-A Sintasa/química , Tromboxano-A Sintasa/aislamiento & purificación
18.
Biochemistry ; 42(9): 2542-51, 2003 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-12614148

RESUMEN

Thromboxane synthase is a hemethiolate enzyme that catalyzes the isomerization of prostaglandin H2 to thromboxane A2. We report the first resonance Raman (RR) spectra of recombinant human thromboxane synthase (TXAS) in both the presence and the absence of substrate analogues U44069 and U46619. The resting enzyme and its U44069 complex are found to have a 6-coordinate, low spin (6c/ls) heme, in agreement with earlier experiments. The U46619-bound enzyme is detected as a 6c/ls heme too, which is in contradiction with a previous conclusion based on absorption difference spectroscopy. Two new vibrations at 368 and 424 cm(-1) are observed upon binding of the substrate analogues in the heme pocket and are assigned to the second propionate and vinyl bending modes, respectively. We interpret the changes in these vibrational modes as the disruption of the protein environment and the hydrogen-bonding network of one of the propionate groups when the substrate analogues enter the heme pocket. We use carbocyclic thromboxane A2 (CTA2) to convert the TXAS heme cofactor to its 5-coordinate, high spin (5c/hs) form, as is confirmed by optical and RR spectroscopy. In this 5c/hs state of the enzyme, the Fe-S stretching frequency is determined at 350 cm(-1) with excitation at 356.4 nm. This assignment is supported by comparison to the spectrum of resting enzyme excited at 356.4 nm and by exciting at different wavelengths. Implications of our findings for substrate binding and the catalytic mechanism of TXAS will be discussed.


Asunto(s)
Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/química , Endoperóxidos de Prostaglandinas Sintéticos/química , Tromboxano-A Sintasa/química , Sitios de Unión , Activación Enzimática , Hemo/química , Humanos , Enlace de Hidrógeno , Proteínas Hierro-Azufre/química , Ligandos , Sustancias Macromoleculares , Modelos Moleculares , Proteínas Recombinantes de Fusión/química , Espectrofotometría Ultravioleta/métodos , Espectrometría Raman/métodos , Especificidad por Sustrato
19.
J Biol Chem ; 278(8): 6002-11, 2003 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-12480940

RESUMEN

Characterization of the redox properties of endothelial nitric-oxide synthase (eNOS) is fundamental to understanding the complicated reaction mechanism of this important enzyme participating in cardiovascular function. Yeast overexpression of both the oxygenase and reductase domains of human eNOS, i.e. eNOS(ox) and eNOS(red), has been established to accomplish this goal. UV-visible and electron paramagnetic resonance (EPR) spectral characterization for the resting eNOS(ox) and its complexes with various ligands indicated a standard NOS heme structure as a thiolate hemeprotein. Two low spin imidazole heme complexes but not the isolated eNOS(ox) were resolved by EPR indicating slight difference in heme geometry of the dimeric eNOS(ox) domain. Stoichiometric titration of eNOS(ox) demonstrated that the heme has a capacity for a reducing equivalent of 1-1.5. Additional 1.5-2.5 reducing equivalents were consumed before heme reduction occurred indicating the presence of other unknown high potential redox centers. There is no indication for additional metal centers that could explain this extra electron capacity of eNOS(ox). Ferrous eNOS(ox), in the presence of l-arginine, is fully functional in forming the tetrahydrobiopterin radical upon mixing with oxygen as demonstrated by rapid-freeze EPR measurements. Calmodulin binds eNOS(red) at 1:1 stoichiometry and high affinity. Stoichiometric titration and computer simulation enabled the determination for three redox potential separations between the four half-reactions of FMN and FAD. The extinction coefficient could also be resolved for each flavin for its semiquinone, oxidized, and reduced forms at multiple wavelengths. This first redox characterization on both eNOS domains by stoichiometric titration and the generation of a high quality EPR spectrum for the BH(4) radical intermediate illustrated the usefulness of these tools in future detailed investigations into the reaction mechanism of eNOS.


Asunto(s)
Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/metabolismo , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Cinética , Datos de Secuencia Molecular , Peso Molecular , Óxido Nítrico Sintasa de Tipo III , Oxidación-Reducción , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...