Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 9(8): 2147-2159, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35616351

RESUMEN

Enforcing balanced electron-hole injection into the emitter layer of quantum-dot light-emitting diodes (QLEDs) remains key to maximizing the quantum efficiency over a wide current density range. This was previously thought not possible for quantum dot (QD) emitters because of their very deep energy bands. Here, we show using Mesolight® blue-emitting CdZnSeS/ZnS QDs as a model that its valence levels are in fact considerably shallower than the corresponding band maximum of the bulk semiconductor, which makes the ideal double-type-I injection/confinement heterostructure accessible using a variety of polymer organic semiconductors as transport and injection layers. We demonstrate flat external quantum efficiency characteristics that indicate near perfect recombination within the QD layer over several decades of current density from the onset of device turn-on of about 10 µA cm-2, for both normal and inverted QLED architectures. We also demonstrate that these organic semiconductors do not chemically degrade the QDs, unlike the usual ZnMgO nanoparticles. However, these more efficient injection heterostructures expose a new vulnerability of the QDs to in device electrochemical degradation. The work here opens a clear path towards next-generation ultra-high-performance, all-solution-processed QLEDs.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(10): 2632-6, 2012 Oct.
Artículo en Chino | MEDLINE | ID: mdl-23285854

RESUMEN

Series of Eu3+ doped layered perovskite structure M2TiO4: Eu3+ (M = Ca, Sr, Ba) red phosphors were prepared by the high-temperature solid state reaction method. Their phase compositions and photoluminescence properties were investigated by XRD, UV-Vis DRS and fluorescence spectra The results indicated that pure Sr2 TiO4 and Ba2 TiO4 powers could be prepared under 1 100 degrees C for 2 hours, but Ca2 TiO4 powers could not be synthesized even raising the calcination temperature and lengthening the calcination time. Ba2TiO4: Eu3+ phosphor emitted 594 nm (5D0 --> 7F1) and 615 nm (5D0 --> 7F2) orange-red light under the excitation of 395 nm. Sr2TiO4 : Eu3+ phosphor gave a unusual and strong orange-red emission of 578 nm (5D0 --> 7F0) and 626 nm (5 D0 --> 7F2) under the excitation of near ultraviolet or blue light, resulting in the better color purity and higher luminescent intensity. In addition, this phosphor had the highest luminous efficiency when excited by the charge migration excitation at 363 nm and it had the great potential to be a red phosphor for N-UV LED and blue light chip.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(11): 2906-10, 2010 Nov.
Artículo en Chino | MEDLINE | ID: mdl-21284150

RESUMEN

Y2O3 powders doped with rare-earth ions were synthesized by sol-gel combustion synthesis. Effects of different calcinating temperatures, Er+ doping concentration and Yb3+ doping concentration were investigated. It was shown that the single well crystallized Y2O3 powders could be obtained at 800 degrees C; as the calcinating temperature increased, the crystallinity and upconversion luminescence intensity were higher; the particle size was uniform around 1 microm at 900 degrees C; when Er3+ doping concentration was 1 mol%, the green upconversion luminescence intensity reached the maximum, but for red upconversion luminescence, when Er3+ doping concentration was 4 mol%, its luminescence intensity reached the maximum; as the ratio of Yb3+ to Er3+ was 4:1, the green emission intensity reached the maximum, while the red emission intensity was always increasing as Yb3+ doping concentration increased.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...