Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Hematology ; 29(1): 2356292, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38785187

RESUMEN

OBJECTIVES: This study aims to investigate the role of excessive Protein Tyrosine Phosphatase Non-Receptor Type 21 (PTPN21) in the proliferation of Acute Lymphoblastic Leukemia (ALL) cells with EGF stimulation. METHODS: PTPN21 was overexpressed in ALL cell lines by lentiviral transfection. Apoptosis was assayed by Annexin V/7-AAD staining. The proliferation and cell cycle of EGF-treated ALL cells were assessed by MTT and Ki-67/7-AAD staining respectively. The phosphorylation of Src tyrosine kinase and mediators of distinct MAPK pathways were assessed by Western blot. RESULTS: Overexpression of PTPN21 had minimal effect on the apoptosis of ALL cells, but significantly promoted the proliferation and cell cycle progression of ALL cells stimulated with EGF. The activity of Src tyrosine kinase and the MAPK pathways was elevated. Inhibition of MAPK pathways by specific inhibitors mitigated this pro-proliferative effect of excessive PTPN21 on EGF-stimulated ALL cells. CONCLUSION: PTPN21 may facilitate ALL progression by promoting cell proliferation via the Src/MAPK signaling pathways.


Asunto(s)
Proliferación Celular , Factor de Crecimiento Epidérmico , Sistema de Señalización de MAP Quinasas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Tirosina Fosfatasas no Receptoras , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
2.
J Exp Clin Cancer Res ; 43(1): 79, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475919

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) with biallelic (CEBPAbi) as well as single mutations located in the bZIP region is associated with a favorable prognosis, but the underlying mechanisms are still unclear. Here, we propose that two isoforms of C/EBPα regulate DNA damage-inducible transcript 3 (DDIT3) transcription in AML cells corporately, leading to altered susceptibility to endoplasmic reticulum (ER) stress and related drugs. METHODS: Human AML cell lines and murine myeloid precursor cell line 32Dcl3 cells were infected with recombinant lentiviruses to knock down CEBPA expression or over-express the two isoforms of C/EBPα. Quantitative real-time PCR and western immunoblotting were employed to determine gene expression levels. Cell apoptosis rates were assessed by flow cytometry. CFU assays were utilized to evaluate the differentiation potential of 32Dcl3 cells. Luciferase reporter analysis, ChIP-seq and ChIP-qPCR were used to validate the transcriptional regulatory ability and affinity of each C/EBPα isoform to specific sites at DDIT3 promoter. Finally, an AML xenograft model was generated to evaluate the in vivo therapeutic effect of agents. RESULTS: We found a negative correlation between CEBPA expression and DDIT3 levels in AML cells. After knockdown of CEBPA, DDIT3 expression was upregulated, resulting in increased apoptotic rate of AML cells induced by ER stress. Cebpa knockdown in mouse 32Dcl3 cells also led to impaired cell viability due to upregulation of Ddit3, thereby preventing leukemogenesis since their differentiation was blocked. Then we discovered that the two isoforms of C/EBPα regulate DDIT3 transcription in the opposite way. C/EBPα-p30 upregulated DDIT3 transcription when C/EBPα-p42 downregulated it instead. Both isoforms directly bound to the promoter region of DDIT3. However, C/EBPα-p30 has a unique binding site with stronger affinity than C/EBPα-p42. These findings indicated that balance of two isoforms of C/EBPα maintains protein homeostasis and surveil leukemia, and at least partially explained why AML cells with disrupted C/EBPα-p42 and/or overexpressed C/EBPα-p30 exhibit better response to chemotherapy stress. Additionally, we found that a low C/EBPα p42/p30 ratio induces resistance in AML cells to the BCL2 inhibitor venetoclax since BCL2 is a major target of DDIT3. This resistance can be overcome by combining ER stress inducers, such as tunicamycin and sorafenib in vitro and in vivo. CONCLUSION: Our results indicate that AML patients with a low C/EBPα p42/p30 ratio (e.g., CEBPAbi) may not benefit from monotherapy with BCL2 inhibitors. However, this issue can be resolved by combining ER stress inducers.


Asunto(s)
Antineoplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Leucemia Mieloide Aguda , Sulfonamidas , Animales , Humanos , Ratones , Antineoplásicos/uso terapéutico , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/uso terapéutico , Leucemia Mieloide Aguda/metabolismo , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factor de Transcripción CHOP/genética , Respuesta de Proteína Desplegada
3.
J Immunol ; 212(4): 715-722, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149913

RESUMEN

Immune checkpoint molecules are promising targets for suppressing the immune response but have received little attention in immune tolerance induction in organ transplantation. In this study, we found that IFN-ß could induce the expression of HLA-E as well as PD-L1 on human renal tubular epithelial cell line HK-2 and renal tissue of the C57BL/6 mouse. The JAK/STAT2 pathway was necessary for this process. Upregulation of both HLA-E and PD-L1 was fully abrogated by the JAK1/2 inhibitor ruxolitinib. Signaling pathway molecules, including STAT1, STAT2, mTOR, Tyk2, and p38 MAPK, were involved in HLA-E and PD-L1 upregulation. IRF7 is the key transcription factor responsible for the activation of HLA-E and PD-L1 promoters. Through screening an epigenetic regulation library, we found a natural compound, bisdemethoxycurcumin, enhanced IFN-ß-induced HLA-E and PD-L1 expression in vitro and in vivo. In PBMC-derived CD56+ NK cells, we found that NKG2A but not PD1 was constitutively expressed, indicating HLA-E/NKG2A as a more potent target to induce tolerance to innate immune cells. Pretreating HK-2 cells by IFN-ß significantly attenuated the degranulation of their coincubated NK cells and protected cells from NK-mediated lysis. In conclusion, IFN-ß pretreatment could activate HLA-E and PD-L1 transcription through the JAK/STAT/IRF7 pathway and then could protect renal tubular epithelial cells from allogeneic immune attack mediated by NK cells.


Asunto(s)
Antígenos HLA-E , Trasplante de Células Madre Hematopoyéticas , Ratones , Animales , Humanos , Antígeno B7-H1/metabolismo , Leucocitos Mononucleares , Epigénesis Genética , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Células Epiteliales
4.
Gut Microbes ; 15(1): 2221821, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305973

RESUMEN

Despite significant achievements in hematopoietic stem cell transplantation (HSCT), graft-versus-host disease (GVHD), especially intestinal GVHD, remains a major obstacle to this procedure. GVHD has long been regarded as a pathogenic immune response, and the intestine has been simply considered as a target of immune attack. In effect, multiple factors contribute to intestinal damage after transplantation. Impaired intestinal homeostasis including altered intestinal microbiome and epithelial damage results in delayed wound healing, amplified immune response and sustained tissue destruction, and it may not fully recover following immunosuppression. In this review, we summarize factors leading to intestinal damage and discuss the relationship between intestinal damage and GVHD. We also describe the great potential of remodeling intestinal homeostasis in GVHD management.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Homeostasis , Terapia de Inmunosupresión
5.
Front Oncol ; 12: 829007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35785164

RESUMEN

Objectives: Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy with widely variable prognosis. For this reason, a more tailored-stratified approach for prognosis is urgently needed to improve the treatment success rates of AML patients. Methods: In the investigation of metabolic pattern in AML patients, we developed a metabolism-related prognostic model, which was consisted of metabolism-related gene pairs (MRGPs) identified by pairwise comparison. Furthermore, we analyzed the predictive ability and clinical significance of the prognostic model. Results: Given the significant differences in metabolic pathways between AML patients and healthy donors, we proposed a metabolism-related prognostic signature index (MRPSI) consisting of three MRGPs, which were remarkedly related with the overall survival of AML patients in the training set. The association of MRPSI with prognosis was also validated in two other independent cohorts, suggesting that high MRPSI score can identify patients with poor prognosis. The MRPSI and age were confirmed to be independent prognostic factors via multivariate Cox regression analysis. Furthermore, we combined MRPSI with age and constructed a composite metabolism-clinical prognostic model index (MCPMI), which demonstrated better prognostic accuracy in all cohorts. Stratification analysis and multivariate Cox regression analysis revealed that the MCPMI was an independent prognostic factor. By estimating the sensitivity of anti-cancer drugs in different AML patients, we selected five drugs that were more sensitive to patients in MCPMI-high group than those in MCPMI-low group. Conclusion: Our study provided an individualized metabolism-related prognostic model that identified high-risk patients and revealed new potential therapeutic drugs for AML patients with poor prognosis.

6.
J Oncol ; 2022: 1612702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35509847

RESUMEN

Background: Leukemia is a common malignancy that has four main subtypes and is a threat to human health. Understanding the epidemiological status of leukemia and its four main subtypes globally is important for allocating appropriate resources, guiding clinical practice, and furthering scientific research. Methods: Average annual percentage changes (AAPCs) were calculated to estimate the change trends of age-standardized rates (ASRs) from 1990 to 2019 in 204 countries and territories. The risk factors for leukemia death and disability-adjusted life-year (DALY) were also analyzed. In addition, the future trends in ASRs were projected through 2030. Results: The total number of incident cases, deaths, and DALYs from leukemia in 2019 was 0.64, 0.33, and 11.66 million, respectively. Decreasing trends in age-standardized incidence rate (ASIR), the age-standardized death rate (ASDR), and age-standardized DALY rate were detected on a global level while increasing trends in ASIR were detected in the high-sociodemographic index (SDI) regions. The leukemia burden was heavier in males than in females. By cause, acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL) were more likely to impose a burden on the elderly, while acute lymphoblastic leukemia (ALL) showed a greater impact in the younger population. A significant positive correlation was observed between SDI and AAPC in ASIR, while SDI was negatively correlated with AAPCs in both ASDR and age-standardized DALY rate. Smoking remained the most significant risk factor associated with leukemia-related death and DALY, especially in males. Similar deaths and DALYs were caused by smoking and high body mass index (BMI) in females. Future projections through 2030 estimated that ASIR and ASDR will continue to increase, while the DALY rate is predicted to decline. Conclusions: Patterns and trends of leukemia burden are correlated with SDI. The estimated contributions to leukemia deaths indicate that timely measures are needed to reduce smoking and obesity.

7.
Protein Cell ; 13(11): 808-824, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35230662

RESUMEN

Although widely applied in treating hematopoietic malignancies, transplantation of hematopoietic stem/progenitor cells (HSPCs) is impeded by HSPC shortage. Whether circulating HSPCs (cHSPCs) in steady-state blood could be used as an alternative source remains largely elusive. Here we develop a three-dimensional culture system (3DCS) including arginine, glycine, aspartate, and a series of factors. Fourteen-day culture of peripheral blood mononuclear cells (PBMNCs) in 3DCS led to 125- and 70-fold increase of the frequency and number of CD34+ cells. Further, 3DCS-expanded cHSPCs exhibited the similar reconstitution rate compared to CD34+ HSPCs in bone marrow. Mechanistically, 3DCS fabricated an immunomodulatory niche, secreting cytokines as TNF to support cHSPC survival and proliferation. Finally, 3DCS could also promote the expansion of cHSPCs in patients who failed in HSPC mobilization. Our 3DCS successfully expands rare cHSPCs, providing an alternative source for the HSPC therapy, particularly for the patients/donors who have failed in HSPC mobilization.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucocitos Mononucleares , Antígenos CD34/metabolismo , Células Madre Hematopoyéticas , Humanos , Leucocitos Mononucleares/metabolismo , Péptidos/metabolismo
8.
Oncoimmunology ; 11(1): 2016158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35003895

RESUMEN

NK group 2, member D (NKG2D) is one of the most critical activating receptors expressed by natural killer (NK) cells. There is growing evidence that acute myeloid leukemia (AML) cells may evade NK cell-mediated cell lysis by expressing low or no ligands for NKG2D (NKG2D-Ls). We hypothesized that CCAAT/enhancer-binding protein α (C/EBPα), one of the most studied lineage-specific transcription factors in hematopoiesis, might influence the expression of NKG2D-Ls. To test this hypothesis, we first examined the endogenous expression of wild-type C/EBPα (C/EBPα-p42) in human AML cell lines and demonstrated that its expression level was highly relevant to the sensitivity of AML cells to NK cell cytotoxicity. Induction of C/EBPα-p42 in the low endogenous CEBPA-expressing AML cell line increased the sensitivity to NK-induced lysis. Moreover, decreased expression of C/EBPα-p42 by RNA interference in AML cells abrogated NK-mediated cytotoxicity. We further showed that the increase in NK susceptibility caused by C/EBPα-p42 occurred through up-regulation of the NKG2D-Ls ULBP2/5/6 in AML cells. More importantly, chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing captured C/EBPα motif signatures at the enhancer regions of the ULBP 2/5/6 genes. Whilst, the AML-associated C/EBPα C-terminal mutant and N-terminal truncated mutant (C/EBPα-p30) diminished ULBP2/5/6 transcription. Finally, we identified that histone demethylase lysine-specific demethylase 1 (LSD1) inhibition can restore the expression of ULBPs via induction of CEBPA expression in AML cells, which may represent a novel therapeutic strategy for CEBPA-mutated AML. Abbreviations: C/EBPα: CCAAT/enhancer-binding protein α; TF: Transcription factor; AML: Acute myeloid leukemia; TAD: Transactivation domain; FS: Frameshift; NK: Natural killer; NKG2D: NK group 2, member D; NKG2D-Ls: Ligands for NKG2D; MHC: Major histocompatibility complex; MICA: MHC class I-related chain A; ULBP: UL16-binding protein; STAT3: Signal transducer and activator of transcription 3; LSD1: Lysine-specific demethylase 1; Ab: Antibody; PBMC: Peripheral blood mononuclear cell; PBS: Phosphate-buffered saline; CFSE: Carboxyfluorescein diacetate succinimidyl ester; PI: Propidium iodide; shRNA: Short hairpin RNA; ChIP: Chromatin immunoprecipitation; BM: Binding motif; HCNE: Highly conserved noncoding element; TSS: Transcription start site; HMA: Hypomethylating agent; AZA: Azacitidine/5-azacytidine; DAC: Decitabine/5-aza-29-deoxycytidine; 2-PCPA: Tranylcypromine; RBP: RNA-binding protein; MSI2: MUSASHI-2; HDACi: Inhibitor of histone deacetylases; VPA: Valproate; DNMTi: DNA methyl transferase inhibitor; SCLC: Small cell lung cancer.


Asunto(s)
Leucemia Mieloide Aguda , Subfamilia K de Receptores Similares a Lectina de Células NK , Proteínas Potenciadoras de Unión a CCAAT/genética , Histona Demetilasas , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucocitos Mononucleares , Ligandos , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Proteínas de Unión al ARN
9.
Front Genet ; 12: 745786, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737765

RESUMEN

Hematopoietic stem cell (HSC) aging, which is accompanied by loss of self-renewal capacity, myeloid-biased differentiation and increased risks of hematopoietic malignancies, is an important focus in stem cell research. However, the mechanisms underlying HSC aging have not been fully elucidated. In the present study, we integrated 3 independent single-cell transcriptome datasets of HSCs together and identified Stat3 and Ifngr1 as two markers of apoptosis-biased and inflammatory aged HSCs. Besides, common differentially expressed genes (DEGs) between young and aged HSCs were identified and further validated by quantitative RT-PCR. Functional enrichment analysis revealed that these DEGs were predominantly involved in the cell cycle and the tumor necrosis factor (TNF) signaling pathway. We further found that the Skp2-induced signaling pathway (Skp2→Cip1→CycA/CDK2→DP-1) contributed to a rapid transition through G1 phase in aged HSCs. In addition, analysis of the extrinsic alterations on HSC aging revealed the increased expression levels of inflammatory genes in bone marrow microenvironment. Colony formation unit assays showed that inflammatory cytokines promoted cellular senescence and that blockade of inflammatory pathway markedly rejuvenated aged HSC functions and increased B cell output. Collectively, our study elucidated the biological characteristics of HSC aging, and the genes and pathways we identified could be potential biomarkers and targets for the identification and rejuvenation of aged HSCs.

10.
Front Oncol ; 11: 693034, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568022

RESUMEN

Enchondroma (EC) is a common benign bone tumor. It has the risk of malignant transformation to Chondrosarcoma (CS). However, the underlying mechanism is unclear. The gene expression profile of EC and CS was obtained from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using GEO2R. We conducted the enrichment analysis and constructed the gene interaction network using the DEGs. We found that the epithelial-mesenchymal transition (EMT) and the VEGFA-VEGF2R signaling pathway were more active in CS. The CD8+ T cell immunity was enhanced in CS I. We believed that four genes (MFAP2, GOLM1, STMN1, and HN1) were poor predictors of prognosis, while two genes (CAB39L and GAB2) indicated a good prognosis. We have revealed the mechanism in the tumor progression and identified the key genes that predicted the prognosis. This study provided new ideas for the diagnosis and treatment of EC and CS.

12.
Cancer Sci ; 112(8): 3233-3242, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34107135

RESUMEN

Vγ9Vδ2 T cells are attractive effector cells for immunotherapy with potent cytotoxic activity against a variety of malignant cells. However, the effect of Vγ9Vδ2 T cells on chemotherapy-resistant acute myeloid leukemia (AML) blasts, especially highly refractory leukemia stem cells (LSCs) is still unknown. In this study, we investigated the effect of cytotoxicity of allogeneic Vγ9Vδ2 T cells on chemotherapy-resistant AML cell lines, as well as on primary AML blasts and LSCs obtained from refractory AML patients. The results indicated that Vγ9Vδ2 T cells can efficiently kill drug-resistant AML cell lines in vitro and in vivo, and the sensitivity of AML cells to Vγ9Vδ2 T cell-mediated cytotoxicity is not influenced by the sensitivity of AML cells to chemotherapy. We further found that Vγ9Vδ2 T cells exhibited a comparable effect of cytotoxicity against LSCs to primary AML blasts. More importantly, we revealed that the CD226-extracellular signal-regulatory kinase1/2 (ERK1/2)-lysosome-associated membrane protein 1 (LAMP1) pathway is an important mechanism for Vγ9Vδ2 T cell-induced cytotoxicity against AML cells. First, Vγ9Vδ2 T cells recognized AML cells by receptor-ligand interaction of CD226-Nectin-2, which then induced ERK1/2 phosphorylation in Vγ9Vδ2 T cells. Finally, triggering the movement of lytic granules toward AML cells induced cytolysis of AML cells. The expression level of Nectin-2 may be used as a novel marker to predict the susceptibility/resistance of AML cells to Vγ9Vδ2 T cell treatment.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/metabolismo , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda/terapia , Proteínas de Membrana de los Lisosomas/metabolismo , Linfocitos T Citotóxicos/trasplante , Animales , Citotoxicidad Inmunológica , Femenino , Células HL-60 , Humanos , Inmunoterapia Adoptiva , Células K562 , Leucemia Mieloide Aguda/inmunología , Sistema de Señalización de MAP Quinasas , Ratones , Linfocitos T Citotóxicos/inmunología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
13.
BMC Cancer ; 21(1): 36, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413208

RESUMEN

BACKGROUND: Isocitrate dehydrogenase (IDH1/2) gene mutations are the most frequently observed mutations in cartilaginous tumors. The mutant IDH causes elevation in the levels of R-enantiomer of 2-hydroxylglutarate (R-2HG). Mesenchymal stromal cells (MSCs) are reasonable precursor cell candidates of cartilaginous tumors. This study aimed to investigate the effect of oncometabolite R-2HG on MSCs. METHODS: Human bone marrow MSCs treated with or without R-2HG at concentrations 0.1 to 1.5 mM were used for experiments. Cell Counting Kit-8 was used to detect the proliferation of MSCs. To determine the effects of R-2HG on MSC differentiation, cells were cultured in osteogenic, chondrogenic and adipogenic medium. Specific staining approaches were performed and differentiation-related genes were quantified. Furthermore, DNA methylation status was explored by Illumina array-based arrays. Real-time PCR was applied to examine the signaling component mRNAs involved in. RESULTS: R-2HG showed no influence on the proliferation of human MSCs. R-2HG blocked osteogenic differentiation, whereas promoted adipogenic differentiation of MSCs in a dose-dependent manner. R-2HG inhibited chondrogenic differentiation of MSCs, but increased the expression of genes related to chondrocyte hypertrophy in a lower concentration (1.0 mM). Moreover, R-2HG induced a pronounced DNA hypermethylation state of MSC. R-2HG also improved promotor methylation of lineage-specific genes during osteogenic and chondrogenic differentiation. In addition, R-2HG induced hypermethylation and decreased the mRNA levels of SHH, GLI1and GLI2, indicating Sonic Hedgehog (Shh) signaling inhibition. CONCLUSIONS: The oncometabolite R-2HG dysregulated the chondrogenic and osteogenic differentiation of MSCs possibly via induction of DNA hypermethylation, improving the role of R-2HG in cartilaginous tumor development.


Asunto(s)
Diferenciación Celular , Metilación de ADN , Regulación de la Expresión Génica/efectos de los fármacos , Glutaratos/farmacología , Células Madre Mesenquimatosas/patología , Osteogénesis , Apoptosis , Proliferación Celular , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo
14.
Front Cell Dev Biol ; 9: 741911, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004668

RESUMEN

Myeloid-derived suppressor cells (MDSCs) represent a population of heterogeneous myeloid cells, which are characterized by their remarkable ability to suppress T cells and natural killer cells. MDSCs have been proven to play a positive role in protecting acute graft-versus-host disease (aGVHD). Here, we aimed to describe the mechanism behind how mTOR signaling regulates MDSCs' generation and explore its prophylactic and therapeutic potential in aGVHD. Reducing mTOR expression retains myeloid cells with immature characteristics and promotes polymorphonuclear MDSC (PMN-MDSC) immunosuppressive function through STAT3-C/EBPß pathway. Prophylactic transfusion of mTORKO PMN-MDSCs could alleviate aGVHD while maintaining the graft-versus-leukemia (GVL) effect, which could downregulate the Th1/Th2 ratio, decrease serum proinflammatory cytokines, and increase the proportion of regulatory T cells (Tregs) in aGVHD models at the early stage after transplantation. Moreover, transfusion therapy could promote the reconstruction and function of donor-derived PMN-MDSCs. Not only the percentage and the absolute number of donor-derived PMN-MDSCs significantly increased but also the immunosuppressive ability was much more robust compared to other groups. Altogether, these findings indicated that mTOR is an intrinsic regulator for PMN-MDSCs' differentiation and immunosuppressive function. Together, mTORKO PMN-MDSC transfusion can play a protective role in alleviating cytokine storm at the initial stage and promoting the quantitative and functional recoveries of donor-derived PMN-MDSCs in aGVHD.

15.
Cell Reprogram ; 22(2): 99-105, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32182120

RESUMEN

Factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) as a powerful tool for regenerative medicine has gained wide attention in recent years. However, there are certain concerns regarding the efficiency of this reprogramming. Partially reprogrammed iPSCs (piPSCs) are stable cell lines originating from cells that have exited the normal reprogramming route at an early time point. Analysis of the associated global gene expression changes between iPSCs and piPSCs may help understand the barriers to reprogramming. In our study, human fibroblasts were transduced with the four classic transcription factors, OCT4, SOX2, KLF4, and C-MYC. Only a few cells were completely reprogrammed to a fully pluripotent state. Instead, we obtained more number of intermediate standstill clones than human-induced pluripotent stem cells (hiPSCs) during reprogramming. We studied the genome-wide expression profiles of two different fibroblasts, five intermediate standstill clones, and two iPSCs derived from the two fibroblasts. Hierarchical clustering and principal component analysis demonstrated that intermediate standstill clones were on the way to becoming hiPSCs. A remarkable difference in the expression of genes related to cancer and cell adhesion pathway was observed between the intermediate standstill clones and iPSCs. These observations suggest that some cells may become trapped in partially reprogrammed states.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción/genética , Línea Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genética , Transcriptoma
16.
J Cell Biochem ; 121(5-6): 3298-3312, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31898344

RESUMEN

Protein tyrosine phosphatase non-receptor type 21 (PTPN21) is a member of the non-receptor tyrosine phosphatase family. We have found that PTPN21 is mutated in relapsed Philadelphia chromosome-negative acute lymphoblastic leukemia (ALL) after allogeneic hematopoietic stem cell transplantation. PTPN21 consists of three types of isoforms according to the length of the protein encoded. However, the roles of different isoforms in leukemic cells have not been elucidated. In the study, PTPN21 isoform constitution in five ALL cell lines were identified by transcriptome polymerase chain reaction combined with Sanger sequencing, and the relationship between PTPN21 isoforms and sensitivity to natural killer (NK) cells mediated killing in ALL cell lines were further assessed by knock-out of different isoforms of PTPN21 using CRISPR-Cas9 technique. Subsequently, we explored the functional mechanisms through RNA sequencing and confirmatory testing. The results showed that there was no significant change when all PTPN21 isoforms were knocked out in ALL cells, but the sensitivity of NALM6 cells with PTPN21-CDSlong knock-out (NALM6-PTPN21lk ) to NK-mediated killing was significantly increased. Whole transcriptome sequencing and further validation testing showed that human leukocyte antigen class I (HLA-I) molecules were significantly decreased, accompanied by a significantly downregulated expression of antigen presenting-related chaperones in NALM6-PTPN21lk cells. Our results uncovered a previously unknown mechanism that PTPN21-CDSlong and CDSshort isoforms may play opposite roles in NK-mediated killing in ALL cells, and showed that the endogenous PTPN21-CDSlong isoform inhibited ALL cells to NK cell-mediated lysis by regulating the KIR-HLA-I axis.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Sistemas CRISPR-Cas , Muerte Celular , Línea Celular Tumoral , Citotoxicidad Inmunológica/inmunología , Edición Génica , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Chaperonas Moleculares/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Isoformas de Proteínas , RNA-Seq
17.
Transplant Proc ; 52(1): 111-118, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31787324

RESUMEN

BACKGROUND: Donation after cardiac death (DCD) and living-donor (LD) kidney transplantation are the main kidney transplantation types in China. But the outcome of DCD kidney transplantation compared with LD kidney transplantation remains unclear. METHODS: In this study, 325 DCD and 409 LD kidney transplantations were included. We retrospectively compared 3-year graft survival, death-censored graft survival, recipient survival, and graft function. All kidneys of the DCD group were procured from voluntary donation after the citizens' death by the Organ Procurement Organization (OPO) in the presence of the Red Cross, and the transplantation application was approved by the Organ Transplant Ethics Committee. RESULTS: The graft function at year 3 in the DCD group was superior to that of the LD group (eGFR: 71.14±22.28 vs 64.29±16.76 mL/min/1.73 m2; P < .001). After matching donor age, there was no significant difference between the paired DCD and LD group (eGFR: 62.22±18.50 vs 66.99±17.81 mL/min/1.73 m2; P = .068). The 3-year graft survival (94.7% vs 97.4%; P = .041) and recipient survival (97.2% vs 99.5%; P = .011) were a little worse in the total DCD group. However, once the DCD kidney transplantation recipients survived more than 2 months, graft and recipient survival rates were similar between the DCD and LD groups (97.7% vs 97.4%, P = .866 and 99.5% vs 99.0%, P = .466). These results were confirmed in an age-paired groups study. Severe infection was the main cause of graft loss and recipient death in the early stage of DCD transplantation. CONCLUSIONS: Medium- and long-term graft function of DCD kidney transplantation were comparable to LD kidney transplantation. Our results supported the continued use of DCD kidneys.


Asunto(s)
Trasplante de Riñón/estadística & datos numéricos , Obtención de Tejidos y Órganos/métodos , Trasplantes/estadística & datos numéricos , Adulto , China , Muerte , Femenino , Tasa de Filtración Glomerular , Supervivencia de Injerto , Humanos , Trasplante de Riñón/métodos , Donadores Vivos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Tasa de Supervivencia
18.
Stem Cells Int ; 2019: 4686132, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31885609

RESUMEN

Protein tyrosine phosphatases (PTPs) act as key regulators in various cellular processes such as proliferation, differentiation, and migration. Our previous research demonstrated that non-receptor-typed PTP21 (PTPN21), a member of the PTP family, played a critical role in the proliferation, cell cycle, and chemosensitivity of acute lymphoblastic leukemia cells. However, the role of PTPN21 in the bone marrow microenvironment has not yet been elucidated. In the study, we explored the effects of PTPN21 on human bone marrow-derived mesenchymal stem cells (BM-MSCs) via lentiviral-mediated overexpression and knock-down of PTPN21 in vitro. Overexpressing PTPN21 in BM-MSCs inhibited the proliferation through arresting cell cycle at the G0 phase but rendered them a higher osteogenic and adipogenic differentiation potential. In addition, overexpressing PTPN21 in BM-MSCs increased their senescence levels through upregulation of P21 and P53 and dramatically changed the levels of crosstalk with their typical target cells including immunocytes, tumor cells, and vascular endothelial cells. BM-MSCs overexpressing PTPN21 had an impaired immunosuppressive function and an increased capacity of recruiting tumor cells and vascular endothelial cells in a chemotaxis transwell coculture system. Collectively, our data suggested that PTPN21 acted as a pleiotropic factor in modulating the function of human BM-MSCs.

19.
Cancer Cell Int ; 19: 218, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31462891

RESUMEN

BACKGROUND: Relapse represents the leading cause of death in both child and adult patients with acute lymphoblastic leukemia (ALL). Development of chemo-resistance is ultimately responsible for treatment failure and relapse, therefore understanding the molecular basis underlying resistance is imperative for developing innovative treatment strategies. Glucocorticoids (GCs) such dexamethasone and prednisolone are the backbone of combination chemotherapy regimens for treating all lymphoid tumors. However, the biological mechanisms of primary GC resistance in ALL is not completely understood. We previously performed a longitudinal whole-exome sequencing analysis on diagnosis/relapse pairs from adult patients with ALL. Our data revealed that relapse-specific truncation mutations in the NR3C1 gene, encoding the GC receptor, are frequently detected. METHODS: In the current study, we used discovery-based strategies including RNA sequencing (RNA-seq) and CRISPR/Cas9, followed by confirmatory testing, in human ALL cell lines, bone marrow blast samples from ALL patients and xenograft models, to elucidate the mechanisms responsible for resistance. RESULTS: Our results revealed a positive correlation between endogenous expression of NR3C1 in ALL cells and sensitivity to GCs and clinical outcomes. We further confirmed that ectopic expression of NR3C1 in ALL cells could reverse GC resistance, while deletion of NR3C1 confers resistance to GCs in ALL cell lines and xenograft models. RNA-seq analysis revealed a remarkable abundance of gene signatures involved in pathways in cancer, DNA replication, mismatch repair, P53 signalling, cell cycle, and apoptosis regulated by NR3C1. Significantly increased expression of pro-apoptotic genes including BCL2L11/Bim, BMF, BAD, BAX and BOK, and decreased transcription of anti-apoptotic genes including BCL2, BCL2L1 and BAG2 were observed in GC-resistant ALL cells following ectopic expression of NR3C1. Finally, we explored that GC resistance in ALL cells with haploinsufficiency of NR3C1 can be treated with Bcl-2 blockage. CONCLUSIONS: Our findings suggest that the status of NR3C1 gene mutations and basal expression levels of NR3C1 in ALL cells are associated with sensitivity to GCs and clinical treatment outcomes. Early intervention strategies by rational combination of Bcl-2 blockage may constitute a promising new treatment option to GC-resistant ALL and significantly improving the chances of treating poor prednisone responders.

20.
Stem Cells Dev ; 27(7): 466-478, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29433375

RESUMEN

Mobilization of mesenchymal stem cells (MSCs) is an attractive strategy for cell therapy. Our previous study demonstrated that MSCs can be mobilized in circulating blood by short-term hypoxia, and hypoxia-inducible factor-1α is essential for MSC mobilization. In the present study, the effect of the hypoxia-mimicking agent CoCl2 was examined on MSC mobilization. The results indicated that the frequency of circulating MSCs increased slightly by administration of CoCl2. However, the mobilization efficiency was low. Considering the critical role of stromal cell-derived factor-1α (SDF-1)/CXCR4 axis in the regulation of MSC migration, the effects of granulocyte colony-stimulating factor (G-CSF) and the CXCR4 antagonist AMD3100 were investigated on MSC mobilization. The experiments were notably demonstrated in animals preconditioned with CoCl2. The frequency of colony-forming unit fibroblast and the proportion of CD45-CD90+ cells did not significantly increase in the peripheral blood of rats treated with G-CSF and/or AMD3100 alone. The concomitant administration of G-CSF with CoCl2 could not stimulate the release of MSCs. However, AMD3100 dramatically increased MSC mobilization efficiency in rats pretreated with CoCl2. Furthermore, we identified and compared the multilineage differentiation capacities of MSCs derived from bone marrow (BM-MSCs) and mobilized peripheral blood (PB-MSCs). The results indicated that PB-MSCs exhibited higher osteogenic potential and lower adipogenic differentiation as compared with BM-MSCs. The findings may inform studies investigating mechanisms of the regulation of MSC mobilization and can aid in the development of clinically useful therapeutic agents.


Asunto(s)
Cobalto/farmacología , Compuestos Heterocíclicos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Receptores CXCR4/antagonistas & inhibidores , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Animales , Bencilaminas , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Condrogénesis/efectos de los fármacos , Condrogénesis/genética , Cobalto/administración & dosificación , Ciclamas , Expresión Génica/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos/farmacología , Movilización de Célula Madre Hematopoyética , Compuestos Heterocíclicos/administración & dosificación , Hipoxia , Inyecciones Intraperitoneales , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Ratas Sprague-Dawley , Receptores CXCR4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...