Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(25): eadn6426, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38896628

RESUMEN

Phase transformations have been a prominent topic of study for both fundamental and applied science. Solid-liquid reaction-induced phase transformations can be hard to characterize, and the transformation mechanisms are often not fully understood. Here, we report reversible phase transformations between a metal (Pb) nanocrystal and a viscous liquid-like phase unveiled by in situ liquid cell transmission electron microscopy. The reversible phase transformations are obtained by modulating the electron current density (between 1000 and 3000 electrons Å-2 s-1). The metal-organic viscous liquid-like phase exhibits short-range ordering with a preferred Pb-Pb distance of 0.5 nm. Assisted by density functional theory and molecular dynamics calculations, we show that the viscous liquid-like phase results from the reactions of Pb with the CH3O fragments from the triethylene glycol solution under electron beam irradiation. Such reversible phase transformations may find broad implementations.

2.
J Chem Phys ; 160(18)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38726932

RESUMEN

Numerous electrochemistry reactions require the precise calculation of the ion solvation energy. Despite the significant progress in the first-principles calculations for crystals and defect formation energies for solids, the liquid system free energy calculations still face many challenges. Ion solvation free energies can be calculated via different semiempirical ways, e.g., using implicit solvent models or cluster of explicit molecule models; however, systematically improving these models is difficult due to their lack of a solid theoretical base. A theoretically sound approach for calculating the free energy is to use thermodynamic integration. Nevertheless, owing to the difficulties of self-consistent convergence in first-principles calculations for unphysical atomic configurations, the computational alchemy approach has not been widely used for first-principles calculations. This study proposes a general approach to use first-principles computational alchemy for calculating the ion solvation energy. This approach is also applicable for other small molecules. The calculated ion solvation free energies for Li+, Na+, K+, Be2+, Mg2+, and Ca2+ are close to the experimental results, and the standard deviation due to molecular dynamics fluctuations is within 0.06 eV.

3.
STAR Protoc ; 5(2): 103021, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38635396

RESUMEN

The grand canonical constant potential approach is a cornerstone for modeling the electrochemical reactions under work conditions. Here, we present a protocol for evaluating the effect of potential on electrochemical reactions using the grand canonical fixed-potential technique. We describe steps for installing PWmat software, preparing input files for the fixed-potential calculation, and simulating different electrochemical states under the same potential. We then detail procedures for analyzing the free energy evolution under the same potential. For complete details on the use and execution of this protocol, please refer to Gao et al.1,2,3.

4.
Sci Adv ; 9(50): eadi1618, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100591

RESUMEN

Ultrafast interaction between the femtosecond laser pulse and the magnetic metal provides an efficient way to manipulate the magnetic states of matter. Numerous experimental advancements have been made on multilayer metallic films in the last two decades. However, the underlying physics remains unclear. Here, relying on an efficient ab initio spin dynamics simulation algorithm, we revealed the physics that can unify the progress in different experiments. We found that light-induced ultrafast spin transport in multilayer metallic films originates from the sp-d spin-exchange interaction, which can induce an ultrafast, large, and pure spin current from ferromagnetic metal to nonmagnetic metal without charge carrier transport. The resulting trends of spin demagnetization and spin flow are consistent with most experiments. It can explain a variety of ultrafast light-spin manipulation experiments with different systems and different pump-probe technologies, covering a wide range of work in this field.

5.
iScience ; 26(11): 108318, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026153

RESUMEN

The proton migration in the electrochemical interface is a fundamental electrochemical processes in proton involved reactions. We find fractional electron transfer, which is inversely proportional to the distance between the proton and electrode, during the proton migration under constant potential. The electrical energy carried by the transferred charge facilitates the proton to overcome the chemical barrier in the migration pathway, which is accounting for more than half electrical energy in the proton involved reactions. Consequently, less charge transfer and energy exchange take place in the reduction process. Therefore, the proton migration in the electrochemical interface is an essential component of the electrochemical reaction in terms of electron transfer and energy conversation, and are worthy of more attention in the rational design and optimization of electrochemical systems.

6.
Phys Rev Lett ; 131(15): 156302, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897744

RESUMEN

With the rapid development of ultrafast experimental techniques for the research of carrier dynamics in solid-state systems, a microscopic understanding of the related phenomena, particularly a first-principle calculation, is highly desirable. Nonadiabatic molecular dynamics (NAMD) offers a real-time direct simulation of the carrier transfer or carrier thermalization. However, when applied to a periodic supercell, there is no cross-k-point transitions during the NAMD simulation. This often leads to a significant underestimation of the transition rate with the single-k-point band structure in a supercell. In this work, based on the surface hopping scheme used for NAMD, we propose a practical method to enable the cross-k transitions for a periodic system. We demonstrate our formalism by showing that the hot electron thermalization process by the multi-k-point NAMD in a small silicon supercell is equivalent to such simulation in a large supercell with a single Γ point. The simulated hot carrier thermalization process of the bulk silicon is compared with the recent ultrafast experiments, which shows excellent agreements. We have also demonstrated our method for the hot carrier coolings in the amorphous silicons and the GaAlAs_{2} solid solutions with the various cation distributions.

7.
ACS Appl Mater Interfaces ; 15(34): 40419-40427, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37594363

RESUMEN

The band gap of hybrid organic-inorganic perovskites (HOIPs) is a key factor affecting the light absorption characteristics and thus the performance of perovskite solar cells (PSCs). However, band gap engineering, using experimental trial and error and high-throughput density functional theory calculations, is blind and costly. Therefore, it is critical to statistically identify the multiple factors influencing band gaps and to rationally design perovskites with targeted band gaps. This study combined feature engineering, the gradient-boosted regression tree (GBRT) algorithm, and the genetic algorithm-based symbolic regression (GASR) algorithm to develop an interpretable machine learning (ML) strategy for predicting the band gap of HOIPs accurately and quantitatively interpreting the factors affecting the band gap. Seven best physical features were selected to construct a GBRT model with a root-mean-square error of less than 0.060 eV, and the most important feature is the electronegativity difference between the B-site and the X-site (χB-X). Further, a mathematical formula (Eg = χB-X2 + 0.881χB-X) was constructed with GASR for a quantitative interpretation of the band gap influence patterns. According to the ML model, the HOIP MA0.23FA0.02Cs0.75Pb0.59Sn0.41Br0.24I2.76 was obtained, with a suitable band gap of 1.39 eV. Our proposed interpretable ML strategy provides an effective approach for developing HOIP structures with targeted band gaps, which can also be applied to other material fields.

8.
Science ; 380(6645): 609-616, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167381

RESUMEN

Discovery of earth-abundant electrocatalysts to replace iridium for the oxygen evolution reaction (OER) in a proton exchange membrane water electrolyzer (PEMWE) represents a critical step in reducing the cost for green hydrogen production. We report a nanofibrous cobalt spinel catalyst codoped with lanthanum (La) and manganese (Mn) prepared from a zeolitic imidazolate framework embedded in electrospun polymer fiber. The catalyst demonstrated a low overpotential of 353 millivolts at 10 milliamperes per square centimeter and a low degradation for OER over 360 hours in acidic electrolyte. A PEMWE containing this catalyst at the anode demonstrated a current density of 2000 milliamperes per square centimeter at 2.47 volts (Nafion 115 membrane) or 4000 milliamperes per square centimeter at 3.00 volts (Nafion 212 membrane) and low degradation in an accelerated stress test.

9.
Phys Rev Lett ; 130(14): 146901, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084436

RESUMEN

In stark contrast to the conventional charge density wave (CDW) materials, the one-dimensional CDW on the In/Si(111) surface exhibits immediate damping of the CDW oscillation during the photoinduced phase transition. Here, we successfully reproduce the experimental observation of the photoinduced CDW transition on the In/Si(111) surface by performing real-time time-dependent density functional theory (rt-TDDFT) simulations. We show that photoexcitation promotes valence electrons from the Si substrate to the empty surface bands composed primarily of the covalent p-p bonding states of the long In-In bonds. Such photoexcitation generates interatomic forces to shorten the long In-In bonds and thus drives the structural transition. After the structural transition, these surface bands undergo a switch among different In-In bonds, causing a rotation of the interatomic forces by about π/6 and thus quickly damping the oscillations in feature CDW modes. These findings provide a deeper understanding of photoinduced phase transitions.

10.
Sci Adv ; 9(2): eadc9721, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638171

RESUMEN

Determining the degree and the spatial extent of structural order in liquids is a grand challenge. Here, we are able to resolve the structural order in a model organic electrolyte of 1 M lithium hexafluorophosphate (LiPF6) dissolved in 1:1 (v/v) ethylene carbonate:diethylcarbonate by developing an integrated method of liquid-phase transmission electron microscopy (TEM), cryo-TEM operated at -30°C, four-dimensional scanning TEM, and data analysis based on deep learning. This study reveals the presence of short-range order (SRO) in the high-salt concentration domains of the liquid electrolyte from liquid phase separation at the low temperature. Molecular dynamics simulations suggest the SRO originates from the Li+-(PF6-)n (n > 2) local structural order induced by high LiPF6 salt concentration.

11.
Nat Mater ; 22(2): 200-206, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36646794

RESUMEN

Crystalline symmetries have played a central role in the identification and understanding of quantum materials. Here we investigate whether an amorphous analogue of a well known three-dimensional strong topological insulator has topological properties in the solid state. We show that amorphous Bi2Se3 thin films host a number of two-dimensional surface conduction channels. Our angle-resolved photoemission spectroscopy data are consistent with a dispersive two-dimensional surface state that crosses the bulk gap. Spin-resolved photoemission spectroscopy shows this state has an anti-symmetric spin texture, confirming the existence of spin-momentum locked surface states. We discuss these experimental results in light of theoretical photoemission spectra obtained with an amorphous topological insulator tight-binding model, contrasting it with alternative explanations. The discovery of spin-momentum locked surface states in amorphous materials opens a new avenue to characterize amorphous matter, and triggers the search for an overlooked subset of quantum materials outside of current classification schemes.

12.
Adv Mater ; 35(5): e2208266, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36398430

RESUMEN

Ferroelectricity, one of the keys to realize non-volatile memories owing to the remanent electric polarization, is an emerging phenomenon in the 2D limit. Yet the demonstrations of van der Waals (vdW) memories using 2D ferroelectric materials as an ingredient are very limited. Especially, gate-tunable ferroelectric vdW memristive device, which holds promises in future multi-bit data storage applications, remains challenging. Here, a gate-programmable multi-state memory is shown by vertically assembling graphite, CuInP2 S6 , and MoS2 layers into a metal(M)-ferroelectric(FE)-semiconductor(S) architecture. The resulted devices seamlessly integrate the functionality of both FE-memristor (with ON-OFF ratios exceeding 105 and long-term retention) and metal-oxide-semiconductor field effect transistor (MOS-FET). Thus, it yields a prototype of gate tunable giant electroresistance with multi-levelled ON-states in the FE-memristor in the vertical vdW assembly. First-principles calculations further reveal that such behaviors originate from the specific band alignment between the FE-S interface. Our findings pave the way for the engineering of ferroelectricity-mediated memories in future implementations of 2D nanoelectronics.

13.
J Am Chem Soc ; 144(51): 23474-23482, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36512727

RESUMEN

Moiré superlattices are twisted bilayer materials in which the tunable interlayer quantum confinement offers access to new physics and novel device functionalities. Previously, moiré superlattices were built exclusively using materials with weak van der Waals interactions, and synthesizing moiré superlattices with strong interlayer chemical bonding was considered to be impractical. Here, using lead sulfide (PbS) as an example, we report a strategy for synthesizing moiré superlattices coupled by strong chemical bonding. We use water-soluble ligands as a removable template to obtain free-standing ultrathin PbS nanosheets and assemble them into direct-contact bilayers with various twist angles. Atomic-resolution imaging shows the moiré periodic structural reconstruction at the superlattice interface due to the strong metavalent coupling. Electron energy loss spectroscopy and theoretical calculations collectively reveal the twist-angle-dependent electronic structure, especially the emergent separation of flat bands at small twist angles. The localized states of flat bands are similar to well-arranged quantum dots, promising an application in devices. This study opens a new door to the exploration of deep energy modulations within moiré superlattices alternative to van der Waals twistronics.

14.
J Chem Theory Comput ; 18(11): 6878-6891, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36253911

RESUMEN

Free energy calculation of small molecules or ion species in aqueous solvent is one of the most important problems in electrochemistry study. Although there are many previous approaches to calculate such free energies, they are based on ab initio methods and suffer from various limitations and approximations. In the current work, we developed a hybrid approach based on ab initio molecular dynamics (AIMD) simulations to calculate the ion solvation energy. In this approach, a small water cluster surrounding the central ion is used, and implicit solvent model is applied outside the water cluster. A dynamic potential well is used during AIMD to keep the water cluster together. Quasi-harmonic approximation is used to calculate the entropy contribution, while the total energy average is used to calculate the enthalpy term. The obtained solvation voltages of the bulk metal agree with experiments within 0.3 eV, and the simulation results for the solvation energies of gaseous ions are close to the experimental observations. Besides the free energies, radial pair distribution functions and coordination numbers of hydrated cations are also obtained. The remaining challenges of this method are also discussed.

15.
J Am Chem Soc ; 144(32): 14657-14667, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35921553

RESUMEN

Recently, moiré superlattices of twisted van der Waals (vdW) materials have attracted substantial interest due to their strongly correlated properties. However, the vdW interlayer interaction is intrinsically weak, such that many desired properties can only exist at low temperature. Here, we theoretically predict some unusual properties stemming from the chemical bonding between twisted PbS nanosheets as an example of non-vdW moiré superlattices. The strong interlayer coupling in such systems results in giant strain vortices and dipole vortices at the interface. The modified electronic structures become a series of dispersionless bands and artificial-atom states. In real space, these states are analogous to arrays of well-positioned quantum dots, which may be promising for use in single-electron devices. In theory, if the materials are doped with a low concentration of electrons, a Wigner crystal will form even without any magnetic field. To confirm the accessibility and stability of non-vdW moiré superlattices in experiment, we synthesized PbS moiré superlattices with different twist angles. Our transmission-electron-microscope observations reveal the resemblance of the small-angle-twisted structures with the square matrices of quantum dots, which is in good accordance with our calculations.

16.
Nano Lett ; 22(17): 6988-6996, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36005477

RESUMEN

We report Ca2-xIrO4 nanocrystals exhibit record stability of 300 h continuous operation and high iridium mass activity (248 A gIr-1 at 1.5 VRHE) that is about 62 times that of benchmark IrO2. Lattice-resolution images and surface-sensitive spectroscopies demonstrate the Ir-rich surface layer (evolved from one-dimensional connected edge-sharing [IrO6] octahedrons) with high relative content of Ir5+ sites, which is responsible for the high activity and long-term stability. Combining operando infrared spectroscopy with X-ray absorption spectroscopy, we report the first direct observation of key intermediates absorbing at 946 cm-1 (Ir6+═O site) and absorbing at 870 cm-1 (Ir6+OO- site) on iridium-based oxides electrocatalysts, and further discover the Ir6+═O and Ir6+OO- intermediates are stable even just from 1.3 VRHE. Density functional theory calculations indicate the catalytic activity of Ca2IrO4 is enhanced remarkably after surface Ca leaching, and suggest IrOO- and Ir═O intermediates can be stabilized on positive charged active sites of Ir-rich surface layer.

17.
Sci Adv ; 8(27): eabn4430, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35857455

RESUMEN

Laser-induced nonthermal melting in semiconductors has been studied over the past four decades, but the underlying mechanism is still under debate. Here, by using an advanced real-time time-dependent density functional theory simulation, we reveal that the photoexcitation-induced ultrafast nonthermal melting in silicon occurs via homogeneous nucleation with random seeds originating from a self-amplified local dynamic instability. Because of this local dynamic instability, any initial small random thermal displacements of atoms can be amplified by a charge transfer of photoexcited carriers, which, in turn, creates a local self-trapping center for the excited carriers and yields the random nucleation seeds. Because a sufficient amount of photoexcited hot carriers must be cooled down to band edges before participating in the self-amplification of local lattice distortions, the time needed for hot carrier cooling is the response for the longer melting time scales at shorter laser wavelengths. This finding provides fresh insights into photoinduced ultrafast nonthermal melting.

18.
Proc Natl Acad Sci U S A ; 119(28): e2122534119, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867737

RESUMEN

Photoinduced phase transition (PIPT) is always treated as a coherent process, but ultrafast disordering in PIPT is observed in recent experiments. Utilizing the real-time time-dependent density functional theory method, here we track the motion of individual vanadium (V) ions during PIPT in VO2 and uncover that their coherent or disordered dynamics can be manipulated by tuning the laser fluence. We find that the photoexcited holes generate a force on each V-V dimer to drive their collective coherent motion, in competing with the thermal-induced vibrations. If the laser fluence is so weak that the photoexcited hole density is too low to drive the phase transition alone, the PIPT is a disordered process due to the interference of thermal phonons. We also reveal that the photoexcited holes populated by the V-V dimerized bonding states will become saturated if the laser fluence is too strong, limiting the timescale of photoinduced phase transition.

19.
Nat Commun ; 13(1): 3008, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637182

RESUMEN

Lithium intercalation of MoS2 is generally believed to introduce a phase transition from H phase (semiconducting) to T phase (metallic). However, during the intercalation process, a spatially sharp boundary is usually formed between the fully intercalated T phase MoS2 and non-intercalated H phase MoS2. The intermediate state, i.e., lightly intercalated H phase MoS2 without a phase transition, is difficult to investigate by optical-microscope-based spectroscopy due to the narrow size. Here, we report the stabilization of the intermediate state across the whole flake of twisted bilayer MoS2. The twisted bilayer system allows the lithium to intercalate from the top surface and enables fast Li-ion diffusion by the reduced interlayer interaction. The E2g Raman mode of the intermediate state shows a peak splitting behavior. Our simulation results indicate that the intermediate state is stabilized by lithium-induced symmetry breaking of the H phase MoS2. Our results provide an insight into the non-uniform intercalation during battery charging and discharging, and also open a new opportunity to modulate the properties of twisted 2D systems with guest species doping in the Moiré structures.

20.
ACS Nano ; 16(4): 6744-6754, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35393857

RESUMEN

Nanoscale engineered materials such as nanocomposites can display or be designed to enhance their material properties through control of the internal interfaces. Here, we unveil the nanoscale origin and important characteristics of the enhanced dielectric breakdown capabilities of gold nanoparticle/polymer nanocomposites. Our multiscale approach spans from the study of a single chemically designed organic/inorganic interface to micrometer-thick films. At the nanoscale, we relate the improved breakdown strength to the interfacial charge retention capability by combining scanning probe measurements and density functional theory calculations. At the meso- and macroscales, our findings highlight the relevance of the nanoparticle concentration and distribution in determining and enhancing the dielectric properties, as well as identifying this as a crucial limiting factor for the achievable sample size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA