Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Neural Regen Res ; 20(1): 277-290, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767492

RESUMEN

JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.

2.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126116

RESUMEN

Plantaginis semen is the dried ripe seed of Plantago asiatica L. or Plantago depressa Willd., which has a long history in alleviating hyperuricemia (HUA) and chronic kidney diseases. While the major chemical ingredients and mechanism remained to be illustrated. Therefore, this work aimed to elucidate the chemicals and working mechanisms of PS for HUA. UPLC-QE-Orbitrap-MS was applied to identify the main components of PS in vitro and in vivo. RNA sequencing (RNA-seq) was conducted to explore the gene expression profile, and the genes involved were further confirmed by real-time quantitative PCR (RT-qPCR). A total of 39 components were identified from PS, and 13 of them were detected in the rat serum after treating the rat with PS. The kidney tissue injury and serum uric acid (UA), xanthine oxidase (XOD), and cytokine levels were reversed by PS. Meanwhile, renal urate anion transporter 1 (Urat1) and glucose transporter 9 (Glut9) levels were reversed with PS treatment. RNA-seq analysis showed that the PPAR signaling pathway; glycine, serine, and threonine metabolism signaling pathway; and fatty acid metabolism signaling pathway were significantly modified by PS treatment. Further, the gene expression of Slc7a8, Pck1, Mgll, and Bhmt were significantly elevated, and Fkbp5 was downregulated, consistent with RNA-seq results. The PPAR signaling pathway involved Pparα, Pparγ, Lpl, Plin5, Atgl, and Hsl were elevated by PS treatment. URAT1 and PPARα proteins levels were confirmed by Western blotting. In conclusion, this study elucidates the chemical profile and working mechanisms of PS for prevention and therapy of HUA and provides a promising traditional Chinese medicine agency for HUA prophylaxis.


Asunto(s)
Hiperuricemia , Ácido Oxónico , Plantago , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Animales , Ratas , Ácido Oxónico/efectos adversos , Masculino , Plantago/química , Ácido Úrico/sangre , Extractos Vegetales/farmacología , Riñón/metabolismo , Riñón/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Xantina Oxidasa/metabolismo
3.
BMC Cancer ; 24(1): 927, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090641

RESUMEN

OBJECTIVE: This study aims to explore ADH4 expression in hepatocellular carcinoma (HCC), its prognostic impact, and its immune correlation to provide novel insights into HCC prognostication and treatment. METHODS: HCC prognostic marker genes were rigorously selected using GEO database, Lasso regression, GEPIA, Kaplan-Meier and pROC analyses. The expression of interested markers (ADH4, DNASE1L3, RDH16, LCAT, HGFAC) in HCC and adjacent tissues was assessed by Immunohistochemistry (IHC). We observed that ADH4 exhibited low expression levels in liver cancer tissues and high expression levels in normal liver tissues. However, the remaining four genes did not manifest any statistically significant differences between hepatocellular carcinoma (HCC) tissue and adjacent non-cancerous tissue. Consequently, ADH4 became the primary focus of our research. ADH4 expression was validated by signed-rank tests and unpaired Wilcoxon rank sum tests across pan-cancer and HCC datasets. Clinical significance and associations with clinicopathological variables were determined using Kaplan-Meier, logistic regression and Cox analyses on TCGA data. The ADH4-related immune responses were explored by Spearman correlation analysis using TIMER2 data. CD68, CD4, and CD19 protein levels were confirmed by IHC in HCC and non-cancerous tissues. RESULTS: ADH4 showed significant downregulation in various cancers, particularly in HCC. Moreover, low ADH4 expression was associated with clinicopathological variables and served as an independent prognostic marker for HCC patients. Additionally, ADH4 affects a variety of biochemical functions and may influence cancer development, prognosis, and treatment by binding to immune cells. Furthermore, at the immune level, the low expression pattern of ADH4 is TME-specific, indicating that ADH4 has the potential to be used as a target for cancer immunotherapy. CONCLUSION: This study highlights the diagnostic, prognostic and immunomodulatory roles of ADH4 in HCC. ADH4 could serve as a valuable biomarker for HCC diagnosis and prognosis, as well as a potential target for immunotherapeutic interventions.


Asunto(s)
Alcohol Deshidrogenasa , Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Pronóstico , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Estimación de Kaplan-Meier
4.
Curr Microbiol ; 81(9): 286, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073451

RESUMEN

Streptococcus spp. are important opportunistic pathogen of bacteremia in both immunocompetent and immunosuppressed patients. A streptococcal strain, designated ST2T, was isolated from the blood specimen of a bacteremic patient. Comparative analyses of 16S rRNA, rpoB and groEL gene sequences demonstrated that the novel strain ST2T is a member of the genus Streptococcus. Based on of 16S rRNA gene sequence similarities, the type strains of Streptococcus (S.) parasanguinis (99.2%), S. ilei (98.8%), S. oralis subsp. oralis (97.6%), S. australis (97.5%) and S. sanguinis (97.5%) were the closest neighbours to strain ST2T. The housekeeping gene sequences (rpoB and groEL) similarities of strain ST2T to these closely related type strains were 80.4-97.4%, respectively. The complete draft genome of strain ST2T consisted of 2,155,906 bp with a G + C content of 42.0%. Strain ST2T has an average nucleotide identity (ANI) value of 94.1 and 81.3% with S. parasanguinis ATCC 15912T and S. ilei I-G2T, respectively. The highest in silico DNA-DNA hybridization value with respect to the closest species S. parasanguinis was 55.6%, below the species cut-off of 70% hybridization. The primary cellular fatty acids of strain ST2T were C16:0, C18:1 ω9c, C18:0 and C14:0. Based on biochemical criteria and molecular genetic evidence, it is proposed that strain ST2T be assigned to a new species of the genus Streptococcus as Streptococcus taoyuanensis sp. nov. The type strain of Streptococcus taoyuanensis is ST2T (=NBRC 115928T = BCRC 81374T) as the type strain.


Asunto(s)
Bacteriemia , Composición de Base , ADN Bacteriano , Filogenia , ARN Ribosómico 16S , Infecciones Estreptocócicas , Streptococcus , Bacteriemia/microbiología , Humanos , ARN Ribosómico 16S/genética , Streptococcus/genética , Streptococcus/aislamiento & purificación , Streptococcus/clasificación , ADN Bacteriano/genética , Infecciones Estreptocócicas/microbiología , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Genoma Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Proteínas Bacterianas/genética , Masculino
5.
Brain Res ; 1840: 149110, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964705

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI) brain abnormalities have been reported in the corpus callosum (CC) of patients with adult-onset hypothyroidism. However, no study has directly compared CC-specific morphological or functional alterations among subclinical hypothyroidism (SCH), overt hypothyroidism (OH), and healthy controls (HC). Moreover, the association of CC alterations with cognition and emotion is not well understood. METHODS: Demographic data, clinical variables, neuropsychological scores, and MRI data of 152 participants (60 SCH, 37 OH, and 55 HC) were collected. This study investigated the clinical performance, morphological and functional changes of CC subregions across three groups. Moreover, a correlation analysis was performed to explore potential relationships between these factors. RESULTS: Compared to HC, SCH and OH groups exhibited lower cognitive scores and higher depressive/anxious scores. Notably, rostrum and rostral body volume of CC was larger in the SCH group. Functional connectivity between rostral body, anterior midbody and the right precentral and dorsolateral superior frontal gyrus were increased in the SCH group. In contrast, the SCH and OH groups exhibited a decline in functional connectivity between splenium and the right angular gyrus. Within the SCH group, rostrum volume demonstrated a negative correlation with Montreal Cognitive Assessment and visuospatial/executive scores, while displaying a positive correlation with 24-item Hamilton Depression Rating Scale scores. In the OH group, rostral body volume exhibited a negative correlation with serum thyroid stimulating hormone levels, while a positive correlation with serum total thyroxine and free thyroxine levels. CONCLUSIONS: This study suggests that patients with different stages of adult-onset hypothyroidism may exhibit different patterns of CC abnormalities. These findings offer new insights into the neuropathophysiological mechanisms in hypothyroidism.


Asunto(s)
Cuerpo Calloso , Hipotiroidismo , Imagen por Resonancia Magnética , Humanos , Masculino , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/fisiopatología , Cuerpo Calloso/patología , Femenino , Hipotiroidismo/fisiopatología , Hipotiroidismo/complicaciones , Adulto , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Pruebas Neuropsicológicas , Cognición/fisiología
6.
Chin Med J (Engl) ; 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997248

RESUMEN

BACKGROUND: The potential impact of pre-existing coronary artery stenosis (CAS) on acute pulmonary embolism (PE) episodes remains underexplored. This study aimed to investigate the association between pre-existing CAS and the elevation of high-sensitivity cardiac troponin I (hs-cTnI) levels in patients with PE. METHODS: In this multicenter, prospective case-control study, 88 cases and 163 controls matched for age, sex, and study center were enrolled. Cases were patients with PE with elevated hs-cTnI. Controls were patients with PE with normal hs-cTnI. Coronary artery assessment utilized coronary computed tomographic angiography or invasive coronary angiography. CAS was defined as ≥50% stenosis of the lumen diameter in any coronary vessel >2.0 mm in diameter. Conditional logistic regression was used to evaluate the association between CAS and hs-cTnI elevation. RESULTS: The percentage of CAS was higher in the case group compared to the control group (44.3% [39/88] vs. 30.1% [49/163]; P = 0.024). In multivariable conditional logistic regression model 1, CAS (adjusted odds ratio [OR], 2.680; 95% confidence interval [CI], 1.243-5.779), heart rate >75 beats/min (OR, 2.306; 95% CI, 1.056-5.036) and N-terminal pro-B type natriuretic peptide (NT-proBNP) >420 pg/mL (OR, 12.169; 95% CI, 4.792-30.900) were independently associated with elevated hs-cTnI. In model 2, right CAS (OR, 3.615; 95% CI, 1.467-8.909) and NT-proBNP >420 pg/mL (OR, 13.890; 95% CI, 5.288-36.484) were independently associated with elevated hs-cTnI. CONCLUSIONS: CAS was independently associated with myocardial injury in patients with PE. Vigilance towards CAS is warranted in patients with PE with elevated cardiac troponin levels.

7.
Adv Sci (Weinh) ; 11(30): e2402030, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837686

RESUMEN

Cadmium (Cd) is a neurotoxic contaminant that induces cognitive decline similar to that observed in Alzheimer's disease (AD). Autophagic flux dysfunction is attributed to the pathogenesis of AD, and this study aimed to investigate the effect of autophagy on environmental Cd-induced AD progression and the underlying mechanism. Here, Cd exposure inhibited autophagosome-lysosome fusion and impaired lysosomal function, leading to defects in autophagic clearance and then to APP accumulation and nerve cell death. Proteomic analysis coupled with Ingenuity Pathway Analysis (IPA) identified SIRT5 as an essential molecular target in Cd-impaired autophagic flux. Mechanistically, Cd exposure hampered the expression of SIRT5, thus increasing the succinylation of RAB7A at lysine 31 and inhibiting RAB7A activity, which contributed to autophagic flux blockade. Importantly, SIRT5 overexpression led to the restoration of autophagic flux blockade, the alleviation of Aß deposition and memory deficits, and the desuccinylation of RAB7A in Cd-exposed FAD4T mice. Additionally, SIRT5 levels decrease mainly in neurons but not in other cell clusters in the brains of AD patients according to single-nucleus RNA sequencing data from the public dataset GSE188545. This study reveals that SIRT5-catalysed RAB7A desuccinylation is an essential adaptive mechanism for the amelioration of Cd-induced autophagic flux blockade and AD-like pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Autofagia , Cadmio , Modelos Animales de Enfermedad , Sirtuinas , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Animales , Ratones , Cadmio/metabolismo , Cadmio/toxicidad , Autofagia/efectos de los fármacos , Sirtuinas/metabolismo , Sirtuinas/genética , Proteínas de Unión a GTP rab7/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Humanos , Masculino
8.
Regen Ther ; 27: 365-380, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38694448

RESUMEN

Brachial plexus injury (BPI) with motor neurons (MNs) damage still remain poor recovery in preclinical research and clinical therapy, while cell-based therapy approaches emerged as novel strategies. Previous work of rat skin precursor-derived Schwann cells (SKP-SCs) provided substantial foundation for repairing peripheral nerve injury (PNI). Given that, our present work focused on exploring the repair efficacy and possible mechanisms of SKP-SCs implantation on rat BPI combined with neurorrhaphy post-neurotomy. Results indicated the significant locomotive and sensory function recovery, with improved morphological remodeling of regenerated nerves and angiogenesis, as well as amelioration of target muscles atrophy and motor endplate degeneration. Besides, MNs could restore from oxygen-glucose-deprivation (OGD) injury upon SKP-SCs-sourced secretome treatment, implying the underlying paracrine mechanisms. Moreover, rat cytokine array assay detected 67 cytokines from SKP-SC-secretome, and bioinformatic analyses of screened 32 cytokines presented multiple functional clusters covering diverse cell types, including inflammatory cells, Schwann cells, vascular endothelial cells (VECs), neurons, and SKP-SCs themselves, relating distinct biological processes to nerve regeneration. Especially, a panel of hypoxia-responsive cytokines (HRCK), can participate into multicellular biological process regulation for permissive regeneration milieu, which underscored the benefits of SKP-SCs and sourced secretome, facilitating the chorus of nerve regenerative microenvironment. Furthermore, platelet-derived growth factor-AA (PDGF-AA) and vascular endothelial growth factor-A (VEGF-A) were outstanding cytokines involved with nerve regenerative microenvironment regulating, with significantly elevated mRNA expression level in hypoxia-responsive SKP-SCs. Altogether, through recapitulating the implanted SKP-SCs and derived secretome as niche sensor and paracrine transmitters respectively, HRCK would be further excavated as molecular underpinning of the neural recuperative mechanizations for efficient cell therapy; meanwhile, the analysis paradigm in this study validated and anticipated the actions and mechanisms of SKP-SCs on traumatic BPI repair, and was beneficial to identify promising bioactive molecule cocktail and signaling targets for cell-free therapy strategy on neural repair and regeneration.

9.
Virus Res ; 345: 199387, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719025

RESUMEN

Influenza A virus can infect respiratory tracts and may cause severe illness in humans. Proteins encoded by influenza A virus can interact with cellular factors and dysregulate host biological processes to support viral replication and cause pathogenicity. The influenza viral PA protein is not only a subunit of influenza viral polymerase but also a virulence factor involved in pathogenicity during infection. To explore the role of the influenza virus PA protein in regulating host biological processes, we performed immunoprecipitation and LC‒MS/MS to globally identify cellular factors that interact with the PA proteins of the influenza A H1N1, 2009 pandemic H1N1, and H3N2 viruses. The results demonstrated that proteins located in the mitochondrion, proteasome, and nucleus are associated with the PA protein. We further discovered that the PA protein is partly located in mitochondria by immunofluorescence and mitochondrial fractionation and that overexpression of the PA protein reduces mitochondrial respiration. In addition, our results revealed the interaction between PA and the mitochondrial matrix protein PYCR2 and the antiviral role of PYCR2 during influenza A virus replication. Moreover, we found that the PA protein could also trigger autophagy and disrupt mitochondrial homeostasis. Overall, our research revealed the impacts of the influenza A virus PA protein on mitochondrial function and autophagy.


Asunto(s)
Mitocondrias , Proteínas Virales , Replicación Viral , Humanos , Mitocondrias/metabolismo , Mitocondrias/virología , Proteínas Virales/metabolismo , Proteínas Virales/genética , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Virus de la Influenza A/fisiología , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/metabolismo , Interacciones Huésped-Patógeno , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Autofagia , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Células HEK293 , Gripe Humana/virología , Gripe Humana/metabolismo , Células A549 , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Espectrometría de Masas en Tándem
10.
J Proteomics ; 302: 105203, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38782357

RESUMEN

Acute kidney injury (AKI) stands as a prevalent and economically burdensome condition worldwide, yet its complex molecular mechanisms remain incompletely understood. To address this gap, our study employs a multifaceted approach, combining mass spectrometry and RNA sequencing technologies, to elucidate the intricate molecular landscape underlying nephrotoxin-induced AKI in mice by cisplatin- and LPS-induced. By examining the protein and RNA expression profiles, we aimed to uncover novel insights into the pathogenesis of AKI and identify potential diagnostic and therapeutic targets. Our results demonstrate significant down-regulation of Slc34a1 and Slc34a3, shedding light on their crucial roles in AKI pathology and highlighting their promise as actionable targets for diagnosis and treatment. This comprehensive analysis not only enhances our understanding of AKI pathophysiology but also offers valuable avenues for the development of targeted interventions to mitigate its clinical impact. SIGNIFICANCE: Nephrotoxicity acute kidney injury (AKI) is a common clinical condition whose pathogenesis is the process by which some drugs, chemicals or other factors cause damage to the kidneys, resulting in impaired kidney function. Although it has been proved that different nephrotoxic substances can affect the kidney through different pathways, whether they have a commonality has not been registered. Here, we combined transcriptomics and proteomics to study the molecular mechanism of LPS and cisplatin-induced nephrotoxic acute kidney injury finding that the down-regulation of Slc34a1 and Slc34a3 may be a critical link in nephrotoxic acute kidney injury, which can be used as a marker for its early diagnosis.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Regulación hacia Abajo , Proteómica , Transcriptoma , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Animales , Ratones , Proteómica/métodos , Cisplatino/efectos adversos , Cisplatino/toxicidad , Lipopolisacáridos/toxicidad , Masculino , Perfilación de la Expresión Génica
11.
Sci Total Environ ; 930: 172615, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38657801

RESUMEN

Benz[a]anthracene (BaA), a prevalent environmental contaminant within the polycyclic aromatic hydrocarbon class, poses risks to both human health and aquatic ecosystems. The impact of BaA on neural development and subsequent social behavior patterns remains inadequately explored. In this investigation, we employed the zebrafish as a model to examine the persisting effects of BaA exposure on social behaviors across various developmental stages, from larvae, juveniles to adults, following embryonic exposure. Our findings indicate that BaA exposure during embryogenesis yields lasting neurobehavioral deficits into adulthood. Proteomic analysis highlights that BaA may impair neuro-immune crosstalk in zebrafish larvae. Remarkably, our proteomic data also hint at the activation of the aryl hydrocarbon receptor (AHR) and cytochrome P450 1A (CYP1A) pathway by BaA, leading to the hypothesis that this pathway may be implicated in the disruption of neuro-immune interactions, contributing to observable behavioral disruptions. In summary, our findings suggest that early exposure to BaA disrupts social behaviors, such as social ability and shoaling behaviors, from the larval stage through to maturity in zebrafish, potentially through the detrimental effects on neuro-immune processes mediated by the AHR-CYP1A pathway.


Asunto(s)
Benzo(a)Antracenos , Conducta Social , Contaminantes Químicos del Agua , Pez Cebra , Animales , Contaminantes Químicos del Agua/toxicidad , Benzo(a)Antracenos/toxicidad , Conducta Animal/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Embrión no Mamífero/efectos de los fármacos
12.
Antioxidants (Basel) ; 13(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38671872

RESUMEN

Acute lymphoblastic leukaemia (ALL) is the most prevalent cancer in children, and excessive iron buildup resulting from blood transfusions and chemotherapy potentially has a negative impact on treatment outcomes and prognosis in patients with ALL. Therefore, initiating early iron chelation therapy during ALL treatment is a logical approach. Ideally, the selected iron chelator should also possess anti-leukaemia properties. The aim of the present study was to explore the potential impact and underlying mechanism of deferasirox (DFX) in ALL therapy. This study proved that DFX, an iron chelator, is capable of inducing leukaemia cell death through ferroptosis, which is achievable by increasing the expression of acetylated nuclear factor erythroid 2-related factor 2 (NRF2). More specifically, NRF2 acetylation on Lys599 was facilitated by acetyltransferase-p300/CBP. These findings indicate that DFX could serve as a potent adjunctive medication for patients with ALL. Moreover, DFX may offer dual benefits in ALL treatment, functioning as both an iron chelator and NRF2-modulating agent. Further research and clinical trials are necessary to fully elucidate the therapeutic potential of DFX in patients with ALL and incorporate it into treatment protocols.

13.
Digit Health ; 10: 20552076241237391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449682

RESUMEN

Objective: This study aimed to examine the effects of semi-immersive virtual reality (VR)-based exercise on the quality of life of older adults. Methods: It used a randomized controlled trial design. Older adults (mean age: 72.16 ± 4.9 years) were randomly assigned to experimental (n = 48) and control (n = 50) groups. The experimental group engaged in semi-immersive VR exercise for 75-90 min, twice a week, for 12 weeks and partook in no other intervention between the end of the exercise intervention and follow-up. Control group members did not participate in any similar program during the intervention or follow-up periods. Both groups completed three assessments: at baseline (pre-test), post-intervention (post-test), and 3 months later (follow-up). Quality of life was assessed using the World Health Organization Quality of Life Instrument-Older Adults Module. Results: Generalized estimating equation analyses indicated that the experimental group exhibited significant post-intervention improvements in quality of life in terms of sensory ability, autonomy, social participation/isolation, death and dying domain, and overall quality of life scores. However, none of these significant effects were maintained 3 months after exercise intervention cessation. Conclusions: Semi-immersive VR exercise may be a feasible strategy toward enhancing the quality of life of older adults. However, the participants' quality of life was not maintained upon exercise cessation, indicating that older adults need to be encouraged to exercise regularly to maintain a good quality of life. VR may need to be combined with other modes of intervention in the future to facilitate long-term quality-of-life improvement in older adults.

14.
J Proteome Res ; 23(4): 1298-1312, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38500415

RESUMEN

Our prior investigations have evidenced that bone marrow mesenchymal stem cell (BMSC) therapy can significantly improve the outcomes of rheumatoid arthritis (RA). This study aims to conduct a comprehensive analysis of the proteomics between BMSCs and BMSCs-Exos, and to further elucidate the potential therapeutic effect of BMSCs-Exos on RA, so as to establish a theoretical framework for the prevention and therapy of BMSCs-Exos on RA. The 4D label-free LC-MS/MS technique was used for comparative proteomic analysis of BMSCs and BMSCs-Exos. Collagen-induced arthritis (CIA) rat model was used to investigate the therapeutic effect of BMSCs-Exos on RA. Our results showed that some homology and differences were observed between BMSCs and BMSCs-Exos proteins, among which proteins highly enriched in BMSCs-Exos were related to extracellular matrix and extracellular adhesion. BMSCs-Exos can be taken up by chondrocytes, promoting cell proliferation and migration. In vivo results revealed that BMSCs-Exos significantly improved the clinical symptoms of RA, showing a certain repair effect on the injury of articular cartilage. In short, our study revealed, for the first time, that BMSCs-Exos possess remarkable efficacy in alleviating RA symptoms, probably through shuttling proteins related to cell adhesion and tissue repair ability in CIA rats, suggesting that BMSCs-Exos carrying expressed proteins may become a useful biomaterial for RA treatment.


Asunto(s)
Artritis Reumatoide , Exosomas , Células Madre Mesenquimatosas , Ratas , Animales , Exosomas/metabolismo , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Células Madre Mesenquimatosas/metabolismo , Artritis Reumatoide/terapia , Artritis Reumatoide/metabolismo
15.
Environ Res ; 251(Pt 1): 118650, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458586

RESUMEN

The ferrihydrite-catalyzed heterogeneous photo-Fenton reaction shows great potential for environmental remediation of fluoroquinolone (FQs) antibiotics. The degradation of enoxacin, a model of FQ antibiotics, was studied by a batch experiment and theoretical calculation. The results revealed that the degradation efficiency of enoxacin reached 89.7% at pH 3. The hydroxyl radical (∙OH) had a significant impact on the degradation process, with a cumulative concentration of 43.9 µmol L-1 at pH 3. Photogenerated holes and electrons participated in the generation of ∙OH. Eleven degradation products of enoxacin were identified, with the main degradation pathways being defluorination, quinolone ring and piperazine ring cleavage and oxidation. These findings indicate that the ferrihydrite-catalyzed photo-Fenton process is a valid way for treating water contaminated with FQ antibiotics.


Asunto(s)
Enoxacino , Compuestos Férricos , Peróxido de Hidrógeno , Hierro , Contaminantes Químicos del Agua , Compuestos Férricos/química , Contaminantes Químicos del Agua/química , Hierro/química , Enoxacino/química , Catálisis , Peróxido de Hidrógeno/química , Antibacterianos/química
16.
Autophagy ; 20(7): 1651-1672, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38433354

RESUMEN

Macroautophagy/autophagy-mediated anoikis resistance is crucial for tumor metastasis. As a key autophagy-related protein, ATG4B has been demonstrated to be a prospective anti-tumor target. However, the existing ATG4B inhibitors are still far from clinical application, especially for tumor metastasis. In this study, we identified a novel circRNA, circSPECC1, that interacted with ATG4B. CircSPECC1 facilitated liquid-liquid phase separation of ATG4B, which boosted the ubiquitination and degradation of ATG4B in gastric cancer (GC) cells. Thus, pharmacological addition of circSPECC1 may serve as an innovative approach to suppress autophagy by targeting ATG4B. Specifically, the circSPECC1 underwent significant m6A modification in GC cells and was subsequently recognized and suppressed by the m6A reader protein ELAVL1/HuR. The activation of the ELAVL1-circSPECC1-ATG4B pathway was demonstrated to mediate anoikis resistance in GC cells. Moreover, we also verified that the above pathway was closely related to metastasis in tissues from GC patients. Furthermore, we determined that the FDA-approved compound lopinavir efficiently enhanced anoikis and prevented metastasis by eliminating repression of ELAVL1 on circSPECC1. In summary, this study provides novel insights into ATG4B-mediated autophagy and introduces a viable clinical inhibitor of autophagy, which may be beneficial for the treatment of GC with metastasis.


Asunto(s)
Anoicis , Autofagia , Cisteína Endopeptidasas , Lopinavir , ARN Circular , Anoicis/efectos de los fármacos , Autofagia/efectos de los fármacos , Humanos , ARN Circular/metabolismo , ARN Circular/genética , Línea Celular Tumoral , Cisteína Endopeptidasas/metabolismo , Lopinavir/farmacología , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Animales , Ratones , Ubiquitinación/efectos de los fármacos
18.
Diabetes Metab Syndr Obes ; 17: 701-714, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371390

RESUMEN

Aim: To explore the effects of Tirzepatide (TZP), a new hypoglycemic drug, on weight, blood lipids and blood pressure in overweight/obese patients with type 2 diabetes mellitus (T2DM). Methods: Relevant studies investigating the influence of TZP therapy on weight, lipid profiles and blood pressure in overweight/obese T2DM patients were selected from the PubMed, Embase, Web of Science and Cochrane databases from establishment until November 2022. A systematic review and meta-analysis were conducted to evaluate the effect of TZP on weight, blood lipids and blood pressure in overweight/obese patients with T2DM. Results: Eight randomized controlled trials (RCTs), comprising 7491 patients with T2DM, were included in the meta-analysis. Results showed that compared with the glucagon-like peptide-1 receptor agonist (GLP-1RA), insulin, and placebo groups, body weight, triglycerides (TG), very low-density lipoprotein cholesterol (VLDL-C), total cholesterol (TC), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), and glycosylated hemoglobin (HbA1c) levels were significantly decreased in the TZP-treated groups, while high-density lipoprotein cholesterol (HDL-C) levels increased. With the gradual increase of TZP doses, the proportions of T2DM patients with weight loss >5% gradually increased. The 10 mg and 15 mg TZP doses had a stronger effect on the levels of TG, VLDL-C, and HDL-C. Moreover, the reduction in SBP levels in the 15 mg TZP-treated group was more pronounced than those in the 10 mg and 5 mg TZP-treated groups [MD=-2.07, 95% CI (-2.52, -1.63) and MD=-3.14, 95% CI (-4.42, -1.87)]. Compared with GLP-1RA, insulin, and placebo groups, the proportions of patients with HbA1c<7% in 10mg and 15mg TZP-treated groups were significantly higher than in the 5mg TZP-treated group [OR=1.53, 95% CI (1.25, 1.8)], OR=1.7, 95% CI (1.15, 2.50)].There was no significant difference regarding the risk of adverse reactions.

20.
Sci Total Environ ; 918: 170773, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38336054

RESUMEN

Cadmium (Cd) exposure is known to enhance breast cancer (BC) progression. Cd promotes epithelial-mesenchymal transition (EMT) in BC cells, facilitating BC cell aggressiveness and invasion, but the underlying molecular mechanisms are unclear. Hence, transgenic MMTV-Erbb2 mice (6 weeks) were orally administered Cd (3.6 mg/L, approximately equal to 19.64 µΜ) for 23 weeks, and BC cells (BT474 cells) were exposed to Cd (0, 0.1, 1 or 10 µΜ) for 72 h to investigate the effect of Cd exposure on EMT in BC cells. Chronic Cd exposure dramatically expedited tumor metastasis to multiple organs; decreased E-cadherin density; and increased Vimentin, N-cadherin, ZEB1, and Twist density in the tumor tissues of MMTV-Erbb2 mice. Notably, transcriptomic analysis of BC tumors revealed cytochrome P450 1B1 (CYP1B1) as a key factor that regulates EMT progression in Cd-treated MMTV-Erbb2 mice. Moreover, Cd increased CYP1B1 expression in MMTV-Erbb2 mouse BC tumors and in BT474 cells, and CYP1B1 inhibition decreased Cd-induced BC cell malignancy and EMT in BT474 cells. Importantly, the promotion of EMT by CYP1B1 in Cd-treated BC cells was presumably controlled by glutamine metabolism. This study offers novel perspectives into the effect of environmental Cd exposure on driving BC progression and metastasis, and this study provides important guidance for comprehensively assessing the ecological and health risks of Cd.


Asunto(s)
Cadmio , Neoplasias , Ratones , Animales , Cadmio/farmacología , Línea Celular Tumoral , Glutamina/metabolismo , Glutamina/farmacología , Reprogramación Metabólica , Transición Epitelial-Mesenquimal , Cadherinas/genética , Cadherinas/metabolismo , Cadherinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...