RESUMEN
Drought stress inhibits oat growth and yield. The application of fulvic acid (FA) can improve the drought resistance of oats, but the corresponding molecular mechanism of FA-mediated drought resistance remains unclear. Here, we studied the effects of FA on the drought tolerance of oat leaves through physiological, transcriptomic, and metabolomics analyses, and identified FA-induced genes and metabolites related to drought tolerance. Physiological analysis showed that under drought stress, FA increased the relative water and chlorophyll contents of oat leaves, enhanced the activity of antioxidant enzymes (SOD, POD, PAL, CAT and 4CL), inhibited the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and dehydroascorbic acid (DHA), reduced the degree of oxidative damage in oat leaves, improved the drought resistance of oats, and promoted the growth of oat plants. Transcriptome and metabolite analyses revealed 652 differentially expressed genes (DEGs) and 571 differentially expressed metabolites (DEMs) in FA-treated oat leaves under drought stress. These DEGs and DEMs are involved in a variety of biological processes, such as phenylspropanoid biosynthesis and glutathione metabolism pathways. Additionally, FA may be involved in regulating the role of DEGs and DEMs in phenylpropanoid biosynthesis and glutathione metabolism under drought stress. In conclusion, our results suggest that FA promotes oat growth under drought stress by attenuating membrane lipid peroxidation and regulating the antioxidant system, phenylpropanoid biosynthesis, and glutathione metabolism pathways in oat leaves. This study provides new insights into the complex mechanisms by which FA improves drought tolerance in crops.
RESUMEN
This study aimed to investigate the effects of solid-state fermentation products of yeast (SFPY) on liver and intestinal health and disease resistance of common carp (Cyprinus carpio). A total of 200 common carp with an initial average weight of 2.55 ± 0.004 g were divided into 5 groups (4 replications per group and 10 fish per replication), and were fed with one of five diets, including a control diet and 4 diets supplemented with 2 (Y2), 3 (Y3), 4 (Y4), or 5 (Y5) SFPY, respectively, for 8 weeks. Results indicated that, the addition of SFPY to the diet of common carp did not affect the growth performance or survival rate of fish (P = 0.253). Interestingly, with the addition of SFPY, the triacylglycerol (TAG) content of the liver presented a linear decreasing tendency (P = 0.004), with significantly decreased in Y4 and Y5 groups (P = 0.035) compared with control. Serum lipopolysaccharide (LPS) content and diamine oxidase (DAO) activity presented a negative linear relationship with the addition of SFPY (P = 0.015, P = 0.030), while serum lipopolysaccharide binding protein (LBP) content first decreased and then increased (P < 0.001). The total antioxidant capacity (T-AOC) in the intestine of fish increased continuously with increasing SFPY supplementation (P = 0.026), reaching the highest level in Y5 group. The villus height in all experimental groups were significantly higher than that in the control group (P < 0.001). Furthermore, compared to the control, adding 3 SFPY to the control diet of common carp significantly increased the relative abundance of Fusobacteria (P = 0.018) and decreased that of Proteobacteria (P = 0.039) at phylum level, and increased the relative abundance of Cetobacterium (P= 0.018) and decreased that of Shewanella (P = 0.013) at genus level. Compared with the control, the relative mRNA expression level of spring viraemia of carp virus N protein (SVCV -n) in the kidney was lower than that of the control group without significance and bottomed out in Y4 group (P = 0.138). In conclusion, dietary SFPY enhanced the SVCV resistance capacity of common carp by improving liver and intestinal health and modulating the gut microbiota. Thus, SFPY is a potential feed additive to be used in aquaculture to reduce the huge economic loss of common carp due to SVCV disease. Based on liver TAG content and intestinal villus height, the optimal addition level of SFPY was 3.02 and 2.72, respectively.
RESUMEN
Introduction: Broussonetia papyrifera is a dioecious plant that is rich in various metabolites and widely distribute in Asia. Microtus fortis is a rodent that often causes damage to crops, especially in the Dongting Lake region of China. There is a wide overlap in the distribution areas for the above species and the M. fortis feeds on the leaves of the B. papyrifera. Preliminary experiments have shown that the reproduction of M. fortis is inhibited after feeding on the leaves of the B. papyrifera. Methods: In order to explore the potential of using B. papyrifera to develop botanical pesticides, we investigated the palatability and reactive substances. The feeding frequency of M. fortis on B. papyrifera leaves to that of on daily fodder and Carex brevicuspis that is the primary food for the wild population were compared. We also attempted to identify the responsive substances in B. papyrifera leaves that were bitten by M. fortis using metabolome analysis. Results: In general, B. papyrifera leaves exhibited a stronger attraction to M. fortis. M. fortis foraged B. papyrifera leaves more frequently, and the intake was higher than that of the other two. Differential metabolites were screened by comparing normal leaves and leaves bitten by M. fortis, meanwhile with the intervention of clipped leaves. A total of 269 substances were screened, and many of these were involved in the biosynthesis of secondary metabolites, including terpenoids and alkaloids. These substances may be related to the defense mechanism of B. papyrifera against herbivores. Discussion: These findings support further research examining animal-plant interactions and simultaneously provide insights into the utilisation of B. papyrifera resources and the management of rodents. The good palatability and the defense of B. papyrifera leaves suggest that they have the potential to contribute in development of plant rodenticide.
RESUMEN
Currently, there is an urgent to develop safe and environmentally friendly alternatives to antibiotics for combating Vibrio parahaemolyticus. Endolysins are considered promising antibacterial agents due to their desirable range of action and ability to deal with antibiotic-resistant bacteria. While numerous Vibrio phages have been identified, the research on their endolysins is still in its infancy. In this study, a novel endolysin called LysVPB was cloned and expressed in Pichia pastoris. Phylogenetic analysis revealed that LysVPB bears little resemblance to other known endolysins, highlighting its unique nature. Homology modeling identified a putative calcium-binding site in LysVPB. The recombinant LysVPB achieved a lytic activity of 64.8 U/mL and had a molecular weight of approximately 17 kDa. LysVPB exhibited enhanced efficacy at pH 9.0, with 60% of its maximum activity observed within the broad pH range of 6.0-10.0. The catalytic efficiency of LysVPB peaked at 30 °C but significantly declined beyond 50 °C. Ba2+, Co2+, and Cu2+ showed inhibitory effects on the activity of LysVPB, while Ca2+ can boost it to 126.8%. Furthermore, LysVPB exhibited satisfactory efficacy against strains of V. parahaemolyticus. LysVPB is an innovative phage lysin with good characteristics that are specific to certain hosts. The modular nature of LysVPB allows for efficient domain exchange with alternative lysins as antimicrobial components and fusion with antimicrobial peptides. This opens up possibilities for engineering chimeric lysins in a broader range of target hosts with high antimicrobial effectiveness and strong activity under physiological conditions.
RESUMEN
This article proposes a novel adaptive neurodynamic algorithm (ANA) to seek generalized Nash equilibrium (GNE) of the noncooperative constrained game with different monotone conditions. In the ANA, the adaptive penalty term, which acts as trajectory-dependent penalty parameters, evolves based on the degree of constraints violation until the trajectory enters the action set of noncooperative game. It is shown that the trajectory of the ANA enters the action set in finite time benefited from the adaptive penalty term. Moreover, it is proven that the trajectory exponentially (or polynomially) converges to the unique GNE when the pseudo-gradient of cost function in noncooperative game satisfies strong (or "generalized" strong) monotonicity. To the best of our knowledge, this is the first time to study the polynomial convergence of GNE seeking algorithm. Furthermore, when the pseudo-gradient mentioned above satisfies monotonicity in general, based on Tikhonov regularization method, a new ANA for finding its ε -generalized Nash equilibrium ( ε -GNE) is proposed, and the related exponential convergence of the algorithm is established. Finally, the river basin pollution game and 5G base station location game are given as examples to showcase the algorithm's effectiveness.
RESUMEN
Translating sensory inputs to perceptual decisions relies on building internal representations of features critical for solving complex tasks. Yet, we still lack a mechanistic account of how the brain forms these mental templates of task-relevant features to optimize decision-making. Here, we provide evidence for recurrent inhibition: an experience-dependent plasticity mechanism that refines mental templates by enhancing γ-aminobutyric acid (GABA)-mediated (GABAergic) inhibition and recurrent processing in superficial visual cortex layers. We combine ultrahigh-field (7 T) functional magnetic resonance imaging at submillimeter resolution with magnetic resonance spectroscopy to investigate the fine-scale functional and neurochemical plasticity mechanisms for optimized perceptual decisions. We demonstrate that GABAergic inhibition increases following training on a visual (i.e., fine orientation) discrimination task, enhancing the discriminability of orientation representations in superficial visual cortex layers that are known to support recurrent processing. Modeling functional and neurochemical plasticity interactions reveals that recurrent inhibitory processing optimizes brain computations for perpetual decisions and adaptive behavior.
Asunto(s)
Toma de Decisiones , Imagen por Resonancia Magnética , Corteza Visual , Humanos , Toma de Decisiones/fisiología , Imagen por Resonancia Magnética/métodos , Corteza Visual/fisiología , Masculino , Adulto , Femenino , Ácido gamma-Aminobutírico/metabolismo , Percepción Visual/fisiología , Plasticidad Neuronal/fisiología , Adulto Joven , Mapeo EncefálicoRESUMEN
Removing trace acetylene from the ethylene stream through selective hydrogenation is a crucial process in the production of polymer-grade ethylene. However, achieving high selectivity while maintaining high activity remains a significant challenge, especially for nonprecious metal catalysts. Herein, the trade-off between activity and selectivity is solved by synergizing enhanced dispersion and hydrogen spillover. Specifically, a bubbling method is proposed for preparing SiO2-supported copper and/or bismuth carbonate with high dispersion, which is then employed to synthesize highly dispersed Bi-modified CuxC-Cu catalyst. The catalyst displays outstanding catalytic performance for acetylene selective hydrogenation, achieving acetylene conversion of 100% and ethylene selectivity of 91.1% at 100 °C. The high activity originates from the enhanced dispersion, and the exceptional selectivity is due to the enhanced spillover capacity of active hydrogen from CuxC to Cu, which is promoted by the Bi addition. The results offer an avenue to design efficient catalysts for selective hydrogenation from nonprecious metals.
RESUMEN
Zostera marina, a critical keystone marine angiosperm species in coastal seagrass meadows, possesses a photosensitive oxygen evolving complex (OEC). In harsh environments, the photoinactivation of the Z. marina OEC may lead to population declines. However, the factors underlying this photosensitivity remain unclear. Therefore, this study was undertaken to elucidate the elements contributing to Z. marina OEC photosensitivity. Our results demonstrated a gradual decrease in photosystem II performance towards shorter wavelengths, especially blue light and ultraviolet radiation. This phenomenon was characterized by a reduction in Fv/Fm and the rate of O2 evolution, as well as increased fluorescence at 0.3 ms on the OJIP curve. Furthermore, exposure to shorter light wavelengths and longer exposure durations significantly reduced the relative abundance of the OEC peripheral proteins, indicating OEC inactivation. Analyses of light-screening substances revealed that carotenoids, which increased most notably under 420 nm light, might primarily serve as thermal dissipators instead of efficient light filters. In contrast, anthocyanins reacted least to short-wavelength light, in terms of changes to both their content and the expression of genes related to their biosynthesis. Additionally, the levels of aromatically acylated anthocyanins remained consistent across blue-, white-, and red-light treatments. These findings suggest that OEC photoinactivation in Z. marina may be linked to inadequate protection against short-wavelength light, a consequence of insufficient synthesis and aromatic acylation modification of anthocyanins.
Asunto(s)
Luz , Oxígeno , Complejo de Proteína del Fotosistema II , Zosteraceae , Zosteraceae/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Oxígeno/metabolismo , Antocianinas/metabolismo , Carotenoides/metabolismoRESUMEN
Binocular visual plasticity can be initiated via either bottom-up or top-down mechanisms, but it is unknown if these two forms of adult plasticity can be independently combined. In seven participants with normal binocular vision, sensory eye dominance was assessed using a binocular rivalry task, before and after a period of monocular deprivation and with and without selective attention directed towards one eye. On each trial, participants reported the dominant monocular target and the inter-ocular contrast difference between the stimuli was systematically altered to obtain estimates of ocular dominance. We found that both monocular light- and pattern-deprivation shifted dominance in favour of the deprived eye. However, this shift was completely counteracted if the non-deprived eye's stimulus was selectively attended. These results reveal that shifts in ocular dominance, driven by bottom-up and top-down selection, appear to act independently to regulate the relative contrast gain between the two eyes.
Asunto(s)
Predominio Ocular , Visión Binocular , Humanos , Visión Binocular/fisiología , Predominio Ocular/fisiología , Adulto , Masculino , Femenino , Adulto Joven , Plasticidad Neuronal/fisiología , Estimulación Luminosa , Visión Monocular/fisiología , Percepción Visual/fisiología , Atención/fisiologíaRESUMEN
Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality. Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic, collectively known as ribosomopathy genes. Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer. Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development. The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established. This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile, to excavate the potential role of these genes, which have not or rarely been reported in cancer, in the disease development across cancers. We plan to establish a theoretical framework between the ribosomopathy gene and cancer development, to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.
RESUMEN
To explore the effects of harvest seasons and etiolated cultivars on the volatile compounds of steamed green teas, this study analyzed comprehensively the volatile compounds of steamed green teas using simultaneous distillation extraction-gas chromatography-mass spectrometry (SDE-GC-MS) and chemometrics analytical techniques in combination with odor activity value (OAV). Additionally, the in vitro antioxidant capacity of the steamed green teas was evaluated. The results showed that 95 volatile compounds were identified, among which aldehydes, ketones, alcohols, and acids were the main types in steamed green teas made from etiolated tea cultivars. Furthermore, the relative content of volatile compounds in steamed green tea was significantly negatively correlated with season (P < 0.05). In steamed green teas harvested in different seasons, spring tea contained a higher abundance of volatile compounds such as (+)-δ-cadinene, farnesyl acetone, carvenone, trans-ß-ionone, and nerolidol. The differences of total volatile compounds among the three etiolated tea cultivars were not remarkable (P > 0.05). Combined with the OAV, 20 and 19 key aroma compounds in steamed green teas from different harvest seasons and cultivars were identified, respectively, which could bring unique aromas to different steamed green tea samples. By comparison, summer tea had the strongest antioxidant capacity, while there was no obvious difference in the antioxidant capacity among cultivars. This study provided a scientific basis for the aroma quality of steamed green teas made from etiolated tea cultivars in different harvest seasons.
RESUMEN
The storage period of tea is a major factor affecting tea quality. However, the effect of storage years on the non-volatile major functional components and quality of green tea remains largely unknown. In this study, a comparative analysis of organic green teas with varying storage years (1-16 years) was conducted by quantifying 47 functional components, using electronic tongue and chromatic aberration technology, alongside an evaluation of antioxidative capacity. The results indicated a significant negative correlation between the storage years and levels of tea polyphenols, total amino acids, soluble sugars, two phenolic acids, four flavonols, three tea pigments, umami amino acids, and sweet amino acids. The multivariate statistical analysis revealed that 10 functional components were identified as effective in distinguishing organic green teas with different storage years. Electronic tongue technology categorized organic green teas with different storage years into three classes. The backpropagation neural network (BPNN) analysis demonstrated that the classification predictive ability of the model based on the electronic tongue was superior to the one based on color difference values and 10 functional components. The combined analysis of antioxidative activity and functional components suggested that organic green teas with shorter storage periods exhibited stronger abilities to suppress superoxide anion radicals and hydroxyl radicals and reduce iron ions due to the higher content of eight components. Long-term-stored organic green teas, with a higher content of substances like L-serine and theabrownins, demonstrated stronger antioxidative capabilities in clearing both lipid-soluble and water-soluble free radicals. Therefore, this study provided a theoretical basis for the quality assessment of green tea and prediction of green tea storage periods.
RESUMEN
Inflammation is considered to be the main target of the development of new stroke therapies. There are three key issues in the treatment of stroke inflammation: the first one is how to overcome the blood-brain barrier (BBB) to achieve drug delivery, the second one is how to select drugs to treat stroke inflammation, and the third one is how to achieve targeted drug delivery. In this study, we constructed hydrocortisone-phosphatidylserine microbubbles and combined them with ultrasound (US)-targeted microbubble destruction technology to successfully open the BBB to achieve targeted drug delivery. Phosphatidylserine on the microbubbles was used for its "eat me" effect to increase the targeting of the microvesicles. In addition, we found that hydrocortisone can accelerate the closure of the BBB, achieving efficient drug delivery while reducing the entry of peripheral toxins into the brain. In the treatment of stroke inflammation, it was found that hydrocortisone itself has anti-inflammatory effects and can also change the polarization of microglia from the harmful pro-inflammatory M1 phenotype to the beneficial anti-inflammatory M2 phenotype, thus achieving dual anti-inflammatory effects and enhancing the anti-inflammatory effects in ischemic areas after stroke, well reducing the cerebellar infarction volume by inhibiting the inflammatory response after cerebral ischemia. A confocal microendoscope was used to directly observe the polarization of microglial cells in living animal models for dynamic microscopic visualization detection showing the advantage of being closer to clinical work. Taken together, this study constructed a multifunctional targeted US contrast agent with the function of "one-stone-two-birds", which can not only "on-off" the BBB but also have "two" anti-inflammatory functions, providing a new strategy of integrated anti-inflammatory targeted delivery and imaging monitoring for ischemic stroke treatment.
Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Microburbujas , Barrera Hematoencefálica , Hidrocortisona/uso terapéutico , Fosfatidilserinas , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológicoRESUMEN
PURPOSE: Imaging assessment of abdominopelvic tumor burden is crucial for debulking surgery decision in ovarian cancer patients. This study aims to compare the efficiency of [68Ga]Ga-FAPI-04 FAPI PET and MRI-DWI in the preoperative evaluation and its potential impact to debulking surgery decision. METHODS: Thirty-six patients with suspected/confirmed ovarian cancer were enrolled and underwent integrated [68Ga]Ga-FAPI-04 PET/MRI. Nineteen patients (15 stage III-IV and 4 I-II stage) who underwent debulking surgery were involved in the diagnostic efficiency analysis. The images of [68Ga]Ga-FAPI-04 PET and MRI-DWI were visually analyzed respectively. Immunohistochemistry on FAP was performed in metastatic lesions to investigate the radiological missing of [68Ga]Ga-FAPI-04 PET as well as its different performance in primary debulking surgery (PDS) and interval debulking surgery (IDS) patients. Potential imaging impact on management was also studied in 35 confirmed ovarian cancer patients. RESULTS: [68Ga]Ga-FAPI-04 PET displayed higher sensitivity (76.8% vs.59.9%), higher accuracy (84.9% vs. 80.7%), and lower missing rate (23.2% vs. 40.1%) than MRI-DWI in detecting abdominopelvic metastasis. The diagnostic superiority of [68Ga]Ga-FAPI-04 PET is more obvious in PDS patients but diminished in IDS patients. [68Ga]Ga-FAPI-04 PET outperformed MRI-DWI in 70.8% abdominopelvic regions (17/24), which contained seven key regions that impact the resectability and surgical complexity. MRI-DWI hold advantage in the peritoneal surface of the bladder and the central tendon of the diaphragm. Of the contradictory judgments between the two modalities (14.9%), [68Ga]Ga-FAPI-04 PET correctly identified more lesions, particularly in PDS patients (73.8%). In addition, FAP expression was independent of lesion size and decreased in IDS patients. [68Ga]Ga-FAPI-04 PET changed 42% of surgical planning that was previously based on MRI-DWI. CONCLUSION: [68Ga]Ga-FAPI-04 PET is more efficient in assisting debulking surgery in ovarian cancer patients than MRI-DWI. Integrated [68Ga]Ga-FAPI-04 PET/MR imaging is a potential method for planning debulking surgery in ovarian cancer patients.
Asunto(s)
Procedimientos Quirúrgicos de Citorreducción , Neoplasias Ováricas , Tomografía de Emisión de Positrones , Quinolinas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/cirugía , Neoplasias Ováricas/patología , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Anciano , Procedimientos Quirúrgicos de Citorreducción/métodos , Adulto , Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Imagen Multimodal/métodos , Cirugía Asistida por Computador/métodos , Radioisótopos de GalioRESUMEN
Immunotherapy as a milestone in cancer treatment has made great strides in the past decade, but it is still limited by low immune response rates and immune-related adverse events. Utilizing bioeffects of ultrasound to enhance tumor immunotherapy has attracted more and more attention, including sonothermal, sonomechanical, sonodynamic and sonopiezoelectric immunotherapy. Moreover, the emergence of nanomaterials has further improved the efficacy of ultrasound mediated immunotherapy. However, most of the summaries in this field are about a single aspect of the biological effects of ultrasound, which is not comprehensive and complete currently. This review proposes the recent progress of nanomaterials augmented bioeffects of ultrasound in cancer immunotherapy. The concept of immunotherapy and the application of bioeffects of ultrasound in cancer immunotherapy are initially introduced. Then, according to different bioeffects of ultrasound, the representative paradigms of nanomaterial augmented sono-immunotherapy are described, and their mechanisms are discussed. Finally, the challenges and application prospects of nanomaterial augmented ultrasound mediated cancer immunotherapy are discussed in depth, hoping to pave the way for cancer immunotherapy and promote the clinical translation of ultrasound mediated cancer immunotherapy through the reasonable combination of nanomaterials augmented ultrasonic bioeffects.
RESUMEN
INTRODUCTION: Chronic wounds are wounds that are not healed or have no healing tendency for more than 1 month due to various factors. In clinical nursing, chronic wounds are often not properly treated, and the treatment efficiency is low. Therefore, it is very important to explore effective methods to deal with chronic wounds. OBJECTIVE: To explore the effect of a self-made negative pressure suction device (NPSD) in the nursing of chronic wounds in the elderly. METHODS: A total of 50 elderly patients with chronic wounds who were hospitalised in our hospital from January 2020 to December 2022 were selected as participants by convenient sampling. According to the random number table method, they were divided into a control group and an observation group, with 25 people in each group. The control group was treated with chloroplast foam dressing, debridement gel and alginate dressing. The observation group was treated with a self-made NPSD on the basis of the control group. The wound healing of the two groups was observed. RESULTS: After the intervention of the self-made NPSD, the granulation tissue coverage rate and wound volume reduction rate of the observation group were significantly increased (p < 0.05), and the positive rate of bacterial infection was significantly decreased (p < 0.05). After 3 months of intervention, the total effective rate of the observation group was significantly higher than that of the control group (χ2 = 3.869, p = 0.0492). CONCLUSION: The self-made NPSD can effectively promote the healing of a chronic wound.
Asunto(s)
Trasplante de Piel , Cicatrización de Heridas , Humanos , Anciano , Succión , Resultado del Tratamiento , Desbridamiento , Trasplante de Piel/métodosRESUMEN
Purpose: To investigate the effect of transcutaneous cervical vagus nerve stimulation (tcVNS) on motor cortex excitability in healthy adults. Method: Twenty eight healthy subjects were assigned to receive real and sham tcVNS for 30 min. The interval between the real and sham conditions was more than 24 h, and the sequence was random. The central and peripheral motor-evoked potential (MEP) of the right first dorsal interosseous (FDI) muscle was measured by transcranial magnetic stimulation (TMS) before and after stimulation. MEP latency, MEP amplitude and rest motor threshold (rMT) were analyzed before and after stimulation. Results: MEP amplitude, MEP latency and rMT had significant interaction effect between time points and conditions (p < 0.05). After real stimulation, the MEP amplitude was significantly increased (p < 0.001). MEP latency (p < 0.001) and rMT (p = 0.006) was decreased than that of baseline. The MEP amplitude on real condition was higher than that of sham stimulation after stimulation (p = 0.027). The latency after the real stimulation was significantly shorter than that after sham stimulation (p = 0.005). No significantly difference was found in rMT after stimulation between real and sham conditions (p > 0.05). Conclusion: tcVNS could improve motor cortex excitability in healthy adults.
RESUMEN
The concept of wound microenvironment has been discussed for a long time. However, the mechanism of the internal microenvironment is relatively little studied. Here, we present a systematic discussion on the mechanism of natural polymer materials such as chitosan, cellulose, collagen and hyaluronic acid through their effects on the internal wound microenvironment and regulation of wound healing, in order to more comprehensively explain the concept of wound microenvironment and provide a reference for further innovative clinical for the preparation and application of wound healing agents.
RESUMEN
In this paper, N-cluster games with coupling and private constraints are studied, where each player's cost function is nonsmooth and depends on the actions of all players. In order to seek the generalized Nash equilibrium (GNE) of the nonsmooth N-cluster games, a distributed seeking neurodynamic approach with two-time-scale structure is proposed. An adaptive leader-following consensus technique is adapted to dynamically adjust parameters according to the degree of consensus violation, so as to quickly obtain accurate estimation information of other players' actions which facilitates the evaluation of its own cost. Benefitting from the unique structure of the approach based on primal dual and adaptive penalty methods, the players' actions enter the constraints while completing the seeking for GNE. As a result, the neurodynamic approach is completely distributed, and prior estimation of penalty parameters is avoided. Finally, two engineering examples of power system game and company capacity allocation verify the effectiveness and feasibility of the neurodynamic approach.
Asunto(s)
Algoritmos , ConsensoRESUMEN
The misdiagnosis of tumors due to insufficient penetration depth or signal interference and damage to normal tissues due to indiscriminate treatment are the biggest challenges in using photothermal agents for clinical translation. To overcome these limitations, a strategy of switching from the near-infrared (NIR)-I region to the NIR-II region was developed based on tumor microenvironment (TME)-mediated gold (Au) self-assembly. Using zeolitic imidazolate framework-8 (ZIF-8) metal-organic framework-coated gold nanorods (AuNRs@ZIF-8) as a model photothermal agent, we demonstrated that only a NIR-I photoacoustic imaging signal was observed in normal tissue because ZIF-8 could prevent the aggregation of AuNRs. However, when ZIF-8 dissociated in the TME, the AuNRs aggregated to activate NIR-II photoacoustic imaging and attenuate the NIR-I signal, thereby allowing an accurate diagnosis of tumors based on signal transformation. Notably, TME-activated NIR-II photothermal therapy could also inhibit tumor growth. Therefore, this TME-activated NIR-I-to-NIR-II switching strategy could improve the accuracy of deep-tumor diagnoses and avoid the injury caused by undifferentiated treatment. STATEMENT OF SIGNIFICANCE: Photothermal agents used for photoacoustic imaging and photothermal therapy have garnered great attention for tumor theranostics. However, always "turned on" near-infrared (NIR)-I laser (700-1000 nm)-responsive photothermal agents face issues of penetration depth and damage to normal tissues. In contrast, tumor microenvironment-activated NIR-II "smart" photothermal agents exhibit deeper penetration depth and tumor selectivity. Therefore, a NIR-I-to-NIR-II switching strategy was developed based on tumor microenvironment-mediated Au self-assembly. This work provides a new strategy for developing tumor microenvironment-activated NIR-II smart photothermal agents.