Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Arch Med Sci ; 20(2): 675-678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757026

RESUMEN

Introduction: There is insufficient evidence in statin on the treatment of Staphylococcus aureus (SA) infection, we observe and analyze the clinical outcomes and antibiotic resistance of SA bloodstream infections in patients who received statins. Methods: A retrospective study was carried out in SA bloodstream infection of hospitalized patients from January 2018 to August 2023. The 30-day attributable mortality, 30-day all-cause mortality and clinical data of patients who received statins and non-statins were compared. Results: A total of 74 patients with SA bloodstream infection were included, 32 (43.2%) patients received treatment with statins and 42 (56.8%) with non-statins. The incidence of methicillin-resistant SA (MRSA) was significantly lower in the statins group (15.6% vs. 38.1%, p = 0.034), however, no significant differences were observed in the mortality rate (p = 0.410). Conclusions: This study revealed the superiority of statins in reducing incidence of MRSA among SA bloodstream infection patients, but statins do not improve the 30-day mortality rate.

2.
Sci Data ; 11(1): 488, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734729

RESUMEN

Domesticated herbivores are an important agricultural resource that play a critical role in global food security, particularly as they can adapt to varied environments, including marginal lands. An understanding of the molecular basis of their biology would contribute to better management and sustainable production. Thus, we conducted transcriptome sequencing of 100 to 105 tissues from two females of each of seven species of herbivore (cattle, sheep, goats, sika deer, horses, donkeys, and rabbits) including two breeds of sheep. The quality of raw and trimmed reads was assessed in terms of base quality, GC content, duplication sequence rate, overrepresented k-mers, and quality score distribution with FastQC. The high-quality filtered RNA-seq raw reads were deposited in a public database which provides approximately 54 billion high-quality paired-end sequencing reads in total, with an average mapping rate of ~93.92%. Transcriptome databases represent valuable resources that can be used to study patterns of gene expression, and pathways that are related to key biological processes, including important economic traits in herbivores.


Asunto(s)
Herbivoria , Transcriptoma , Animales , Bovinos/genética , Femenino , Conejos/genética , Bases de Datos Genéticas , Ciervos/genética , Equidae/genética , Cabras/genética , Caballos/genética , Ovinos/genética
3.
Front Nutr ; 11: 1409026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765820

RESUMEN

Moringa oleifera (M. oleifera) is a natural plant that has excellent nutritional and medicinal potential. M. oleifera leaves (MOL) contain several bioactive compounds. The aim of this study was to evaluate the potential effect of MOL polysaccharide (MOLP) on intestinal flora in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. DSS-induced colitis was deemed to be a well-characterized experimental colitis model for investigating the protective effect of drugs on UC. In this study, we stimulated the experimental mice with DSS 4% for 7 days and prepared the high dose of MOLP (MOLP-H) in order to evaluate its effect on intestinal flora in DSS-induced UC mice, comparing three experimental groups, including the control, DSS model, and DSS + MOLP-H (100 mg/kg/day). At the end of the experiment, feces were collected, and the changes in intestinal flora in DSS-induced mice were analyzed based on 16S rDNA high throughput sequencing technology. The results showed that the Shannon, Simpson, and observed species indices of abundance decreased in the DSS group compared with the control group. However, the indices mentioned above were increased in the MOLP-H group. According to beta diversity analysis, the DSS group showed low bacterial diversity and the distance between the control and MOLP-H groups, respectively. In addition, compared with the control group, the relative abundance of Firmicutes in the DSS group decreased and the abundance of Helicobacter increased, while MOLP-H treatment improves intestinal health by enhancing the number of beneficial organisms, including Firmicutes, while reducing the number of pathogenic organisms, such as Helicobacter. In conclusion, these findings suggest that MOLP-H may be a viable prebiotic with health-promoting properties.

4.
Biol Reprod ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678504

RESUMEN

The endoplasmic reticulum (ER) is a complex and dynamic organelle that initiates unfolded protein response (UPR) and endoplasmic reticulum stress (ER Stress) in response to the accumulation of unfolded or misfolded proteins within its lumen. Autophagy is a paramount intracellular degradation system that facilitates the transportation of proteins, cytoplasmic components, and organelles to lysosomes for degradation and recycling. Preeclampsia (PE) and intrauterine growth retardation (IUGR) are two common complications of pregnancy associated with abnormal trophoblast differentiation and placental dysfunctions and have a major impact on fetal development and maternal health. The intricate interplay between ER Stress, and autophagy and their impact on pregnancy outcomes, through mediating trophoblast differentiation and placental development, has been highlighted in various reports. Autophagy controls trophoblast regulation through a variety of gene expressions and signalling pathways while excessive ER Stress triggers downstream apoptotic signalling, culminating in trophoblast apoptosis. This comprehensive review delves into the intricacies of placental development and explores the underlying mechanisms of PE and IUGR. In addition, this review will elucidate the molecular mechanisms of ER Stress and autophagy, both individually and in their interplay, in mediating placental development and trophoblast differentiation, particularly highlighting their roles in PE and IUGR development. This research seeks to the interplay between ER Stress and impaired autophagy in the placental trophoderm, offering novel insights into their contribution to pregnancy complications.

5.
Microbiome ; 12(1): 28, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38365714

RESUMEN

BACKGROUND: Bisphenol A (BPA) is an environmental contaminant with endocrine-disrupting properties that induce fetal growth restriction (FGR). Previous studies on pregnant ewes revealed that BPA exposure causes placental apoptosis and oxidative stress (OS) and decreases placental efficiency, consequently leading to FGR. Nonetheless, the response of gut microbiota to BPA exposure and its role in aggravating BPA-mediated apoptosis, autophagy, mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and OS of the maternal placenta and intestine are unclear in an ovine model of gestation. RESULTS: Two pregnant ewe groups (n = 8/group) were given either a subcutaneous (sc) injection of corn oil (CON group) or BPA (5 mg/kg/day) dissolved in corn oil (BPA group) once daily, from day 40 to day 110 of gestation. The maternal colonic digesta and the ileum and placental tissue samples were collected to measure the biomarkers of autophagy, apoptosis, mitochondrial dysfunction, ERS, and OS. To investigate the link between gut microbiota and the BPA-induced FGR in pregnant ewes, gut microbiota transplantation (GMT) was conducted in two pregnant mice groups (n = 10/group) from day 0 to day 18 of gestation after removing their intestinal microbiota by antibiotics. The results indicated that BPA aggravates apoptosis, ERS and autophagy, mitochondrial function injury of the placenta and ileum, and gut microbiota dysbiosis in pregnant ewes. GMT indicated that BPA-induced ERS, autophagy, and apoptosis in the ileum and placenta are attributed to gut microbiota dysbiosis resulting from BPA exposure. CONCLUSIONS: Our findings indicate the underlying role of gut microbiota dysbiosis and gut-placental axis behind the BPA-mediated maternal intestinal and placental apoptosis, OS, and FGR. The findings further provide novel insights into modulating the balance of gut microbiota through medication or probiotics, functioning via the gut-placental axis, to alleviate gut-derived placental impairment or FGR. Video Abstract.


Asunto(s)
Compuestos de Bencidrilo , Microbioma Gastrointestinal , Enfermedades Mitocondriales , Fenoles , Humanos , Embarazo , Ovinos , Femenino , Animales , Ratones , Placenta , Retardo del Crecimiento Fetal/inducido químicamente , Retardo del Crecimiento Fetal/metabolismo , Disbiosis/inducido químicamente , Disbiosis/metabolismo , Aceite de Maíz/metabolismo , Estrés Oxidativo , Enfermedades Mitocondriales/metabolismo
6.
Front Physiol ; 14: 1252089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046946

RESUMEN

Leucine, a branched-chain amino acid, is essential in regulating animal growth and development. Recent research has uncovered the mechanisms underlying Leucine's anabolic effects on muscle and other tissues, including its ability to stimulate protein synthesis by activating the mTORC1 signaling pathway. The co-ingestion of carbohydrates and essential amino acids enhances Leucine's anabolic effects. Moreover, Leucine has been shown to benefit lipid metabolism, and insulin sensitivity, making it a promising strategy for preventing and treating metabolic diseases, including type 2 diabetes and obesity. While emerging evidence indicates that epigenetic mechanisms may mediate Leucine's effects on growth and development, more research is needed to elucidate its mechanisms of action fully. Specific studies have demonstrated that Leucine promotes muscle growth and metabolic health in animals and humans, making it a promising therapeutic agent. However, it is essential to note that Leucine supplementation may cause digestive issues or interact with certain medications, and More study is required to determine definitively optimal dosages. Therefore, it is important to understand how Leucine interacts with other nutrients, dietary factors, and lifestyle habits to maximize its benefits. Overall, Leucine's importance in human nutrition is far-reaching, and its potential to prevent muscle loss and enhance athletic performance warrants further investigation.

7.
Antioxidants (Basel) ; 12(12)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38136218

RESUMEN

Manipulating dietary nutrients, especially protein fractions, holds significance in enhancing the antioxidant capacity and immunity function of ruminants. This study investigated the impact of dietary adjustments in soluble protein (SP) levels, in conjunction with a reduction in crude protein (CP) content, on the antioxidant capacity, inflammatory response, carcass characteristics, and meat quality of sheep. This study had four dietary treatments, including a control diet (CON) adhering to NRC standards with a CP content of 16.7% on a dry matter basis and three diets with an approximately 10% reduction in CP content compared to CON with SP levels (% of CP) of 21.2 (SPA), 25.9 (SPB) and 29.4% (SPC), respectively. Thirty-two healthy male Hu sheep, with an initial live weight of 40.37 ± 1.18 kg and age of 6 months, were randomly divided into four groups to receive these respective diets. Our data revealed no significant differences in slaughter performance among treatments (p > 0.05), although low-protein treatments decreased the stomachus compositus index (p < 0.05). Compared with CON, as SP was adjusted to 21.2%, total antioxidant capacity (T-AOC) and catalase (CAT) concentrations were decreased in the serum (p < 0.05), glutathione peroxidase (GSH-Px) content was decreased in jejunum and ileum (p < 0.05), superoxide dismutase (SOD) concentration was reduced in the duodenum (p < 0.05), and malondialdehyde (MDA) content was increased in spleen and ileum (p < 0.05). On the other hand, pro-inflammatory cytokine (IL-1ß, IL-6 and IL-8) contents were upregulated in the serum (p < 0.05), while immunoglobulin (IgA and IgM) contents were reduced in the duodenum (p < 0.05) with SP adjustments. Additionally, the SPB and SPC diets reduced the content of saturated fatty acids and increased the content of polyunsaturated fatty acids compared with CON (p < 0.05), along with retention in the tenderness and water-holding capacity of the longissimus lumborum muscle. In summary, reducing CP by 10% with an SP proportion of ~25-30% improved meat quality without compromising antioxidant capacity and immunity function, while lower SP levels had adverse effects.

8.
Anim Nutr ; 15: 149-158, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38023379

RESUMEN

This study aimed to investigate the effects of dietary supplementation of underfed Hu ewes from d 35 to 110 of gestation with either rumen-protected L-arginine (RP-Arg) or N-carbamylglutamate (NCG) on placental amino acid (AA) transport, angiogenic gene expression, and steroid anabolism. On d 35 of gestation, 32 Hu ewes carrying twin fetuses were randomly divided into four treatment groups, each consisting of eight ewes, and were fed the following diets: A diet providing 100% of NRC's nutrient requirements for pregnant ewes (CON); A diet providing 50% of NRC's nutrient requirements for pregnant ewes (RES); RES diet plus 5 g/d NCG (RES + NCG); or RES diet plus 20 g/d RP-Arg (RES + ARG). On the d 110 of pregnancy, blood samples were taken from the mother, and samples were collected from type A cotyledons (COT; the fetal portions of the placenta). The levels of 17ß-estradiol and progesterone in the maternal serum and both the capillary area density (CAD) and capillary surface density (CSD) in type A COT were decreased in response to Arg or NCG supplementation when compared to the RES group. The concentrations of arginine, leucine, putrescine and spermidine in type A COT were higher (P < 0.05) in the RES + ARG or RES + NCG group than in the RES group. The mRNA expression levels of inducible nitric oxide synthase (iNOS) and solute carrier family 15, member 1 (SLC15A1) were increased (P < 0.05) while those of progesterone receptor (PGR) and fibroblast growth factor 2 (FGF2) were decreased in type A COT by supplementation with either NCG or RP-Arg compared to the RES group. The results suggest that providing underfed pregnant ewes from d 35 to 110 of gestation with a diet supplemented with NCG or RP-Arg improves placental AA transport, and reduces the expression of angiogenic growth factor genes and steroid anabolism, leading to better fetal development.

9.
Microbiol Spectr ; 11(6): e0032723, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37929993

RESUMEN

IMPORTANCE: In in vitro studies, it has been found that the effects of MLT on rumen microorganisms and metabolites can change the rumen flora structure, significantly inhibit the relative abundance of harmful Acinetobacter, and improve the relative abundance of beneficial bacteria. MLT may regulate the "arginine-glutathione" pathway, "phenylalanine, tyrosine and tryptophan biosynthesis-tryptophan generation" branch, "tryptophan-kynurenine" metabolism, and "tryptophan-tryptamine-serotonin" pathway through microorganisms.


Asunto(s)
Microbioma Gastrointestinal , Melatonina , Animales , Triptófano/metabolismo , Melatonina/metabolismo , Rumen , Redes y Vías Metabólicas
10.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778392

RESUMEN

AFB1 (Aflatoxin B1) contamination is becoming a global concern issue due to its extraordinary occurrence, severe toxicity, as well as the great influence on the economic losses, food safety and environment. Therefore, it is desirable to develop novel analytical techniques for simple, rapid, accurate, and even point-of-care testing of AFB1. Fortunately, aptamer, considered as a new generation bioreceptor and even superior to classic antibody and enzyme, has been emerged remarkable application in food hazards detection. Correspondingly, aptasensors have been well-established toward AFB1 determination with outstanding performance. In this article, we first discuss and summarize the recent progress in optical and electrochemical aptasensors to monitor AFB1 over the past three years. In particular, the embedding of advanced nanomaterials for their improved analytical performance is highlighted. Furthermore, the critical analysis on various signal transduction strategies for aptasensors construction is discussed. Finally, we reveal the challenges and provide our opinion in future opportunities for aptasensor development.

11.
J Anim Sci Biotechnol ; 14(1): 117, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37691111

RESUMEN

BACKGROUND: Exposure to bisphenol A (BPA), an environmental pollutant known for its endocrine-disrupting properties, during gestation has been reported to increase the risk of fetal growth restriction (FGR) in an ovine model of pregnancy. We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta, oxidative stress, inflammatory responses, autophagy and endoplasmic reticulum stress (ERS). However, precise mechanisms underlying the BPA-induced placental dysfunction, and subsequently, FGR, as well as the potential involvement of placental ERS in these complications, remain to be investigated. METHODS: In vivo experiment, 16 twin-pregnant (from d 40 to 130 of gestation) Hu ewes were randomly distributed into two groups (8 ewes each). One group served as a control and received corn oil once a day, whereas the other group received BPA (5 mg/kg/d as a subcutaneous injection). In vitro study, ovine trophoblast cells (OTCs) were exposed to 4 treatments, 6 replicates each. The OTCs were treated with 400 µmol/L BPA, 400 µmol/L BPA + 0.5 µg/mL tunicamycin (Tm; ERS activator), 400 µmol/L BPA + 1 µmol/L 4-phenyl butyric acid (4-PBA; ERS antagonist) and DMEM/F12 complete medium (control), for 24 h. RESULTS: In vivo experiments, pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency, progesterone (P4) level and fetal weight, and an increase in placental estrogen (E2) level, together with barrier dysfunctions, OS, inflammatory responses, autophagy and ERS in type A cotyledons. In vitro experiment, the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy, ERS, pro-apoptosis and inflammatory response, and a decrease in the P4 level and the related protein and gene expressions of antioxidant, anti-apoptosis and barrier function. Moreover, treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine (the increased E2 level and decreased P4 level), OS, inflammatory responses, autophagy, and ERS. However, treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above. CONCLUSIONS: In general, the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs, and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine, OS, inflammatory responses, and autophagy. These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development.

12.
Meat Sci ; 204: 109267, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37392733

RESUMEN

In sheep, the effect of tryptophan (Trp) on behavioural traits that are associated with temperament and any effects on production traits is unknown. The hypothesis of this study is that the supplementation of Trp would improve temperament by enhancing serotonin production, which is beneficial to meat production subsequently in sheep. Twelve ewes that had the lowest and 12 ewes that had the highest behavioural responses to human contact were selected into the calm and the nervous groups respectively. Then, the ewes from each group were equally assigned into two treatments that were treated with the basal diet and the diet with extra 90 mg/kg/d Trp for 30 d. The temperament traits, the growth performance, the biochemicals that are related to health the slaughter performance and meat quality were measured at the end of feeding experiment. The findings in this study suggested the Hu sheep with calm temperament would experience less stress during production, resulting in less oxidative stress, better growth performance, slaughter traits and carcass traits, compared to the nervous sheep. Meanwhile, the dietary supplementation of Trp reduced stress responses by enhancing production of 5-HT in sheep from the nervous group which is beneficial to improve the production traits that mentioned above.


Asunto(s)
Antioxidantes , Triptófano , Humanos , Animales , Ovinos , Femenino , Triptófano/farmacología , Dieta/veterinaria , Carne , Fenotipo , Alimentación Animal/análisis
13.
Front Plant Sci ; 14: 1164363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448866

RESUMEN

Several members of family Urticaceae are mainly found in the temperate and subtropical zones of the Northern Hemisphere and are important medicinal plants. Among them, Urtica dioica L. (Urticaceae) is an annual or perennial herb that has been used for feeding and medicinal purposes since long time and is the most exploited species of Urticaceae. Recently, it has received attention to be used as animal feed, as its fresh leaves fed to animals in moderate, dried, and other forms. This review details the advantages of U. dioica as an alternative feed in terms of germplasm specificity, nutritional composition, and feed application status. Its roots, stems, leaves, and seeds are rich in active ingredients. It has also been found to have anticancer effects through antioxidant action and promotion of apoptosis of cancer cells. In shady conditions, U. dioica is highly adaptable while under stressful conditions of drought; it also reduces light absorption and ensures carbon assimilation through light energy conversion efficiency. Therefore, it can be added to animal diets as a suitable feed to reduce costs and improve economic efficiency. This paper investigates the feasibility of using U. dioica as a feed and systematically presents the progress of research and exploitation of U. dioica.

14.
Microbiol Spectr ; 11(4): e0534322, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37439665

RESUMEN

Emerging data have underscored the significance of exogenous supplementation of butyrate in the regulation of rumen development and homeostasis. However, the effects of other short-chain fatty acids (SCFAs), such as acetate or propionate, has received comparatively less attention, and the consequences of extensive exogenous SCFA infusion remain largely unknown. In our study, we conducted a comprehensive investigation by infusion of three SCFAs to examine their respective roles in regulating the rumen microbiome, metabolism, and epithelium homeostasis. Data demonstrated that the infusion of sodium acetate (SA) increased rumen index while also promoting SCFA production and absorption through the upregulation of SCFA synthetic enzymes and the mRNA expression of SLC9A1 gene. Moreover, both SA and sodium propionate infusion resulted in an enhanced total antioxidant capacity, an increased concentration of occludin, and higher abundances of specific rumen bacteria, such as "Candidatus Saccharimonas," Christensenellaceae R-7, Butyrivibrio, Rikenellaceae RC9 gut, and Alloprevotella. In addition, sodium butyrate (SB) infusion exhibited positive effects by increasing the width of rumen papilla and the thickness of the stratum basale. SB infusion further enhanced antioxidant capacity and barrier function facilitated by cross talk with Monoglobus and Incertae Sedis. Furthermore, metabolome and transcriptome data revealed distinct metabolic patterns in rumen contents and epithelium, with a particular impact on amino acid and fatty acid metabolism processes. In conclusion, our data provided novel insights into the regulator effects of extensive infusion of the three major SCFAs on rumen fermentation patterns, antioxidant capacity, rumen barrier function, and rumen papilla development, all achieved without inducing rumen epithelial inflammation. IMPORTANCE The consequences of massive exogenous supplementation of SCFAs on rumen microbial fermentation and rumen epithelium health remain an area that requires further exploration. In our study, we sought to investigate the specific impact of administering high doses of exogenous acetate, propionate, and butyrate on rumen homeostasis, with a particular focus on understanding the interaction between the rumen microbiome and epithelium. Importantly, our findings indicated that the massive infusion of these SCFAs did not induce rumen inflammation. Instead, we observed enhancements in antioxidant capacity, strengthening of rumen barrier function, and promotion of rumen papilla development, which were facilitated through interactions with specific rumen bacteria. By addressing existing knowledge gaps and offering critical insights into the regulation of rumen health through SCFA supplementation, our study holds significant implications for enhancing the well-being and productivity of ruminant animals.


Asunto(s)
Microbiota , Propionatos , Animales , Propionatos/farmacología , Cabras/metabolismo , Rumen/microbiología , Antioxidantes/metabolismo , Multiómica , Ácidos Grasos Volátiles/metabolismo , Epitelio/microbiología , Ácido Butírico , Rumiantes , Homeostasis
15.
J Pineal Res ; 75(2): e12892, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37317652

RESUMEN

The accelerated pace of life at present time has resulted in tremendous alterations in living patterns. Changes in diet and eating patterns, in particular, coupled with irregular light-dark (LD) cycles will further induce circadian misalignment and lead to disease. Emerging data has highlighted the regulatory effects of diet and eating patterns on the host-microbe interactions with the circadian clock (CC), immunity, and metabolism. Herein, we studied how LD cycles regulate the homeostatic crosstalk among the gut microbiome (GM), hypothalamic and hepatic CC oscillations, and immunity and metabolism using multiomics approaches. Our data demonstrated that central CC oscillations lost rhythmicity under irregular LD cycles, but LD cycles had minimal effects on diurnal expression of peripheral CC genes in the liver including Bmal1. We further demonstrated that the GM could regulate hepatic circadian rhythms under irregular LD cycles, the candidate bacteria including Limosilactobacillus, Actinomyces, Veillonella, Prevotella, Campylobacter, Faecalibacterium, Kingella, and Clostridia vadinBB60 et al. A comparative transcriptomic study of innate immune genes indicated that different LD cycles had varying effects on immune functions, while irregular LD cycles had greater impacts on hepatic innate immune functions than those in the hypothalamus. Extreme LD cycle alterations (LD0/24 and LD24/0) had worse impacts than slight alterations (LD8/16 and LD16/8), and led to gut dysbiosis in mice receiving antibiotics. Metabolome data also demonstrated that hepatic tryptophan metabolism mediated the homeostatic crosstalk among GM-liver-brain axis in response to different LD cycles. These research findings highlighted that GM could regulate immune and metabolic disorders induced by circadian dysregulation. Further, the data provided potential targets for developing probiotics for individuals with circadian disruption such as shift workers.


Asunto(s)
Relojes Circadianos , Microbioma Gastrointestinal , Melatonina , Animales , Ratones , Fotoperiodo , Relojes Circadianos/fisiología , Multiómica , Melatonina/metabolismo , Ritmo Circadiano/fisiología , Hígado/metabolismo , Hipotálamo/metabolismo
16.
Int J Biol Macromol ; 244: 125306, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37315673

RESUMEN

CD36 functions as a receptor for long-chain fatty acids, promoting the absorption and transport of long-chain unsaturated fatty acids. However, the regulatory influence of upstream circRNAs or miRNAs on its expression in cow mammary gland remains unclear. Herein, we performed high-throughput sequencing to screen for differentially expressed miRNAs and mRNAs in bovine mammary tissue during the late-lactation and the dry period to screen and conducted bioinformatics analysis to identify 420 miRNA/mRNA pairs, including miR-145/CD36. Experimental results indicate that miR-145 can directly target CD36 and inhibit its expression. Additionally, the circRNA-02191 sequence is predicted to contain a miR-145 binding site. As shown by dual luciferase reporter system detection, circRNA-02191 bound to miR-145 and its overexpression significantly reduced the expression of miR-145. Furthermore, the overexpression of miR-145 inhibited triglyceride accumulation, while circRNA-02191 enhanced the expression of the miR-145 target gene CD36. The above results indicate that circRNA-02191 can regulate triglyceride and fatty acid components by binding miR-145 and subsequently alleviating the inhibitory effect of miR-145 on the expression of CD36. Taken together, these findings present a novel approach to improve milk quality by analyzing the regulatory effect and mechanism regulating the circ02191/miR-145/CD36 pathway on fatty acid synthesis in the mammary gland of dairy cows.


Asunto(s)
MicroARNs , ARN Circular , Femenino , Bovinos , Animales , ARN Circular/genética , MicroARNs/genética , MicroARNs/metabolismo , Ácidos Grasos/metabolismo , Triglicéridos/metabolismo , ARN Mensajero/metabolismo , Ácidos Grasos Insaturados
17.
Front Plant Sci ; 14: 1138700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063225

RESUMEN

Broccoli is a nutritious vegetable. It is high in protein, minerals, and vitamins. Also, it possesses antioxidant activities and is beneficial to the human body. Due to its active effect, broccoli is widely accepted by people in daily life. However, in terms of current utilization, only its florets are consumed as vegetables, while more than half of its stalks and leaves are not utilized. The stalks and leaves contain not only nutrients but also bioactive substances with physiologically regulating properties. Therefore research into the action and mechanism of its bioactive substances as well as its development and utilization technology will make contributions to the further promotion of its resource development and utilization. As a theoretical foundation for the resource utilization of broccoli stalks and leaves, this report will review the distribution and consumption of broccoli germplasm resources, the mechanism of action of bioactive substances, and innovative methods for their exploitation.

18.
Environ Int ; 173: 107806, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36841186

RESUMEN

Bisphenol A (BPA)-induced oxidative stress (OS) and its potentially associated autophagy and apoptosis have not been studied previously in pregnant ewes. Accordingly, this study investigated the underlying mechanisms of BPA-induced autophagy and apoptosis in the placenta and primary trophoblasts of pregnant ewes exposed to BPA both in vivo and in vitro. In vivo experiment, pregnant Hu ewes (n = 8) were exposed to 5 mg/kg/d of BPA compared to control ewes (n = 8) receiving only corn oil from day 40 through day 110 of gestation. Exposure to BPA during gestation resulted in placental insufficiency, fetal growth restriction (FGR), autophagy, endoplasmic reticulum stress (ERS), mitochondrial dysfunction, OS, and apoptosis in type A placentomes. Regarding in vitro model, primary ovine trophoblasts were exposed to BPA, BPA plus chloroquine (CQ; an autophagy inhibitor) or BPA plus rapamycin (RAP; an autophagy activator) for 12 h. Data illustrated that exposure to BPA enhanced autophagy (ULK1, Beclin-1, LC3, Parkin, and PINK1), ERS (GRP78, CHOP10, ATF4, and ATF6) and apoptosis (Caspase 3, Bcl-2, Bax, P53) but decreased the antioxidant (CAT, Nrf2, HO-1, and NQO1)-related mRNA and protein expressions as well as impaired the mitochondrial function. Moreover, treatment with CQ exacerbated the BPA-mediated OS, mitochondrial dysfunction, apoptosis, and ERS. On the contrary, RAP treatment counteracted the BPA-induced trophoblast dysfunctions mentioned above. Overall, the findings illustrated that BPA exposure could contribute to autophagy in the ovine placenta and trophoblasts and that autophagy, in turn, could alleviate BPA-induced apoptosis, mitochondrial dysfunction, ERS, and OS. These results offer new mechanistic insights into the role of autophagy in mitigating BPA-induced placental dysfunctions and FGR.


Asunto(s)
Retardo del Crecimiento Fetal , Placenta , Humanos , Animales , Embarazo , Ovinos , Femenino , Placenta/metabolismo , Retardo del Crecimiento Fetal/inducido químicamente , Apoptosis , Estrés Oxidativo , Autofagia
19.
Antioxidants (Basel) ; 12(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36830017

RESUMEN

This study determined the effect of temperament on antioxidant capacity and the relationship between antioxidant capacity and the contents of amino acids (AA) and fatty acids (FA) in muscle of Hu sheep. Organ and muscle samples of five calm and five nervous Hu sheep were collected to determine the antioxidant capacity and the contents of AA and FA in muscle tissue. The concentrations of malondialdehyde (MDA) and superoxide excretion enzyme (SOD) in muscle and intestinal tissue of calm Hu sheep were lower than those of nervous Hu sheep (p < 0.01), and the activity of glutathione peroxidase (GSH-Px) in liver of calm Hu sheep was significantly higher than that of nervous Hu sheep (p = 0.050). The content of AA of calm Hu sheep was higher than that of nervous Hu sheep, especially the content of reductive amino acids, which was significantly higher than that of nervous Hu sheep (p = 0.029). Fatty acid content of nervous Hu sheep was higher than that of calm type, and saturated fatty acid content was significantly higher than that of calm type (p = 0.001). The SOD content in muscle tissue was positively correlated with the contents of aspartic acid (Asp), alanine (Ala) and lysine (Lys). Catalase (CAT) activity was positively correlated with Ala content. There was a significant positive correlation between total antioxidants (T-AOC) and glutamate (Glu) (p < 0.05). MDA concentration was positively correlated with lauric acid (C12:0), triseconic acid (C13:0), myristic acid (C14:0) content (p < 0.01), and ginkgo acid (C15:0) content. The total antioxidants (T-AOC) was negatively correlated with stearic acid (C18:0) (p < 0.05). Our conclusion is that the antioxidant capacity of calm Hu sheep is superior to that of nervous Hu sheep, which may be due to the higher AA (especially reductive amino acids (Arg, Lys, Ala and Glu)) content in the muscle and the lower FA (especially SFA) content, which improve the antioxidant capacity of the organism and allow for further exploration of the mechanisms by which animal temperament affects antioxidant performance.

20.
Comput Commun ; 199: 168-176, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36589785

RESUMEN

In the absence of effective treatment for COVID-19, disease prevention and control have become a top priority across the world. However, the general lack of effective cooperation between communities makes it difficult to suppress the community spread of the global pandemic; hence repeated outbreaks of COVID-19 have become the norm. To address this problem, this paper considers community cooperation in disease monitoring and designs a joint epidemic monitoring mechanism, in which adjacent communities cooperate to enhance their monitoring capability. In this work, we formulate the epidemiological monitoring process as a coalitional game. Then, we propose a Shapley value-based payoffs distribution scheme for the coalitional game. A comprehensive analytical framework is developed to evaluate the advantages and sustainability of the cooperation between communities. Experimental results show that the proposed mechanism performs much better than the conventional non-cooperative monitoring design and can greatly increase each community's payoffs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA