Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Nat Commun ; 15(1): 5913, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003260

RESUMEN

Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO2 on quaternized CNF allows efficient CO2 capture at low concentrations, thus enabling the CO2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 µmol g-1 h-1. This technique provides a solution for reducing airborne CO2 emissions while advancing chemical sustainability strategy.

2.
IEEE J Biomed Health Inform ; 28(7): 3997-4009, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954559

RESUMEN

Magnetic resonance imaging (MRI)-based deep neural networks (DNN) have been widely developed to perform prostate cancer (PCa) classification. However, in real-world clinical situations, prostate MRIs can be easily impacted by rectal artifacts, which have been found to lead to incorrect PCa classification. Existing DNN-based methods typically do not consider the interference of rectal artifacts on PCa classification, and do not design specific strategy to address this problem. In this study, we proposed a novel Targeted adversarial training with Proprietary Adversarial Samples (TPAS) strategy to defend the PCa classification model against the influence of rectal artifacts. Specifically, based on clinical prior knowledge, we generated proprietary adversarial samples with rectal artifact-pattern adversarial noise, which can severely mislead PCa classification models optimized by the ordinary training strategy. We then jointly exploited the generated proprietary adversarial samples and original samples to train the models. To demonstrate the effectiveness of our strategy, we conducted analytical experiments on multiple PCa classification models. Compared with ordinary training strategy, TPAS can effectively improve the single- and multi-parametric PCa classification at patient, slice and lesion level, and bring substantial gains to recent advanced models. In conclusion, TPAS strategy can be identified as a valuable way to mitigate the influence of rectal artifacts on deep learning models for PCa classification.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Neoplasias de la Próstata , Recto , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Recto/diagnóstico por imagen , Redes Neurales de la Computación , Interpretación de Imagen Asistida por Computador/métodos , Aprendizaje Profundo
3.
Sci Rep ; 14(1): 15693, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977834

RESUMEN

To mitigate the decrease in mechanical performance of Sn58Bi/Cu solder joints resulting from electromigration-induced damage. The CeO2 nanoparticles were incorporated into Sn58Bi solder by a melt-casting method, and their effects on the microstructure and properties of Sn58Bi/Cu solder joints under electromigration were investigated. The study results demonstrate that the addition of 0.125 ~ 0.5 wt% CeO2 nanoparticles refines the eutectic microstructure of Sn58Bi solder alloy. At an addition amount of 0.5 wt%, the composite solder alloy exhibits the maximum tensile strength of 68.9 MPa, which is 37% higher than that of the base solder. CeO2 nanoparticle-reinforced Sn58Bi solder can achieve excellent solderbility with Cu substrates and the joints can significantly inhibit the growth of the anodic Bi-rich layer, which is responsible for electromigration. With the extension of current stressing time, Bi-rich and Sn-rich layer are respectively formed on the anode and cathode in the joints. The intermetallic compound (IMC) layer grows asymmetrically, transitioning from a fan-shaped morphology to a flattened structure at the anode and to a thickened mountain-like morphology at the cathode. Adding the CeO2 nanoparticles helps to mitigate the decrease in mechanical performance caused by electromigration damage during current application to some extent. Over the current stressing period of 288 ~ 480 h, the fracture position shifts from the anodic IMC/Bi-rich interface to the cathodic Sn-rich/IMC interface. The fracture mechanism transitions from a brittle fracture characterized by plate-like cleavage to a ductile-brittle mixed fracture with fine dimples and cleavage.

4.
Adv Healthc Mater ; : e2401743, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39015058

RESUMEN

The transformation of monotherapy into multimodal combined targeted therapy to fully exploit synergistic efficacy is of increasing interest in tumor treatment. In this work, a novel nanodrug-carrying platform based on iron-based MOFs, which is loaded with doxorubicin hydrochloride (DOX), dihydroartemisinin (DHA), and glucose oxidase (GOx), and concurrently covalently linked to the photosensitizer 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) in polydopamine (PDA)-encapsulated MIL-101(Fe) (denoted as MIL-101(Fe)-DOX-DHA@TCPP/GOx@PDA, MDDTG@P), is successfully developed. Upon entering the tumor microenvironment, MDDTG@P catalyzes the hydrogen peroxide (H2O2) into hydroxyl radicals (·OH) and depletes glutathione (GSH); thus, exerting the role of chemodynamic therapy (CDT). The reduced Fe2+ can also activate DHA, further expanding CDT and promoting tumor cell apoptosis. The introduced GOx will rapidly consume glucose and oxygen (O2) in the tumor; while, replenishing H2O2 for Fenton reaction, starving the cancer cells; and thus, realizing starvation and chemodynamic therapy. In addition, the covalent linkage of TCPP endows MDDTG@P with good photodynamic therapeutic (PDT) properties. Therefore, this study develops a nanocarrier platform for triple synergistic chemodynamic/photodynamic/starvation therapy, which has promising applications in the efficient treatment of tumors.

5.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931479

RESUMEN

Efforts have been made to improve the therapeutic efficiency of tumor treatments, and metal-organic frameworks (MOFs) have shown excellent potential in tumor therapy. Monotherapy for the treatment of tumors has limited effects due to the limitation of response conditions and inevitable multidrug resistance, which seriously affect the clinical therapeutic effect. In this study, we chose to construct a multiple cascade synergistic tumor drug delivery system MIL-101(Fe)-DOX-TCPP-MnO2@PDA-Ag (MDTM@P-Ag) using MOFs as drug carriers. Under near-infrared (NIR) laser irradiation, 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) and Ag NPs loaded on MDTM@P-Ag can be activated to generate cytotoxic reactive oxygen species (ROS) and achieve photothermal conversion, thus effectively inducing the apoptosis of tumor cells and achieving a combined photodynamic/photothermal therapy. Once released at the tumor site, manganese dioxide (MnO2) can catalyze the decomposition of hydrogen peroxide (H2O2) in the acidic microenvironment of the tumor to generate oxygen (O2) and alleviate the hypoxic environment of the tumor. Fe3+/Mn2+ will mediate a Fenton/Fenton-like reaction to generate cytotoxic hydroxyl radicals (·OH), while depleting the high concentration of glutathione (GSH) in the tumor, thus enhancing the chemodynamic therapeutic effect. The successful preparation of the tumor drug delivery system and its good synergistic chemodynamic/photodynamic/photothermal therapeutic effect in tumor treatment can be demonstrated by the experimental results of material characterization, performance testing and in vitro experiments.

6.
Adv Sci (Weinh) ; : e2403391, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925593

RESUMEN

The development of lithium-sulfur (Li─S) batteries has been hampered by the shuttling effect of lithium polysulfides (LiPSs). An effective method to address this issue is to use an electrocatalyst to accelerate the catalytic conversion of LiPSs. In this study, heterogeneous MnP-MnO2 nanoparticles are uniformly synthesized and embedded in porous carbon (MnP-MnO2/C) as core catalysts to improve the reaction kinetics of LiPSs. In situ characterization and density functional theory (DFT) calculations confirm that the MnP-MnO2 heterostructure undergo surface sulfidation during the charge/discharge process, forming the MnS2 phase. Surface sulfidation of the MnP-MnO2 heterostructure catalyst significantly accelerated the SRR and Li2S activation, effectively inhibiting the LiPSs shuttling effect. Consequently, the MnP-MnO2/C@S cathode achieves outstanding rate performance (10 C, 500 mAh g-1) and ultrahigh cycling stability (0.017% decay rate per cycle for 2000 cycles at 5 C). A pouch cell with MnP-MnO2/C@S cathode delivers a high energy density of 429 Wh kg-1. This study may provide a new approach to investigating the surface sulfidation of electrocatalysts, which is valuable for advancing high-energy-density Li-S batteries.

7.
IEEE Trans Image Process ; 33: 3880-3892, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38900620

RESUMEN

Visible infrared person re-identification (VI-ReID) exposes considerable challenges because of the modality gaps between the person images captured by daytime visible cameras and nighttime infrared cameras. Several fully-supervised VI-ReID methods have improved the performance with extensive labeled heterogeneous images. However, the identity of the person is difficult to obtain in real-world situations, especially at night. Limited known identities and large modality discrepancies impede the effectiveness of the model to a great extent. In this paper, we propose a novel Semi-Supervised Learning framework with Heterogeneous Distribution Consistency (HDC-SSL) for VI-ReID. Specifically, through investigating the confidence distribution of heterogeneous images, we introduce a Gaussian Mixture Model-based Pseudo Labeling (GMM-PL) method, which adaptively adjusts different thresholds for each modality to label the identity. Moreover, to facilitate the representation learning of unutilized data whose prediction is lower than the threshold, Modality Consistency Regularization (MCR) is proposed to ensure the prediction consistency of the cross-modality pedestrian images and handle the modality variance. Extensive experiments with different label settings on two VI-ReID datasets demonstrate the effectiveness of our method. Particularly, HDC-SSL achieves competitive performance with state-of-the-art fully-supervised VI-ReID methods on RegDB dataset with only 1 visible label and 1 infrared label per class.

8.
Int J Biol Macromol ; 269(Pt 2): 132207, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723823

RESUMEN

To overcome the low efficacy of sonodynamic therapy (SDT) caused by hypoxia in the tumor microenvironment, we developed a multiple anti-tumor nanoplatform with synergistic SDT, photothermal therapy (PTT), and ferroptosis effects. PCN-224@FcCaO2/Mn/dihydroartemisinin/imiquimod/PDA (PFC) was prepared by modified with dihydroartemisinin (DHA), imiquimod (R837), CaO2, ferrocene (Fc) and Mn2+ on the PCN-224 (Cu) to achieve self-replenishment of H2O2/O2 and GSH consumption. FcCaO2 decomposed into H2O2 in the tumor microenvironment, triggering the Fenton effect to produce OH, and Cu2+ reduced the potential loss of OH by the depletion of GSH. Under ultrasonic (US) and laser irradiation, PFC exhibits exciting PTT and SDT effects from polydopamine (PDA) and PCN-224. Mn2+ not only promoted the reaction of H2O2 to produce O2 to effectively enhance SDT but also induced tumor cell apoptosis by Mn2+ combined with DHA. PFC induced ferroptosis via Fe interaction with DHA to produce ROS and reduce the expression of GPX4. The released R837 and tumor-associated antigens from SDT/PTT can produce damage associated molecular patterns (DAMPs), which can initiate adaptive immune responses to kill cancer cells, and released again to promote the tumor immune cycle. What's more, SDT/PTT and ferroptosis combined with aPD-L1 can effectively suppress both primary and distant tumor growth.


Asunto(s)
Indoles , Estructuras Metalorgánicas , Terapia Fototérmica , Polímeros , Indoles/química , Indoles/farmacología , Polímeros/química , Polímeros/farmacología , Humanos , Animales , Ratones , Terapia Fototérmica/métodos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Línea Celular Tumoral , Nanopartículas/química , Apoptosis/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Terapia Combinada , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/química , Peróxido de Hidrógeno/farmacología , Imiquimod/farmacología , Metalocenos/química , Metalocenos/farmacología
9.
J Hazard Mater ; 471: 134431, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691936

RESUMEN

To promote the environmentally friendly and sustainable development of nuclear energy, it is imperative to address the treatment of wastewater generated by the nuclear industry. This necessitates the enhancement of fission product reclamation efficiency post-treatment. This study aims to combine defect control and confined self-assembly strategies for the precise design of interlayer spacing (14.6 Å to 15.1 Å), leading to the fabrication of conditional natroxalate-functionalized vanadosilicate, and its potential application in the efficient adsorption and reclamation of 90Sr. Na0.03Natroxalate2.47Si1.44Nb0.08V1.92O5·1.2 H2O (Nb4-NxSiVO), with a layer spacing of 14.9 Å, exhibits the highest Sr(II) adsorption capacity (248.76 mg/g), enabling effective separation with Cs+. The natroxalate embedded within the confined interlayers demonstrates excellent stability, offering rapid (within 10 min) and stable adsorption sites for Sr(II). Furthermore, Nb4-NxSiVO exhibits a wide band gap and exceptional thermal stability before and after adsorption, rendering hard desorption of 90Sr. The findings highlight the potential of Nb4-NxSiVO as a promising adsorbent for rapid and selective purification of 90Sr-containing wastewater and further application in nuclear batteries.

10.
Foods ; 13(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38790786

RESUMEN

Chickpea has significant benefits as an adjuvant treatment for type 2 diabetes mellitus (T2DM). The properties of chickpea resistant starches (RSs) and their abilities to reduce T2DM symptoms and control intestinal flora were investigated. The RS content in citrate-esterified starch (CCS; 74.18%) was greater than that in pullulanase-modified starch (enzymatically debranched starch (EDS); 38.87%). Compared with those of native chickpea starch, there were noticeable changes in the granular structure and morphology of the two modified starches. The CCS showed surface cracking and aggregation. The EDS particles exhibited irregular layered structures. The expansion force of the modified starches decreased. The CCS and EDS could successfully lower blood glucose, regulate lipid metabolism, lower the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), reduce the expressions of interleukin-6 (IL-6) and interleuki n-10 (IL-10), and decrease diabetes-related liver damage. Moreover, the CCS and EDS altered the intestinal flora makeup in mice with T2DM. The abundance of Bacteroidota increased. Both types of chickpea RSs exhibited significant hypoglycaemic and hypolipidaemic effects, contributing to the reduction in inflammatory levels and the improvement in gut microbiota balance.

11.
Spine J ; 24(8): 1407-1415, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38631491

RESUMEN

BACKGROUND CONTEXT: Vertebral endplate defects are often implicated in degenerative disc disorders, yet their connection to patient-reported symptoms remains unclear. COX-2 and PGE-2 are known for their roles in inflammation and pain, with EP-4 receptor involvement in pain signaling. Examining their expression in vertebral endplate tissues may provide insights into pathomechanism of low back pain. PURPOSE: To investigate the association between endplate defects and patient-reported symptoms and to further clarify the role of the COX-2/PGE-2/EP-4 axis in the pathogenesis of chronic low back pain. STUDY DESIGN/SETTING: Retrospective study. PATIENT SAMPLE: A total of 71 patients who had undergone single-level L4/5 or L5/S1 modified laminectomy decompression preserving proximal upper laminae and transforaminal lumbar interbody fusion surgery were included in this study, including 18 patients diagnosed with lumbar disc herniation, 19 with lumbar disc herniation accompanied by degenerative lumbar spinal stenosis, and 34 with degenerative spondylolisthesis. OUTCOME MEASURES: Demographic data, Pfirrmann grade, Modic changes, endplate defect score, visual analog scale (VAS) for back and leg pain, and Oswestry Disability Index (ODI) before surgery, 3-month and 6-month follow-up, and the percentage of immune-positive cells (COX-2, PGE-2, and EP-4) in endplate tissue sections. METHODS: Patients were divided into defect and nondefect groups according to endplate morphology on lumbar MR. All intraoperative endplate specimens were immediately fixed in 10% formaldehyde, and then embedded in paraffin 3 days later for tissue sections. The outcome measures were compared between the defect group and nondefect group. Data were analyzed using independent t-tests and χ² tests. Pearson's rank correlation test was used to assess correlations between patient-reported symptoms and the percentage of immune-positive cells in the groups. Multivariable logistic regression models using the forward stepwise likelihood ratio method were used to identify the factors that were independently associated with endplate defects. RESULTS: The age of Defect group was significantly higher than that of nondefect group (52.5±7.7 vs 57.2±9.1. p=.024). There were no significant differences in gender, diagnosis, BMI, comorbidities, or surgical level between the two groups. Modic changes (Type Ⅱ/Type Ⅲ) were more common in patients of Defect group than nondefect group (38.5% vs 11.1%, p<.001), and so was disc degeneration (Pfirrmann grade Ⅳ/Ⅴ) (69.2% vs 33.3%, p<.001). Defect group had significantly higher VAS-Back (6.5±2.0 vs 4.9±1.6, p<.001) and ODI scores (62.9±10.7 vs 45.2±14.8, p<.001) than nondefect group, while there was no significant differences between the two groups during the 3 and 6-month follow-up after surgery. Histologically, Defect group was characterized by upregulation of COX-2, PGE-2, and EP-4 in endplate tissue sections. Both in defect and nondefect groups, VAS-Back showed moderate positive correlations with the expressions of COX-2 (r=0.643; r=0.558, p both<.001), PGE-2 (r=0.611; r=0.640, p both<.001), and EP-4 (r=0.643; r=0.563, p both<.001). Multivariate regression analyses reveled that percentage of COX-2-positive cells was associated with endplate defects (OR=1.509, 95%CI [1.048-2.171], p=.027), as well as percentage of PGE-2-positive (OR=1.291, 95%CI [1.106-1.508], p=.001) and EP-4-positive cells (OR=1.284, 95%CI [1.048∼2.171], p=.003). CONCLUSIONS: Patients with endplate defects had worse quality of life, more severe disc degeneration and Modic changes, and up-regulated COX-2/PGE-2/EP-4 axis expression in cartilage endplates in patients with defected endplates. Inflammatory factors may significantly contribute to the onset and progression of chronic low back pain in patients with endplate defects, consequently impacting patient-reported symptoms.


Asunto(s)
Ciclooxigenasa 2 , Dinoprostona , Dolor de la Región Lumbar , Vértebras Lumbares , Subtipo EP4 de Receptores de Prostaglandina E , Humanos , Masculino , Femenino , Persona de Mediana Edad , Ciclooxigenasa 2/metabolismo , Vértebras Lumbares/cirugía , Dolor de la Región Lumbar/patología , Anciano , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Estudios Retrospectivos , Dinoprostona/metabolismo , Adulto , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/cirugía , Desplazamiento del Disco Intervertebral/metabolismo , Desplazamiento del Disco Intervertebral/cirugía , Desplazamiento del Disco Intervertebral/patología , Estenosis Espinal/cirugía , Estenosis Espinal/patología , Fusión Vertebral , Espondilolistesis/cirugía , Espondilolistesis/patología , Medición de Resultados Informados por el Paciente , Inmunohistoquímica
12.
Heliyon ; 10(7): e28400, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560269

RESUMEN

Type 2 diabetes mellitus (T2DM) is a serious metabolic disease characterized by insulin resistance and reduced insulin production, which causes abnormally elevated blood glucose. It has been reported that T2DM can enhance oxidative stress and inflammatory responses, and stimulate a variety of complications including liver injury. Studies have shown that taurine has antioxidant and anti-inflammatory effects that can not only ameliorate diabetes but also alleviate liver injury caused by various diseases. However, its effect on liver injury in T2DM is not clear. In our study, a high-fat diet and intraperitoneal injection of streptozotocin (STZ) was used to induce liver injury in T2DM rats, and taurine was given as a treatment. Through the use of HE staining on paraffin sections, ELISA, and qRT-PCR, the effects of taurine on liver pathological alterations, antioxidant capacity, and inflammatory response were investigated. We found that: hepatic transaminase levels of rats were reduced significantly following taurine administration; histopathological observations revealed that the morphology of rat hepatocytes was close to normal, and the number of inflammatory cells around liver vessels was significantly reduced; antioxidant-related indicators were significantly increased, including SOD, CAT, GSH-Px and T-AOC, while related factors of the Nrf2 signalling pathway and its downstream HO-1, NQO1 and γ-GCS were significantly increased; the expression of the JAK2-STAT1 signalling pathway, TLR4/NF-κB signalling pathway and NLRP3 inflammatory vesicle-related factors were significantly reduced. Our results suggest taurine can alleviate T2DM-induced liver injury by improving the antioxidant capacity of the liver and inhibiting macrophage M1-type polarization and the inflammatory response mediated thereby.

13.
iScience ; 27(4): 109535, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38617562

RESUMEN

Electrochromic (EC) glazing has garnered significant attention recently as a crucial solution for enhancing energy efficiency in future construction and automotive sectors. EC glazing could significantly reduce the energy usage of buildings compared to traditional blinds and glazing. Despite their commercial availability, several challenges remain, including issues with switching time, leakage of electrolytes, production costs, etc. Consequently, these areas demand more attention and further studies. Among inorganic-based EC materials, tungsten oxide nanostructures are essential due to its outstanding advantages such as low voltage demand, high coloration coefficient, large optical modulation range, and stability. This review will summarize the principal design and mechanism of EC device fabrication. It will highlight the current gaps in understanding the mechanism of EC theory, discuss the progress in material development for EC glazing, including various solutions for improving EC materials, and finally, introduce the latest advancements in photo-EC devices that integrate photovoltaic and EC technologies.

14.
RSC Adv ; 14(20): 13719-13733, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38681837

RESUMEN

Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag-Ti3C2Tx composites were made using a self-reduction technique, and unique Ag-Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electrostatic self-assembly process. The photocatalyst's close-contact heterogeneous interface increases photogenerated carrier migration efficiency. The combination of Ti3C2Tx and Ag improves the adsorption active sites and reaction centers for ZnO, making it a key site for CO2 adsorption and activation. The best photocatalysts had CO and CH4 reduction efficiencies of 11.985 and 0.768 µmol g-1 h-1, respectively. The CO2 conversion was 3.35 times better than that of pure ZnO, which demonstrated remarkable stability even after four cycle trials with no sacrificial agent. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) and valence band spectroscopy were utilized to propose the photocatalytic reaction mechanism and electron transfer channels of the Ag-Ti3C2Tx/ZnO system, confirming that CHO* and CO* are the important intermediates in the generation of CH4 and CO. This study introduces a novel method for the development of new and efficient photocatalysts and reveals that Ti3C2Tx MXene is a viable co-catalyst for applications.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38606720

RESUMEN

Surface engineering is one of the important strategies to enhance the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). Herein, 2-chloro-1,3-dimethylimidazolidinium hexafluorophosphate (CIP) was introduced into PSCs to passivate the defects of the perovskite films. There are many F atoms in CIP molecules that have strong electronegativity and hydrophobicity. F groups can interact with Pb2+ defects, inhibit interface recombination, improve the interaction between the CIP ionic liquid and perovskite film, and reduce the defect density of perovskites, thus improving the stability of perovskite devices. Density functional theory calculation reveals that CIP can interact with uncoordinated Pb2+ in perovskites through coordination, reduce the defects of perovskite films, and inhibit nonradiation recombination. The ITO/SnO2/MAPbI3/CIP/carbon devices without hole transport layers possessed the highest PCE of 17.06%. Moreover, the unencapsulated device remains at 98.18% of the initial efficiency stored in 30-40% relative humidity for 850 h. This strategy provides an effective reference for enhancing the performance of PSCs.

16.
Heliyon ; 10(7): e28593, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38576586

RESUMEN

Background: Family involvement and comfort are equally important in palliative care. Dignity undertook a new meaning and novel challenges as a result of restrictions on visits and companionship during the pandemic. Family-centered family dignity interventions have been shown to be effective in increasing patients' sense of dignity, increasing levels of hope, and reducing psychological distress; however, the effectiveness in enhancing family adaptability and intimacy in the survivor-caregiver binary and reducing expected grief have been inconclusive. Objectives: The primary objective of this study was to assess the efficacy of family dignity interventions on family adaptability and cohesion. The secondary objective was to explore the effects of the interventions on anticipatory grief and psychological distress, and the lasting effect 1 month after the intervention. Design: A single-blinded, two-arm parallel group, randomized controlled trial was conducted in China. Settings: and methods: Ninety-eight dyads who met the inclusion criteria were randomly assigned to the family dignity intervention (n = 51) or standard palliative care group (n = 47) between June and August 2022. Study outcomes were measured at baseline, immediately post-intervention, and at the 1-month follow-up post-intervention evaluation. Data were analyzed using the Kolmogorov-Smirnov test, chi-square test, Fisher's exact test, independent sample t-test, Wilcoxon rank-sum test, and generalized estimation equations. The Intention-To-Treat analysis was performed for all available data. Results: In comparison to the control group, significant improvements in family adaptability and cohesion and anticipatory grief over post-intervention and 1-month follow-up were demonstrated among the patients in the intervention group. The intervention group of caregivers had significant improvement in anticipatory grief at post-intervention and 1-month follow-up. The level of psychological distress was significantly lower in the intervention group than the control group (p < 0.05) at 1-month follow-up but the differences were not statistically significant at post-intervention. All outcomes showed clear differences from baseline after the intervention and at the 1-month follow-up evaluation but not between post-intervention and at the 1-month follow-up evaluation. Conclusion: This study further verifies the actual effect of family dignity intervention program through randomized controlled trials, and provides a reference for improving the family relationship between advanced cancer patients and their family caregivers, and improving their mental health. The addition of family dignity intervention to standard palliative care greatly increased the adaptability and cohesion between survivors and their families, lessened the anticipatory grief of the survivor-caregiver pair, and relieved caregivers' anxiety and despair. We did not detect a statistically significant difference between post-intervention and the 1-month follow-up evaluation, suggesting that the intervention may have a durable impact at least 1 month.

17.
Int J Biol Macromol ; 268(Pt 2): 131868, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677690

RESUMEN

Phenotype transformation of vascular smooth muscle cells (VSMCs) plays an important role in the development of atherosclerosis. Asprosin is a newly discovered adipokine, which is critical in regulating metabolism. However, the relationship between asprosin and phenotype transformation of VSMCs in atherosclerosis remains unclear. The aim of this study is to investigate whether asprosin affects the progression of atherosclerosis by inducing phenotype transformation of VSMCs. We established an atherosclerosis model in ApoE-/- mice and administered asprosin recombinant protein and asprosin antibody to mice. Knocking down asprosin was also as an intervention. Interestingly, we found a correlation between asprosin levels and atherosclerosis. Asprosin promoted plaque formation and phenotype transformation of VSMCs. While, AspKD or asprosin antibody reduced the plaque lesion and suppressed vascular stiffness in ApoE-/- mice. Mechanistically, asprosin induced phenotype transformation of MOVAs by binding to GPR54, leading to Gαq/11 recruitment and activation of the PLC-PKC-ERK1/2-STAT3 signaling pathway. Si GPR54 or GPR54 antagonist partially inhibited the action of asprosin in MOVAs. Mutant GPR54-(267, 307) residue cancelled the binding of asprosin and GPR54. In summary, this study confirmed asprosin activated GPR54/Gαq/11-dependent ERK1/2-STAT3 signaling pathway, thereby promoting VSMCs phenotype transformation and aggravating atherosclerosis, thus providing a new target for the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Miocitos del Músculo Liso , Fenotipo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Fibrilina-1/metabolismo , Fibrilina-1/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Masculino , Transducción de Señal , Modelos Animales de Enfermedad , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Ratones Noqueados
18.
Stem Cell Res ; 77: 103397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547668

RESUMEN

Somatostatin (SST)-producing pancreatic delta-cells play an important role in maintaining the balance of insulin and glucagon secretion within the islets. This study aimed to generate a human embryonic stem cell (hESC) line with a SST-P2A-mCherry reporter using CRISPR/Cas9 system. The SST-P2A-mCherry reporter cell line was shown to maintain typical pluripotent characteristics and able to be induced into SST-producing pancreatic delta-cells. The generation of the cell line would provide useful platform for the characterization of stem cell-derived delta-cells, discovery of delta-cell surface markers and investigation of paracrine mechanisms, which will ultimately promote the drug discovery and cell therapy of diabetes mellitus.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Embrionarias Humanas , Humanos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Somatostatina/metabolismo , Línea Celular , Diferenciación Celular , Genes Reporteros
19.
Clin Breast Cancer ; 24(5): e319-e332.e2, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38494415

RESUMEN

OBJECTIVES: To develop predictive nomograms based on clinical and ultrasound features and to improve the clinical strategy for US BI-RADS 4A lesions. METHODS: Patients with US BI-RADS 4A lesions from 3 hospitals between January 2016 and June 2020 were retrospectively included. Clinical and ultrasound features were extracted to establish nomograms CE (based on clinical experience) and DL (based on deep-learning algorithm). The performances of nomograms were evaluated by receiver operator characteristic curves, calibration curves and decision curves. Diagnostic performances with DL of radiologists were analyzed. RESULTS: 1616 patients from 2 hospitals were randomly divided into training and internal validation cohorts at a ratio of 7:3. Hundred patients from another hospital made up external validation cohort. DL achieved more optimized AUCs than CE (internal validation: 0.916 vs. 0.863, P < .01; external validation: 0.884 vs. 0.776, P = .05). The sensitivities of DL were higher than CE (internal validation: 81.03% vs. 72.41%, P = .044; external validation: 93.75% vs. 81.25%, P = .4795) without losing specificity (internal validation: 84.91% vs. 86.47%, P = .353; external validation: 69.14% vs. 71.60%, P = .789). Decision curves indicated DL adds more clinical net benefit. With DL's assistance, both radiologists achieved higher AUCs (0.712 vs. 0.801; 0.547 vs. 0.800), improved specificities (70.93% vs. 74.42%, P < .001; 59.3% vs. 81.4%, P = .004), and decreased unnecessary biopsy rates by 6.7% and 24%. CONCLUSION: DL was developed to discriminate US BI-RADS 4A lesions with a higher diagnostic power and more clinical net benefit than CE. Using DL may guide clinicians to make precise clinical decisions and avoid overtreatment of benign lesions.


Asunto(s)
Neoplasias de la Mama , Redes Neurales de la Computación , Ultrasonografía Mamaria , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico , Estudios Retrospectivos , Persona de Mediana Edad , Ultrasonografía Mamaria/métodos , Adulto , Nomogramas , Anciano , Estudios de Seguimiento , Curva ROC , Mama/diagnóstico por imagen , Mama/patología , Aprendizaje Profundo , Biopsia
20.
Artículo en Inglés | MEDLINE | ID: mdl-38536698

RESUMEN

Face stylization has made notable progress in recent years. However, when training on limited data, the performance of existing approaches significantly declines. Although some studies have attempted to tackle this problem, they either failed to achieve the few-shot setting (less than 10) or can only get suboptimal results. In this article, we propose GAN Prior Distillation (GPD) to enable effective few-shot face stylization. GPD contains two models: a teacher network with GAN Prior and a student network that fulfills end-to-end translation. Specifically, we adapt the teacher network trained on large-scale data in the source domain to the target domain using a handful of samples, where it can learn the target domain's knowledge. Then, we can achieve few-shot augmentation by generating source domain and target domain images simultaneously with the same latent codes. We propose an anchor-based knowledge distillation module that can fully use the difference between the training and the augmented data to distill the knowledge of the teacher network into the student network. The trained student network achieves excellent generalization performance with the absorption of additional knowledge. Qualitative and quantitative experiments demonstrate that our method achieves superior results than state-of-the-art approaches in a few-shot setting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...