Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 107-115, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095149

RESUMEN

The evaluation of toxicity related to polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) is crucial for a comprehensive risk assessment in real-world exposure scenarios. This study employed a controlled feeding experiment to investigate the metabolic effects of dioxin-like compounds (DLCs) on laying hens via feed exposure. Diets enriched with two concentrations (1.17 and 5.13 pg toxic equivalents (TEQ)/g dry weight (dw)) were administered over 14 days, followed by 28 days of clean feed. Metabolomics analyses of blood samples revealed significant metabolic variations between PCDD/Fs and DL-PCBs exposed groups and controls, reflecting the induced metabolic disruption. Distinct changes were observed in sphingosine, palmitoleic acid, linoleate, linolenic acid, taurocholic acid, indole acrylic acid, and dibutyl phthalate levels, implying possible connections between PCDD/Fs and DL-PCBs toxic effects and energy-neuronal imbalances, along with lipid accumulation and anomalous amino acid metabolism, impacting taurine metabolism. Moreover, we identified three differential endogenous metabolites-L-tryptophan, indole-3-acetaldehyde, and indole acrylic acid-as potential ligands for the aryl hydrocarbon receptor (AhR), suggesting their role in mediating PCDD/Fs and DL-PCBs toxicity. This comprehensive investigation provides novel insights into the metabolic alterations induced by PCDD/Fs and DL-PCBs in laying hens, thereby enhancing our ability to assess risks associated with their exposure in human populations.


Asunto(s)
Pollos , Animales , Dioxinas y Compuestos Similares a la Dioxina/metabolismo , Dioxinas y Compuestos Similares a la Dioxina/toxicidad , Femenino , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Bifenilos Policlorados/toxicidad , Metabolómica , Metaboloma/efectos de los fármacos , Alimentación Animal/análisis , Dibenzodioxinas Policloradas/toxicidad
2.
Adv Mater ; : e2405233, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091054

RESUMEN

Light-induced ferroelectric polarization in 2D layered ferroelectric materials holds promise in photodetectors with multilevel current and reconfigurable capabilities. However, translating this potential into practical applications for high-density optoelectronic information storage remains challenging. In this work, an α-In2Se3/Te heterojunction design that demonstrates spatially resolved, multilevel, nonvolatile photoresponsivity is presented. Using photocurrent mapping, the spatially localized light-induced poling state (LIPS) is visualized in the junction region. This localized ferroelectric polarization induced by illumination enables the heterojunction to exhibit enhanced photoresponsivity. Unlike previous reports that observe multilevel polarization enhancement in electrical resistance, the device shows nonvolatile photoresponsivity enhancement under illumination. After polarization saturation, the photocurrent increases up to 1000 times, from 10-12 to 10-9 A under the irradiation of a 520 nm laser with a power of 1.69 nW, compared to the initial state in a self-driven mode. The photodetector exhibits high detectivity of 4.6×1010 Jones, with a rise time of 27 µs and a fall time of 28 µs. Furthermore, the device's localized poling characteristics and multilevel photoresponse enable spatially multiplexed optical information storage. These results advance the understanding of LIPS in 2D ferroelectric materials, paving the way for optoelectronic information storage technologies.

3.
Int J Surg ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116453

RESUMEN

IMPORTANCE: Successful needle puncture of the renal collecting system is a critical but difficult procedure in percutaneous nephrolithotomy (PCNL). Although fluoroscopy and ultrasound are the standard imaging techniques to guide puncture during PCNL, both have known limitations. OBJECTIVE: To assess the feasibility and safety of a new navigation system for needle puncture in ultrasound-guided PCNL. DESIGN: This study employed a single-center randomized controlled trial (RCT) design to assess the feasibility and safety of a new navigation system for needle puncture in ultrasound-guided PCNL. Conducted between May 2021 and November 2021, the trial utilized computer-generated random numbers for participant allocation to control for selection bias. SETTING: The trial was executed at the *********, which serves as an academic medical center. PARTICIPANTS: All patients who met the inclusion criteria were randomly divided into two groups, with 29 patients in each group. One group underwent PCNL procedures using the new navigation system, while the control group underwent standard ultrasound-guided PCNL procedures. Included patients had renal pelvis or caliceal calculi larger than 2.0 cm in diameter or had multiple or staghorn stones. The puncture procedure was performed with the support of real-time ultrasound imaging and visual guidance displayed on the screen. MAIN OUTCOMES AND MEASURES: The primary outcome was system feasibility and puncture success rate. Secondary outcomes included puncture time, total surgical time, number of attempts, post-procedure complications, and one-year and three-year stone recurrence rates. Stone clearance was defined by postoperative CT. Descriptive statistics summarized patient demographics, stone size, and location. Independent samples t-tests analyzed puncture time and total surgical time. Chi-square or Fisher's exact tests compared stone clearance, complications, socioeconomic status, renal hydronephrosis, stone location, race, and medical history. Linear regression examined the correlation between BMI and puncture time. Significance was set at P<0.05. RESULTS: For all 58 patients undergoing PCNL, needle punctures of the renal collecting system were completed with a success rate of 100%. The average time from planning the puncture protocol to successful puncture was significantly shorter in the AcuSee guidance system group (3.12 min, range 0.2-6.88 min) compared to the standard ultrasound-guided group (7.58 min, range 5.41-10.68 min), representing a reduction of approximately 59%. The total surgical time was also shorter in the AcuSee group for patients with no and mild hydronephrosis (P<0.05). Complication rates were lower in the AcuSee group, with no major complications observed. However, 3 patients in the standard ultrasound-guided group have adverse effects after the PCNL procedure. The one-year stone recurrence rate was significantly lower in the AcuSee group (3.4%) compared to the standard group (24.1%), and the three-year recurrence rate was also lower (6.9% vs. 41.4%). Patient-specific factors such as BMI, renal morphology, and prior surgical history did not significantly affect the performance of the AcuSee system. CONCLUSIONS AND RELEVANCE: We report the first clinical application of a new navigation system for needle puncture in ultrasound-guided PCNL. It has been demonstrated that it is feasible and safe compared to the standard ultrasound-guided group in percutaneous renal puncture. This technology provides intuitive and easy-to-use visual guidance, which may facilitate safe, accurate and fast needle puncture of the kidney.

4.
Phys Rev Lett ; 133(3): 033202, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39094146

RESUMEN

We conducted a joint theoretical and experimental study to investigate the collisional dissipation of molecular alignment. By comparing experimental measurements to the quantum simulations, the nonsecular effect in the collision dissipation of molecular alignment was unveiled from the gas-density-dependent decay rates of the molecular alignment revival signals. Different from the conventional perspective that the nonsecular collisional effect rapidly fades within the initial few picoseconds following laser excitation, our simulations of the time-dependent decoherence process demonstrated that this effect can last for tens of picoseconds in the low-pressure regime. This extended timescale allows for the distinct identification of the nonsecular effect from molecular alignment signals. Our findings present the pioneering evidence that nonsecular molecular collisional dissipation can endure over an extended temporal span, challenging established concepts and strengthening our understanding of molecular dynamics within dissipative environments.

5.
Opt Lett ; 49(13): 3636-3639, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950228

RESUMEN

We report a 20-W-level acetylene-filled nested hollow-core anti-resonant fiber (nested HC-ARF) amplified spontaneous emission (ASE) source at 3.1 µm. A 1535 nm hundred-watt wavelength tunable single-frequency fiber laser with a high signal-to-noise ratio and narrow linewidth is built for pumping acetylene molecules. Simultaneously, a homemade 120 µm core diameter eight-tube nested HC-ARF is used as a gas chamber to obtain high pump laser coupling efficiency. The mid-infrared (mid-IR) ASE source output power of 21.8 W is achieved at 3.1 µm through the low-pressure acetylene gas-filled nested HC-ARF, and the slope efficiency is 25.1%. In addition, the ASE source features an excellent beam quality of Mx 2 = 1.16 and My 2 = 1.13. To the best of our knowledge, for the first time, it is a record output power for such mid-infrared ASE sources while maintaining excellent beam quality. This work provides a new way to achieve high-power mid-infrared emission.

7.
Commun Biol ; 7(1): 825, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38971878

RESUMEN

Convergent evolution is central in the origins of multicellularity. Identifying the basis for convergent multicellular evolution is challenging because of the diverse evolutionary origins and environments involved. Haploid Kluyveromyces lactis populations evolve multicellularity during selection for increased settling in liquid media. Strong genomic and phenotypic convergence is observed between K. lactis and previously selected S. cerevisiae populations under similar selection, despite their >100-million-year divergence. We find K. lactis multicellularity is conferred by mutations in genes ACE2 or AIM44, with ACE2 being predominant. They are a subset of the six genes involved in the S. cerevisiae multicellularity. Both ACE2 and AIM44 regulate cell division, indicating that the genetic convergence is likely due to conserved cellular replication mechanisms. Complex population dynamics involving multiple ACE2/AIM44 genotypes are found in most K. lactis lineages. The results show common ancestry and natural selection shape convergence while chance and contingency determine the degree of divergence.


Asunto(s)
Kluyveromyces , Kluyveromyces/genética , Kluyveromyces/fisiología , Saccharomyces cerevisiae/genética , Genoma Fúngico , Mutación , Evolución Molecular , Adaptación Fisiológica/genética , Selección Genética , Evolución Biológica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Genómica/métodos
8.
J Sci Food Agric ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007163

RESUMEN

Inflammatory bowel disease (IBD) is one of the most challenging diseases in the 21st century, and more than 10 million people around the world suffer from IBD. Because of the limitations and adverse effects associated with conventional IBD therapies, there has been increased scientific interest in microbial-derived biomolecules, known as postbiotics. Postbiotics are defined as the preparation of inanimate microorganisms and/or their components that confer a health benefit on the host, comprising inactivated microbial cells, cell fractions, metabolites, etc. Postbiotics have shown potential in enhancing IBD treatment by reducing inflammation, modulating the immune system, stabilizing intestinal flora and maintaining the integrity of intestinal barriers. Consequently, they are considered promising adjunctive therapies for IBD. Recent studies indicate that postbiotics offer distinctive advantages, including spanning clinical (safe origin), technological (easy for storage and transportation) and economic (reduced production costs) dimensions, rendering them suitable for widespread applications in functional food/pharmaceutical. This review offers a comprehensive overview of the definition, classification and applications of postbiotics, with an emphasis on their biological activity in both the prevention and treatment of IBD. © 2024 Society of Chemical Industry.

9.
ACS Sens ; 9(8): 4007-4016, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39078621

RESUMEN

Achieving selective detection of ppb-level CO is important for air quality testing at industrial sites to ensure personal safety. Noble metal doping enhances charge transfer, which in turn reduces the detection limit of metal oxide gas sensors. In this work, metal-organic framework-derived Au-doped In2O3 nanotubes with high electrical conductivity are synthesized by pyrolysis of the Au-doped metal-organic framework (In-MIL-68) as a template. Gas-sensing experiments reveal that the detection limit of 0.2% Au-doped In2O3 nanotubes (0.2% Au, mass fraction) is as low as 750 ppb. Meanwhile, the sensing material shows a response value of 18.2 to 50 ppm of CO at 240 °C, which is about 2.8 times higher than that of pure In2O3. Meanwhile, the response and recovery times are short (37 s/86 s). The gas-sensing mechanism of CO is uncovered by in situ DRIFTS through the reaction intermediates. In addition, first-principles calculations suggest that Au doping of In2O3 significantly enhances its adsorption energy for CO and improves the electron transfer properties. This study reveals a novel synthesis pathway for Au-doped In2O3 nanotubular structures and their potential application in low concentration CO detection.


Asunto(s)
Monóxido de Carbono , Oro , Indio , Estructuras Metalorgánicas , Nanotubos , Oro/química , Estructuras Metalorgánicas/química , Nanotubos/química , Indio/química , Monóxido de Carbono/análisis , Límite de Detección
10.
Nat Commun ; 15(1): 6316, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060325

RESUMEN

Cu catalyses electrochemical CO2 reduction to valuable multicarbon products but understanding the structure-function relationship has remained elusive due to the active Cu sites being heterogenized and under dynamic re-construction during electrolysis. We herein coordinate Cu with six phenyl-1H-1,2,3-triazole derivatives to form stable coordination polymer catalysts with homogenized, single-site Cu active sites. Electronic structure modelling, X-ray absorption spectroscopy, and ultraviolet-visible spectroscopy show a widely tuneable Cu electronics by modulating the highest occupied molecular orbital energy of ligands. Using CO diffuse reflectance Fourier transform infrared spectroscopy, in-situ Raman spectroscopy, and density functional theory calculations, we find that the binding strength of *CO intermediate is positively correlated to highest occupied molecular orbital energies of the ligands. As a result, we enable a tuning of C-C coupling efficiency-a parameter we define to evaluate the efficiency of C2 production-in a broad range of 0.26 to 0.86. This work establishes a molecular platform that allows for studying structure-function relationships in CO2 electrolysis and devises new catalyst design strategies appliable to other electrocatalysis.

11.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062812

RESUMEN

Dietary intake of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid, EPA) exerts antiarrhythmic effects, although the mechanisms are poorly understood. Here, we investigated the possible beneficial actions of EPA on saturated fatty acid-induced changes in the L-type Ca2+ channel in cardiomyocytes. Cardiomyocytes were cultured with an oleic acid/palmitic acid mixture (OAPA) in the presence or absence of EPA. Beating rate reduction in cardiomyocytes caused by OAPA were reversed by EPA. EPA also retrieved a reduction in Cav1.2 L-type Ca2+ current, mRNA, and protein caused by OAPA. Immunocytochemical analysis revealed a distinct downregulation of the Cav1.2 channel caused by OAPA with a concomitant decrease in the phosphorylated component of a transcription factor adenosine-3',5'-cyclic monophosphate (cAMP) response element binding protein (CREB) in the nucleus, which were rescued by EPA. A free fatty acid receptor 4 (FFAR4) agonist TUG-891 reversed expression of Cav1.2 and CREB mRNA caused by OAPA, whereas an FFAR4 antagonist AH-7614 abolished the effects of EPA. Excessive reactive oxygen species (ROS) accumulation caused by OAPA decreased Cav1.2 and CREB mRNA expressions, which was reversed by an ROS scavenger. Our data suggest that EPA rescues cellular Cav1.2-Ca2+ channel decline caused by OAPA lipotoxicity and oxidative stresses via both free fatty acid receptor 4-dependent and -independent pathways.


Asunto(s)
Canales de Calcio Tipo L , Ácido Eicosapentaenoico , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ácido Eicosapentaenoico/farmacología , Animales , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Ratas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ácidos Grasos/metabolismo , Transducción de Señal/efectos de los fármacos , Células Cultivadas
12.
ACS Appl Mater Interfaces ; 16(31): 41694-41703, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39073803

RESUMEN

Unidirectional transport of liquids has attracted the attention of researchers in recent years for its wide application foreground. However, it is still a challenge to control the spreading of liquid, especially for oils with relatively high viscosity. In this paper, a flexible surface textured with branch-shaped microstructures is proposed. These asymmetric microstructures exhibit excellent unidirectional spreading behaviors for various oils. By suitably stretching the flexible surface to different stretch ratios, the spreading length of the oil droplets can be controlled. Moreover, the ongoing forward spreading of oil droplets can be suspended dynamically when the surface is stretched to 40%. Corresponding mechanism analysis demonstrates that surface stretching can narrow and close the microvalves between adjacent branches, which restrain the flow of the precursor film and the primary droplet. The switchable unidirectional spreading behavior enables the surface with such microstructures to be used for oil transportation, oil-water separation, and controllable lubrication.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124834, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032231

RESUMEN

Iron ion (Fe3+) detection is crucial for human health since it plays a crucial role in many physiological activities. In this work, a novel Schiff-base functionalized cyanine derivative (CyPy) was synthesized, which was successfully assembled on the surface of upconversion nanoparticles (UCNPs) through an amphiphilic polymer encapsulation method. In the as-designed nanoprobe, CyPy, a recognizer of Fe3+, is served as energy donor and ß-NaYF4:Yb,Er upconversion nanoparticles are adopted as energy acceptor. As a result, a 93-fold enhancement of upconversion luminescence is achieved. The efficient energy transfer from CyPy to ß-NaYF4:Yb,Er endows the nanoprobe a high sensitivity for Fe3+ in water with a low detection limit of 0.21 µM. Moreover, the nanoprobe has been successfully applied for Fe3+ determination in human serum and tap water samples with recovery ranges of 95 %-105 % and 97 %-106 %, respectively. Moreover, their relative standard deviations are all below 3.72 %. This work provides a sensitive and efficient methodology for Fe3+ detection in clinical and environmental testing.

14.
Endocr J ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39034116

RESUMEN

This umbrella review was conducted aiming to assess the association between genetic variations and the development of diabetic retinopathy (DR) by collecting and evaluating available systematic reviews and meta-analysis results. We evaluated the methodological quality using the Measurement Tool to Assess Systematic Reviews (AMSTAR) 2.0, estimated the summary effect size by using the random effects model and calculated the 95% prediction intervals (PIs). Evidence from the included meta-analyses was graded according to established criteria as follows: convincing, highly suggestive, suggestive, weak, or not significant. This umbrella review included 32 meta-analyses of 52 candidate SNPs. The 12 selected meta-analyses were rated as "high," 2 studies were rated as "moderate," 11 studies were graded as "low," and the remaining 7 studies were graded as "critically low" in terms of methodological quality. Carriers of specific genotypes and alleles of the transcription Factor 7-like 2 C/T (TCF7L2 C/T) polymorphism (rs7903146, p < 0.001) might be more susceptible to the occurrence of DR in the homozygous and recessive models, and these associations were supported by "convincing" evidence. Significant associations were also found between interleukin-6 (IL-6) -174 G/C (rs1800795; p < 0.05) or vascular endothelial growth factor (VEGF) polymorphisms (rs2010963, rs699947, rs1570360, rs2010963, rs699947, rs2146323; all p values <0.05) and DR risk, but these associations were supported by "weak" evidence. The TCF7L2 C/T variant could be identified as a definitive genetic risk factor for the development and progression of DR. Data from additional in-depth studies are needed to establish robust evidence for the associations between polymorphisms of IL-6 or VEGF and DR.

15.
ACS Nano ; 18(29): 19099-19109, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39001858

RESUMEN

Polarization plays a paramount role in scaling the optical network capacity. Anisotropic two-dimensional (2D) materials offer opportunities to exploit optical polarization-sensitive responses in various photonic and optoelectronic applications. However, the exploration of optical anisotropy in fiber in-line devices, critical for ultrafast pulse generation and modulation, remains limited. In this study, we present a fiber-integrated device based on a single-crystalline tellurene nanosheet. Benefiting from the chiral-chain crystal lattice and distinct optical dichroism of tellurene, multifunctional optical devices possessing diverse excellent properties can be achieved. By inserting the in-line device into a 1.5 µm fiber laser cavity, we generated both linearly polarized and dual-wavelength mode-locking pulses with a degree of polarization of 98% and exceptional long-term stability. Through a twisted configuration of two tellurene nanosheets, we realized an all-optical switching operation with a fast response. The multifunctional device also serves as a broadband photodetector. Notably, bipolar polarization encoding communication at 1550 nm can be achieved without any external voltage. The device's multifunctionality and stability in ambient environments established a promising prototype for integrating polarization as an additional physical dimension in fiber optical networks, encompassing diverse applications in light generation, modulation, and detection.

16.
Int J Biol Macromol ; 276(Pt 1): 133873, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39013505

RESUMEN

In this study, based on the self-assembly strategy, we fused CipA with carbonyl reductase LXCARS154Y derived from Leifsonia xyli by gene coding, and successfully performed the carrier-free immobilization of LXCARS154Y. The immobilized enzyme was then characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and fourier transform infrared spectroscopy (FTIR). Compared with the free enzyme, the immobilized LXCARS154Y exhibited a 2.3-fold improvement in the catalytic efficiency kcat/km for the synthesis of a chiral pharmaceutical intermediate (R)-3,5-bis(trifluoromethyl)phenyl ethanol ((R)-BTPE) by reducing 3,5-bis(trifluoromethyl)acetophenone (BTAP). Moreover, the immobilized enzyme showed the enhanced stability while maintaining over 61 % relative activity after 18 cycles of batch reaction. Further, when CipA-fused carbonyl reductase was employed for (R)-BTPE production in a continuous flow reaction, almost complete yield (97.0 %) was achieved within 7 h at 2 M (512.3 g/L) of BTAP concentration, with a space-time yield of 1717.1 g·L-1·d-1. Notably, we observed the retention of cofactor NADH by CipA-based enzyme aggregates, resulting in a higher total turnover number (TTN) of 4815 to facilitate this bioreductive process. This research developed a concise strategy for efficient preparation of chiral intermediate with cofactor self-sufficiency via continuous flow biocatalysis, and the relevant mechanism was also explored.


Asunto(s)
Oxidorreductasas de Alcohol , Enzimas Inmovilizadas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Reactores Biológicos , Cinética , Alcoholes/química , Biocatálisis , Coenzimas/química , Coenzimas/metabolismo , Estereoisomerismo
17.
Hortic Res ; 11(7): uhae152, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38994447

RESUMEN

Magnesium (Mg2+) is a crucial nutrient for the growth and development of Camellia sinensis and is closely related to the quality of tea. However, the underlying mechanisms responding to low-Mg 2+ stress in tea plants remain largely unknown. In this study, photosynthetic parameters, metabolomics, and transcriptomics were utilized to explore the potential effects of low Mg2+ on the growth and metabolism of C. sinensis. Low-Mg2+ treatment increased the ratio of shoot dry weight to root dry weight but decreased the photosynthesis of C. sinensis. Forty and thirty metabolites were impacted by Mg2+ shortage in C. sinensis shoots and roots, respectively. Integrated transcriptome and metabolome analyses revealed the possible reasons for the decreased contents of chlorophyll and catechins and the increased theanine content in C. sinensis roots. Weighted gene co-expression network analysis indicated that the Mg2+ transport system was essential in the regulation of Mg2+ homeostasis in C. sinensis, in which CsMGT5 was identified to be the key regulator according to CsMGT5-overexpressing and complementary assays in Arabidopsis thaliana. Moreover, silencing of CsMGT5 in vivo reduced the content of chlorophyll in C. sinensis shoots. In addition, CsMGT5 might collaborate with ammonium transporters to keep the amino acid content steady, suggesting its potential application for tea quality improvement. All these findings demonstrate the key roles of CsMGTs for Mg2+ homeostasis in C. sinensis, providing a theoretical basis for Mg2+ efficient utilization in plants.

18.
Sci Rep ; 14(1): 15398, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965238

RESUMEN

METTL3 and METTL14 are traditionally posited to assemble the m6A methyltransferase complex in a stoichiometric 1:1 ratio, modulating mRNA fate via m6A modifications. Nevertheless, recent investigations reveal inconsistent expression levels and prognostic significance of METTL3 and METTL14 across various tumor types, challenging their consistent functional engagement in neoplastic contexts. A pan-cancer analysis leveraging The Cancer Genome Atlas (TCGA) data has identified pronounced disparities in the expression patterns, functional roles, and correlations with tumor burden between METTL3 and METTL14, particularly in esophageal squamous cell carcinoma (ESCC). Knockdown experiments of METTL3 in EC109 cells markedly suppress cell proliferation both in vitro and in vivo, whereas METTL14 knockdown shows a comparatively muted effect on proliferation and does not significantly alter METTL3 protein levels. mRNA sequencing indicates that METTL3 singularly governs the expression of 1615 genes, with only 776 genes co-regulated with METTL14. Additionally, immunofluorescence co-localization studies suggest discrepancies in cellular localization between METTL3 and METTL14. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses demonstrate that METTL3 uniquely associates with the Nop56p-linked pre-rRNA complex and mRNA splicing machinery, independent of METTL14. Preliminary bioinformatics and multi-omics investigations reveal that METTL3's autonomous role in modulating tumor cell proliferation and its involvement in mRNA splicing are potentially pivotal molecular mechanisms. Our study lays both experimental and theoretical groundwork for a deeper understanding of the m6A methyltransferase complex and the development of targeted tumor therapies focusing on METTL3.


Asunto(s)
Proliferación Celular , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica , Metiltransferasas , Metiltransferasas/metabolismo , Metiltransferasas/genética , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Animales , Adenosina/análogos & derivados , Adenosina/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
J Leukoc Biol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941443

RESUMEN

Itaconate is one of the most studied immunometabolites produced by myeloid cells during inflammatory response. It mediates a wide range of anti-inflammatory and immunoregulatory effects and plays a role in a number of pathological states, including autoimmunity and cancer. Itaconate and its derivatives are considered as potential therapeutic agents for treatment of inflammatory diseases. While immunoregulatory effects of itaconate have been extensively studied in vitro and using knock-out mouse models, less is known about how therapeutic administration of this metabolite regulates inflammatory response in vivo. Here, we investigate the immunoregulatory properties of exogenous administration of itaconate (ITA) and its derivative dimethyl itaconate (DI) in a mouse model of LPS-induced inflammation. The data show that administration of ITA or DI controls systemic production of multiple cytokines, including increased IL-10 production. However, only DI was able to suppress systemic production of IFNγ and IL-1ß. In contrast to in vitro data, administration of ITA or DI in vivo resulted in systemic upregulation of IL-6 in the blood. Electrophilic stress due to ITA or DI was not responsible for IL-6 upregulation. However, inhibition of SDH with dimethyl malonate (DM) also resulted in elevated systemic levels of IL-6 and IL-10. Taken together, our study reports a novel effect of exogenous itaconate and its derivative DI on the production of IL-6 in vivo, with important implications for the development of itaconate-based anti-inflammatory therapies.

20.
Materials (Basel) ; 17(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930380

RESUMEN

In order to optimize the application effect of induction heating (IH) tundishes, a four-channel IH tundish is taken as the research object. Based on numerical simulation methods, the influence of different relative placement angles of induction heaters and channels on the electromagnetic field, flow field and temperature field of the tundish is investigated. We focus on comparing the magnetic flux density (B) and electromagnetic force (EMF) distribution of the channel. The results show that regardless of the relative placement angle between the heater and the channel, the distribution of B in the central circular cross-section of the channel is eccentric. When the heater rotates around channel 1 towards the bottom of the tundish, the distribution of B in the central circular cross-section of the channel changes from a horizontal eccentricity to a vertical one. Through the analysis of the B contour in the longitudinal section of the channel, the difference in effective magnetic flux density area (ΔAB) between the upper and lower parts of the channel can be obtained, thereby quantitatively analyzing the distribution of B in this section. The distribution pattern of ΔAB is consistent with the distribution pattern of the electromagnetic force in the vertical direction (FZ) of the channel centerline. The ΔAB and FZ of channel 1 gradually increase as the heater rotates downwards, while those of channel 2 reach their maximum value at a rotation angle of 60°. Compared to the conventional placement, when the heater rotation angle is 60°, the outlet flow velocities at channel 1 and channel 2 decrease by 15% and 12%, respectively. However, the outlet temperature at channel 2 increases by 1.96 K, and the molten steel flow at the outlet of channel 1 and channel 2 no longer exhibits significant downward flow. This shows that when the heater rotation angle is 60°, it has a dual advantage. On the one hand, it is helpful to reduce the erosion of the molten steel on the channel and the bottom of the discharging chamber, and on the other hand, it can more effectively exert the heating effect of the induction heater on the molten steel in the channel. This presents a new approach to enhance the application effectiveness of IH tundish.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...