Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Nurs Crit Care ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38945698

RESUMEN

BACKGROUND: Very and extremely preterm infants (VEPIs) experience sensory deprivation in the neonatal intensive care unit (NICU). While various sensory-supported interventions might improve immediate physiological response, their impact on long-term development remains unclear. Additionally, these interventions may pose challenges in the NICU environment due to complex treatments and monitoring requirements. AIMS: This review aimed to understand the current evidence on sensory-supported interventions in the NICU, identify the components of these interventions and determine their effects on the VEPIs. STUDY DESIGN: A systematic search across nine electronic databases (PubMed, EBSCO, EMBASE, Web of Science, Scopus, Cochrane, Cochrane trial, IEEE Xplore DL and ACM DL) was conducted in December 2020 and updated in September 2022. The search gathers information on sensory-supported interventions for VEPIs in the NICU. RESULTS: The search yielded 23 systematic reviews and 22 interventional studies, categorized into auditory (19), tactile/kinesthetic (5), positional/movement support (7), visual (1) and multisensory (13) interventions. While unimodal and multimodal interventions showed short-term benefits, their long-term effects on VEPIs are indeterminate. Translating these findings into clinical practice remains a challenge due to identified gaps. CONCLUSION: Our reviews indicate that sensory-supported interventions have a transient impact, with intervention studies reporting positive effects. Future research should develop and test comprehensive, continuous multisensory interventions tailored for the early NICU stage. RELEVANCE TO CLINICAL PRACTICE: Multimodal sensory interventions show promise for VEPIs, but long-term effects need further study. Standardizing protocols for NICU integration and parental involvement is crucial. Ongoing research and collaboration are essential for optimizing interventions and personalized care.

2.
Front Plant Sci ; 15: 1404477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835857

RESUMEN

Abscisic acid (ABA) is a key phytohormone involved in wound healing in fruits and vegetables, while fluridone (FLD) is its synthetic inhibitor. However, it is unknown whether ABA signaling and downstream transcription factors are involved in the synthesis of phenolic acids and lignin monomers in muskmelon wounds, and the underlying mechanisms. In our study, exogenous ABA promoted endogenous ABA synthesis by increasing the levels of ß-carotenoid and zeaxanthin, activating 9-cis-epoxycarotenoid dioxygenase (NCED) and zeaxanthin epoxidase (ZEP), facilitated ABA signaling by increasing the expression levels of protein phosphatases type 2C (CmPP2C) and ABA-responsive element binding factors (CmABF), upregulated the expression levels of CmMYB1 and CmWRKY1, and ABA induced phenylpropanoid metabolism by activating phenylalanine ammonia-lyase (PAL), 4-coenzyme A ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD), which further increased the synthesis of phenolic acids and lignin monomers in muskmelon wounds during healing. Taken together, exogenous ABA induced phenylpropanoid metabolism and increased the synthesis of phenolic acid and lignin monomer in muskmelon wounds during healing, and may be involved in endogenous ABA synthesis and signaling and related transcription factors.

3.
EMBO Rep ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877169

RESUMEN

A novel pangolin-origin MERS-like coronavirus (CoV), MjHKU4r-CoV-1, was recently identified. It is closely related to bat HKU4-CoV, and is infectious in human organs and transgenic mice. MjHKU4r-CoV-1 uses the dipeptidyl peptidase 4 (DPP4 or CD26) receptor for virus entry and has a broad host tropism. However, the molecular mechanism of its receptor binding and determinants of host range are not yet clear. Herein, we determine the structure of the MjHKU4r-CoV-1 spike (S) protein receptor-binding domain (RBD) complexed with human CD26 (hCD26) to reveal the basis for its receptor binding. Measuring binding capacity toward multiple animal receptors for MjHKU4r-CoV-1, mutagenesis analyses, and homology modeling highlight that residue sites 291, 292, 294, 295, 336, and 344 of CD26 are the crucial host range determinants for MjHKU4r-CoV-1. These results broaden our understanding of this potentially high-risk virus and will help us prepare for possible outbreaks in the future.

4.
Mol Neurobiol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865078

RESUMEN

Chronic inflammatory pain caused by neuronal hyperactivity is a common and refractory disease. Kv3.1, a member of the Kv3 family of voltage-dependent K+ channels, is a major determinant of the ability of neurons to generate high-frequency action potentials. However, little is known about its role in chronic inflammatory pain. Here, we show that although Kv3.1 mRNA expression was unchanged, Kv3.1 protein expression was decreased in the dorsal spinal horn of mice after plantar injection of complete Freund's adjuvant (CFA), a mouse model of inflammatory pain. Upregulating Kv3.1 expression alleviated CFA-induced mechanical allodynia and heat hyperalgesia, whereas downregulating Kv3.1 induced nociception-like behaviors. Additionally, we found that ubiquitin protein ligase E3 component n-recognin 5 (UBR5), a key factor in the initiation of chronic pain, binds directly to Kv3.1 to drive its ubiquitin degradation. Intrathecal injection of the peptide TP-CH-401, a Kv3.1 ubiquitination motif sequence, rescued the decrease in Kv3.1 expression and Kv currents through competitive binding to UBR5, and consequently attenuated mechanical and thermal hypersensitivity. These findings demonstrate a previously unrecognized pathway of Kv3.1 abrogation by UBR5 and indicate that Kv3.1 is critically involved in the regulation of nociceptive behavior. Kv3.1 is thus a promising new target for treating inflammatory pain.

5.
Theor Appl Genet ; 137(6): 145, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822827

RESUMEN

KEY MESSAGE: qLA3.1, controlling leaf angle in tomato, was fine-mapped to an interval of 4.45 kb on chromosome A03, and one gene encoding auxin response factor was identified as a candidate gene. Leaf angle is a crucial trait in plant architecture that plays an important role in achieving optimal plant structure. However, there are limited reports on gene localization, cloning, and the function of plant architecture in horticultural crops, particularly regarding leaf angle. In this study, we selected 'Z3' with erect leaves and 'Heinz1706' with horizontal leaves as the phenotype and cytological observation. We combined bulked segregant analysis and fine genetic mapping to identify a candidate gene, known as, i.e., qLA3.1, which was related to tomato leaf angle. Through multiple analyses, we found that Solyc03g113410 was the most probably candidate for qLA3.1, which encoded the auxin response factor SlARF11 in tomato and was homologous to OsARF11 related to leaf angle in rice. We discovered that silencing SlARF11 resulted in upright leaves, while plants with over-expressed SlARF11 exhibited horizontal leaves. We also found that cultivars with erect leaves had a mutation from base G to base A. Moreover, quantitative analysis of plants treated with hormones indicated that SlARF11 might participate in cell elongation and the activation of genes related to auxin and brassinosteroid pathways. Transcriptome analysis further validated that SlARF11 may regulate leaf angle through hormone signaling pathways. These data support the idea that the auxin response factor SlARF11 may have an important function in tomato leaf petiole angles.


Asunto(s)
Mapeo Cromosómico , Fenotipo , Hojas de la Planta , Proteínas de Plantas , Sitios de Carácter Cuantitativo , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
6.
Cell Rep ; 43(6): 114338, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38850530

RESUMEN

The game between therapeutic monoclonal antibodies (mAbs) and continuously emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has favored the virus, as most therapeutic mAbs have been evaded. Addressing this challenge, we systematically explored a reproducible bispecific antibody (bsAb)-dependent synergistic effect in this study. It could effectively restore the neutralizing activity of the bsAb when any of its single mAbs is escaped by variants. This synergy is primarily attributed to the binding angle of receptor-binding domain (RBD)-5, facilitating inter-spike cross-linking and promoting cryptic epitope exposure that classical antibody cocktails cannot achieve. Furthermore, RBD-5 with RBD-2, RBD-6, and RBD-7, alongside RBD-8, also exhibit significantly enhanced effects. This study not only shifts the paradigm in understanding antibody interactions but paves the way for developing more effective therapeutic antibodies against rapidly mutating SARS-CoV-2, with Dia-19 already showing promise against emerging variants like BA.2.86, EG.5.1, and JN.1.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , Humanos , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , COVID-19/terapia , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Epítopos/inmunología , Unión Proteica , Animales
7.
ACS Biomater Sci Eng ; 10(6): 3883-3895, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38700993

RESUMEN

Periodontitis is a chronic disease caused by bacterial infection and is characterized with alveolar bone resorption. Bone regeneration in periodontitis remains a critical challenge because bacterial infection induced an unfavorable microenvironment for osteogenesis. Therefore, it is necessary to design proper therapeutic platforms to control bacterial infection and promote bone regeneration. Herein, mesoporous bioactive glass (MBG) with different pore sizes (3.0, 4.3, and 12.3 nm) was used as an in situ reactor to confine the growth of gold nanoparticles (Au NPs), forming MBG@Au hybrids which combine the osteoconductivity of MBG and antibacterial properties of Au NPs. Upon near-infrared (NIR) irradiation, the MBG@Au NPs showed efficient antibacterial properties both in vitro and in vivo. Besides, the osteogenesis properties of MBG@Au also improved under NIR irradiation. Furthermore, the in vivo results demonstrated that MBG@Au can effectively promote alveolar bone regeneration and realize the healing of serious periodontitis.


Asunto(s)
Antibacterianos , Regeneración Ósea , Vidrio , Oro , Nanopartículas del Metal , Periodontitis , Periodontitis/tratamiento farmacológico , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Oro/química , Oro/farmacología , Oro/uso terapéutico , Animales , Porosidad , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Regeneración Ósea/efectos de los fármacos , Vidrio/química , Ratones , Osteogénesis/efectos de los fármacos , Masculino , Porphyromonas gingivalis/efectos de los fármacos , Humanos
8.
Plant J ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776519

RESUMEN

The essence of wound healing is the accumulation of suberin at wounds, which is formed by suberin polyphenolic (SPP) and suberin polyaliphatic (SPA). The biosynthesis of SPP and SPA monomers is catalyzed by several enzyme classes related to phenylpropanoid metabolism and fatty acid metabolism, respectively. However, how suberin biosynthesis is regulated at the transcriptional level during potato (Solanum tuberosum) tuber wound healing remains largely unknown. Here, 6 target genes and 15 transcription factors related to suberin biosynthesis in tuber wound healing were identified by RNA-seq technology and qRT-PCR. Dual luciferase and yeast one-hybrid assays showed that StMYB168 activated the target genes StPAL, StOMT, and St4CL in phenylpropanoid metabolism. Meanwhile, StMYB24 and StMYB144 activated the target genes StLTP, StLACS, and StCYP in fatty acid metabolism, and StFHT involved in the assembly of SPP and SPA domains in both native and wound periderms. More importantly, virus-induced gene silencing in S. tuberosum and transient overexpression in Nicotiana benthamiana assays confirmed that StMYB168 regulates the biosynthesis of free phenolic acids, such as ferulic acid. Furthermore, StMYB24/144 regulated the accumulation of suberin monomers, such as ferulates, α, ω-diacids, and ω-hydroxy acids. In conclusion, StMYB24, StMYB144, and StMYB168 have an elaborate division of labor in regulating the synthesis of suberin during tuber wound healing.

9.
Nat Commun ; 15(1): 4660, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821921

RESUMEN

The recent outbreak of mpox epidemic, caused by monkeypox virus (MPXV), poses a new threat to global public health. Here, we initially assessed the preexisting antibody level to the MPXV B6 protein in vaccinia vaccinees born before the end of the immunization program and then identified two monoclonal antibodies (MAbs), hMB621 and hMB668, targeting distinct epitopes on B6, from one vaccinee. Binding assays demonstrate that both MAbs exhibit broad binding abilities to B6 and its orthologs in vaccinia (VACV), variola (VARV) and cowpox viruses (CPXV). Neutralizing assays reveal that the two MAbs showed potent neutralization against VACV. Animal experiments using a BALB/c female mouse model indicate that the two MAbs showed effective protection against VACV via intraperitoneal injection. Additionally, we determined the complex structure of B6 and hMB668, revealing the structural feature of B6 and the epitope of hMB668. Collectively, our study provides two promising antibody candidates for the treatment of orthopoxvirus infections, including mpox.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Ratones Endogámicos BALB C , Animales , Humanos , Femenino , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Ratones , Anticuerpos Monoclonales/inmunología , Epítopos/inmunología , Monkeypox virus/inmunología , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/prevención & control , Virus Vaccinia/inmunología , Orthopoxvirus/inmunología , Mpox/inmunología , Mpox/prevención & control
10.
Signal Transduct Target Ther ; 9(1): 131, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740785

RESUMEN

Almost all the neutralizing antibodies targeting the receptor-binding domain (RBD) of spike (S) protein show weakened or lost efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged or emerging variants, such as Omicron and its sub-variants. This suggests that highly conserved epitopes are crucial for the development of neutralizing antibodies. Here, we present one nanobody, N235, displaying broad neutralization against the SARS-CoV-2 prototype and multiple variants, including the newly emerged Omicron and its sub-variants. Cryo-electron microscopy demonstrates N235 binds a novel, conserved, cryptic epitope in the N-terminal domain (NTD) of the S protein, which interferes with the RBD in the neighboring S protein. The neutralization mechanism interpreted via flow cytometry and Western blot shows that N235 appears to induce the S1 subunit shedding from the trimeric S complex. Furthermore, a nano-IgM construct (MN235), engineered by fusing N235 with the human IgM Fc region, displays prevention via inducing S1 shedding and cross-linking virus particles. Compared to N235, MN235 exhibits varied enhancement in neutralization against pseudotyped and authentic viruses in vitro. The intranasal administration of MN235 in low doses can effectively prevent the infection of Omicron sub-variant BA.1 and XBB in vivo, suggesting that it can be developed as a promising prophylactic antibody to cope with the ongoing and future infection.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Epítopos , Inmunoglobulina M , SARS-CoV-2 , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Epítopos/inmunología , Epítopos/genética , Epítopos/química , Animales , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Inmunoglobulina M/inmunología , Inmunoglobulina M/genética , Ratones , Dominios Proteicos , Microscopía por Crioelectrón
11.
Med ; 5(5): 401-413.e4, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38574739

RESUMEN

BACKGROUND: The recently circulating Omicron variants BA.2.86 and JN.1 were identified with more than 30 amino acid changes on the spike protein compared to BA.2 or XBB.1.5. This study aimed to comprehensively assess the immune escape potential of BA.2.86, JN.1, EG.5, and EG.5.1. METHODS: We collected human and murine sera to evaluate serological neutralization activities. The participants received three doses of coronavirus disease 2019 (COVID-19) vaccines or a booster dose of the ZF2022-A vaccine (Delta-BA.5 receptor-binding domain [RBD]-heterodimer immunogen) or experienced a breakthrough infection (BTI). The ZF2202-A vaccine is under clinical trial study (ClinicalTrials.gov: NCT05850507). BALB/c mice were vaccinated with a panel of severe acute respiratory syndrome coronavirus 2 RBD-dimer proteins. The antibody evasion properties of these variants were analyzed with 41 representative human monoclonal antibodies targeting the eight RBD epitopes. FINDINGS: We found that BA.2.86 had less neutralization evasion than EG.5 and EG.5.1 in humans. The ZF2202-A booster induced significantly higher neutralizing titers than BTI. Furthermore, BA.2.86 and JN.1 exhibited stronger antibody evasion than EG.5 and EG.5.1 on RBD-4 and RBD-5 epitopes. Compared to BA.2.86, JN.1 further lost the ability to bind to several RBD-1 monoclonal antibodies and displayed further immune escape. CONCLUSIONS: Our data showed that the currently dominating sub-variant, JN.1, showed increased immune evasion compared to BA.2.86 and EG.5.1, which is highly concerning. This study provides a timely risk assessment of the interested sub-variants and the basis for updating COVID-19 vaccines. FUNDING: This work was funded by the National Key R&D Program of China, the National Natural Science Foundation of China, the Beijing Life Science Academy, the Bill & Melinda Gates Foundation, and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (CPSF).


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , COVID-19 , Ratones Endogámicos BALB C , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Humanos , Animales , Anticuerpos Monoclonales/inmunología , SARS-CoV-2/inmunología , Ratones , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , COVID-19/prevención & control , COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Femenino , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Masculino , Sueros Inmunes/inmunología , Adulto , Evasión Inmune , Pruebas de Neutralización , Epítopos/inmunología
12.
RSC Adv ; 14(19): 13482-13488, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38665504

RESUMEN

Moxifloxacin (MFX) has attracted increasing public concern recently, and the development of a simple and effective analysis method has become a research focus. In this work, a simple, sensitive and ratiometric fluorescent sensor based on Ag-MOF@curcumin was designed and investigated. Ag-MOF@curcumin displays emission at 410 nm and 475 nm under excitation at 330 nm. When MFX is added, a new emission peak appears at 500 nm, and the F500/F410 ratio has a linear relationship with the MFX concentration in the range 0-35 µmol L-1 with a low LOD (0.179 µmol L-1). Finally, the developed sensor was used for the determination of MFX in milk. This work provides an excellent fluorescent sensor for highly selective and rapid detection of MFX residues.

13.
PLoS Pathog ; 20(4): e1012116, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557908

RESUMEN

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, continues to mutate and generates new variants with increasingly severe immune escape, urging the upgrade of COVID-19 vaccines. Here, based on a similar dimeric RBD design as our previous ZF2001 vaccine, we developed a novel broad-spectrum COVID-19 mRNA vaccine, SWIM516, with chimeric Delta-BA.2 RBD dimer delivered by lipopolyplex (LPP). Unlike the popular lipid nanoparticle (LNP), this LPP-delivered mRNA expresses only in the injection site, which avoids potential toxicity to the liver. We demonstrated the broad-spectrum humoral and cellular immunogenicity of this vaccine to Delta and Omicron sub-variants in naïve mice and as booster shots. When challenged with Delta or Omicron live virus, vaccinated human angiotensin-converting enzyme (hACE2) transgenic mice and rhesus macaques were both protected, displaying significantly reduced viral loads and markedly relieved pathological damages. We believe the SWIM516 vaccine qualifies as a candidate for the next-generation broad-spectrum COVID-19 vaccine.


Asunto(s)
COVID-19 , Vacunas de ARNm , Animales , Humanos , Ratones , Vacunas contra la COVID-19 , Macaca mulatta , COVID-19/prevención & control , Inmunización Secundaria , Ratones Transgénicos , ARN Mensajero/genética , SARS-CoV-2/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
14.
ACS Omega ; 9(11): 12539-12552, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38524488

RESUMEN

With the rapid development of nanotechnology, nanomaterials have shown immense potential for antitumor applications. Nanosized calcium carbonate (CaCO3) materials exhibit excellent biocompatibility and degradability, and have been utilized to develop platform technologies for cancer therapy. These materials can be engineered to carry anticancer drugs and functional groups that specifically target cancer cells and tissues, thereby enhancing therapeutic efficacy. Additionally, their physicochemical properties can be tailored to enable stimuli-responsive therapy and precision drug delivery. This Review consolidates recent literatures focusing on the synthesis, physicochemical properties, and multimodal antitumor therapies of CaCO3-based nanoplatforms (CBN). We also explore the current challenges and potential breakthroughs in the development of CBN for antitumor applications, providing a valuable reference for researchers in the field.

15.
Plant Physiol Biochem ; 208: 108537, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38513517

RESUMEN

Pre-harvest spraying of benzothiadiazole (BTH) can improve the winemaking properties of grapes, especially their aroma compounds and phenolics. Limited research has explored the molecular mechanisms by which BTH influences the accumulation of grape aroma precursors during early grape development. This study investigated the effects and putative molecular mechanisms of applying 0.37 mM BTH through whole-plant spraying on the accumulation of aroma metabolism precursors and gene expression in Cabernet Gernischt grapes during ripening. The results showed that BTH treatment increased the levels of fructose, alanine, aspartate, threonine, myristic acid, myristoleic acid, palmitic acid, ß-cryptoxanthin, norisoprenoids and methoxypyrazines. Contrarily, it decreased the levels of glucose, sucrose, phenylalanine, tyrosine, leucine, valine, glycine, arginine, histidine, total unsaturated fatty acids (particularly linoleic acid), zeaxanthin, lutein, and organic acids. Additionally, BTH upregulated the expression of genes associated with the production and degradation of amino acids, fatty acids, and carotenoids while decreasing the expression of genes involved in the synthesis and degradation of soluble sugars and organic acids. Ten different metabolites, including fumaric acid, were identified as potential biological markers for distinguishing BTH-treated grapes from control grapes. The study demonstrates that BTH treatment had a substantial impact on the concentration and developmental patterns of aroma metabolism precursors. Furthermore, it altered the winemaking characteristics of Cabernet Gernischt grapes by modulating genes associated with the production and breakdown of metabolites.


Asunto(s)
Tiadiazoles , Vitis , Vino , Vitis/metabolismo , Vino/análisis , Odorantes/análisis , Mejoramiento de la Calidad , Frutas/metabolismo
17.
iScience ; 27(2): 109016, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38327775

RESUMEN

Experimental studies have shown that neuropathic pain impairs hippocampal synaptic plasticity. Here, we sought to determine the underlying mechanisms responsible for synaptic changes in neuropathic painful mouse hippocampal neurons. Beyond demonstrating proof-of-concept for the location of DExH-box helicase 9 (DHX9) in the nucleus, we found that it did exist in the cytoplasm and DHX9 depletion resulted in structural and functional changes at synapses in the hippocampus. A decrease of DHX9 was observed in the hippocampus after peripheral nerve injury; overexpression of DHX9 in the hippocampus significantly alleviated the nociceptive responses and improved anxiety behaviors. Mimicking DHX9 decrease evoked spontaneous pain behavioral symptoms and anxiety emotion in naïve mice. Mechanistically, we found that DHX9 bound to dendrin (Ddn) mRNA, which may have altered the level of synaptic- and dendritic-associated proteins. The data suggest that DHX9 contributes to synapses in hippocampal neurons and may modulate neuropathic pain and its comorbidity aversive emotion.

18.
Mikrochim Acta ; 191(3): 144, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372819

RESUMEN

A novel fluorescence "off-on" probe was developed using a boron difluoride-modified zinc metal-organic framework (Zn-MOF3) for sensitive determination of tetracycline (TC) and Al3+. The Zn-MOF3 has excellent optical property and good applicability in aqueous phase. The fluorescence recorded at 436 nm was quenched at the excitation wavelength of 336 nm. Signal-off detection of tetracycline via fluorescence quenching of Zn-MOF3 is based on the inner filter effect. Fluorescence on-off-on detection of Al3+ occurs via the specific binding between tetracycline and Al3+. The limits of detection for TC and Al3+ were 28.4 nM and 106.7 nM, respectively. This probe exhibited high selectivity which was used for the determination of TC and Al3+ with satisfied recoveries (89.8 to 105.6% for TC, 90.0 to 110.4% for Al3+) and good precision (< 5%) in milk. The developed sensor represents the first "off-on" system for fluorescence detection of TC and Al3+ based on Zn-MOF3 with a better aspect of the innovation.


Asunto(s)
Compuestos de Boro , Estructuras Metalorgánicas , Zinc , Fluorescencia , Tetraciclina , Antibacterianos
19.
J Virol ; 98(3): e0115723, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305152

RESUMEN

Pet golden hamsters were first identified being infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant of concern (VOC) and transmitted the virus back to humans in Hong Kong in January 2022. Here, we studied the binding of two hamster (golden hamster and Chinese hamster) angiotensin-converting enzyme 2 (ACE2) proteins to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants, including alpha, beta, gamma, delta, and four omicron sub-variants (BA.1, BA.2, BA.3, and BA.4/BA.5). We found that the two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2 (hACE2). Furthermore, the similar infectivity to host cells expressing hamster ACE2s and hACE2 was confirmed with the nine pseudotyped SARS-CoV-2 viruses. Additionally, we determined two cryo-electron microscopy (EM) complex structures of golden hamster ACE2 (ghACE2)/delta RBD and ghACE2/omicron BA.3 RBD. The residues Q34 and N82, which exist in many rodent ACE2s, are responsible for the lower binding affinity of ghACE2 compared to hACE2. These findings suggest that all SARS-CoV-2 VOCs may infect hamsters, highlighting the necessity of further surveillance of SARS-CoV-2 in these animals.IMPORTANCESARS-CoV-2 can infect many domestic animals, including hamsters. There is an urgent need to understand the binding mechanism of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to hamster receptors. Herein, we showed that two hamster angiotensin-converting enzyme 2s (ACE2s) (golden hamster ACE2 and Chinese hamster ACE2) can bind to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants and that pseudotyped SARS-CoV-2 viruses can infect hamster ACE2-expressing cells. The binding pattern of golden hamster ACE2 to SARS-CoV-2 RBDs is similar to that of Chinese hamster ACE2. The two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2. We solved the cryo-electron microscopy (EM) structures of golden hamster ACE2 in complex with delta RBD and omicron BA.3 RBD and found that residues Q34 and N82 are responsible for the lower binding affinity of ghACE2 compared to hACE2. Our work provides valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Cricetulus , Microscopía por Crioelectrón , Especificidad del Huésped , Mesocricetus , Animales , Cricetinae , Humanos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/ultraestructura , Línea Celular , COVID-19/virología , Cricetulus/metabolismo , Cricetulus/virología , Mesocricetus/metabolismo , Mesocricetus/virología , Mutación , Mascotas/metabolismo , Mascotas/virología , Unión Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestructura , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/ultraestructura
20.
Foods ; 13(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38201195

RESUMEN

Browning and other undesirable effects on Agaricus bisporus (A. bisporus) during storage seriously affect its commercial value. In this study, a strain, Lactiplantibacillus plantarum NML21, that resists browning and delays the deterioration of A. bisporus was screened among 72 strains of lactic acid bacteria (LAB), and its preservative effect was analyzed. The results demonstrated that gallic acid, catechin, and protocatechuic acid promoted the growth of NML21, and the strain conversion rates of gallic acid and protocatechuic acid reached 97.16% and 95.85%, respectively. During a 15 d storage of the samples, the NML21 treatment displayed a reduction in the browning index (58.4), weight loss (2.64%), respiration rate (325.45 mg kg-1 h-1), and firmness (0.65 N). The treatment further inhibited Pseudomonas spp. growth and polyphenol oxidase activity, improved the antioxidant capacity, reduced the accumulation of reactive oxygen species, and reduced the malonaldehyde content and cell membrane conductivity. Taken together, the optimized concentrations of NML21 may extend the shelf life of A. bisporus for 3-6 d and could be a useful technique for preserving fresh produce.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...