Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lung ; 201(2): 225-234, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36928143

RESUMEN

PURPOSE: Hyperoxia-induced apoptosis in alveolar epithelial type II cells (AECIIs) plays a critical role in the development of bronchopulmonary dysplasia (BPD). Melatonin has been shown to improve BPD. However, the protective effect of melatonin on hyperoxia-induced apoptosis in AECIIs and the precise mechanisms involved remain unclear. METHODS: Human alveolar epithelial type II A549 cells were treated with hyperoxia as an in vitro model to investigate the antiapoptotic mechanism of melatonin. CCK-8 assays were performed to investigate the viability of A549 cells. Hoechst 33,258 staining was carried out to quantify apoptosis in A549 cells. The protein expression levels of E26 oncogene homolog 1 (ETS1), Bcl-2, Bax, Bim, Wnt, ß-catenin, AKT and phosphorylated AKT were measured by western blotting. LY294002, SC79 and the downregulation of ETS1, melatonin receptor 1 (MT1) and MT2 with specific siRNAs were used to investigate the role of the PI3K/AKT pathway, ETS1, MT1 and MT2 in hyperoxia-induced apoptosis in A549 cells. RESULTS: Melatonin prevented hyperoxia-induced apoptosis in A549 cells, and the upregulation of E26 oncogene homolog 1 (ETS1) contributed to the antiapoptotic effect of melatonin. Melatonin activated the PI3K/AKT axis, which led to ETS1 upregulation and inhibited apoptosis in hyperoxia-exposed A549 cells. Furthermore, melatonin-induced activation of the PI3K/AKT axis, upregulation of ETS1 and inhibition of apoptosis were reversed by melatonin receptor 2 (MT2) siRNA in hyperoxia-exposed A549 cells. CONCLUSION: Melatonin prevents hyperoxia-induced apoptosis by activating the MT2/PI3K/AKT/ETS1 axis in alveolar epithelial cells.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Melatonina , Recién Nacido , Humanos , Células Epiteliales Alveolares , Hiperoxia/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Receptores de Melatonina/metabolismo , Transducción de Señal , Apoptosis , Displasia Broncopulmonar/metabolismo , Células Epiteliales/metabolismo , Proteína Proto-Oncogénica c-ets-1
2.
World J Gastroenterol ; 27(44): 7669-7686, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34908806

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a common and life-threatening complication of severe acute pancreatitis (SAP). There are currently limited effective treatment options for SAP and associated ALI. Calycosin (Cal), a bioactive constituent extracted from the medicinal herb Radix Astragali exhibits potent anti-inflammatory properties, but its effect on SAP and associated ALI has yet to be determined. AIM: To identify the roles of Cal in SAP-ALI and the underlying mechanism. METHODS: SAP was induced via two intraperitoneal injections of L-arg (4 g/kg) and Cal (25 or 50 mg/kg) were injected 1 h prior to the first L-arg challenge. Mice were sacrificed 72 h after the induction of SAP and associated ALI was examined histologically and biochemically. An in vitro model of lipopolysaccharide (LPS)-induced ALI was established using A549 cells. Immunofluorescence analysis and western blot were evaluated in cells. Molecular docking analyses were conducted to examine the interaction of Cal with HMGB1. RESULTS: Cal treatment substantially reduced the serum amylase levels and alleviated histopathological injury associated with SAP and ALI. Neutrophil infiltration and lung tissue levels of neutrophil mediator myeloperoxidase were reduced in line with protective effects of Cal against ALI in SAP. Cal treatment also attenuated the serum levels and mRNA expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, IL-1ß, HMGB1 and chemokine (CXC motif) ligand 1 in lung tissue. Immunofluorescence and western blot analyses showed that Cal treatment markedly suppressed the expression of HMGB1 and phosphorylated nuclear factor-kappa B (NF-κB) p65 in lung tissues and an in vitro model of LPS-induced ALI in A549 cells suggesting a role for HGMB1 in the pathogenesis of ALI. Furthermore, molecular docking analysis provided evidence for the direct interaction of Cal with HGMB1. CONCLUSION: Cal protects mice against L-arg-induced SAP and associated ALI by attenuating local and systemic neutrophil infiltration and inflammatory response via inhibition of HGMB1 and the NF-κB signaling pathway.


Asunto(s)
Lesión Pulmonar Aguda , Proteína HMGB1 , Pancreatitis , Enfermedad Aguda , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Inflamación/tratamiento farmacológico , Isoflavonas , Lipopolisacáridos/toxicidad , Pulmón , Ratones , Simulación del Acoplamiento Molecular , FN-kappa B , Pancreatitis/inducido químicamente , Pancreatitis/complicaciones , Pancreatitis/tratamiento farmacológico
3.
Biomed Pharmacother ; 144: 112293, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34634559

RESUMEN

Acute pancreatitis (AP) is a common serious acute condition of the digestive system that remains a clinical challenge. Severe acute pancreatitis (SAP) in particular is characterized by high morbidity and mortality. The present study was designed to investigate the protective effect of Galangin (Gal), a natural flavonol obtained from lesser galangal, on L-arginine-induced SAP in mice and in AR42J cells. Amylase and lipase activities were measured and the histopathology of the pancreas, lung, and kidney was evaluated. Inflammation and oxidative stress were assessed using ELISA, western blotting, RT-PCR, and immunohistochemistry. Gal was shown to reduce proinflammatory cytokine production and reactive oxygen species (ROS) generation in vivo and in vitro. L-arginine treatment reduced the expression of components of the nuclear factor E2-related factor 2 (Nrf2) signaling pathway and the downstream protein heme oxygenase-1 (HO-1) in mice, whereas Gal increased their expression. Furthermore, the Nrf2/HO-1 pathway inhibitor brusatol prevented the anti-inflammatory and antioxidant effects of Gal in mice with SAP. Taken together, our results imply that Gal has protective effects in L-arginine-induced SAP that are induced by the upregulation of the Nrf2/HO-1 pathway, which has anti-inflammatory and antioxidant effects. Thus, Gal may represent a promising treatment for SAP.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Flavonoides/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Páncreas/efectos de los fármacos , Pancreatitis/prevención & control , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/prevención & control , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/prevención & control , Animales , Línea Celular , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo , Páncreas/enzimología , Páncreas/patología , Pancreatitis/enzimología , Pancreatitis/patología , Ratas , Índice de Severidad de la Enfermedad , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...