Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2409838, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268782

RESUMEN

Lithium-ion batteries using quasi-solid gel electrolytes (QSEs) have gained increasing interest due to their enhanced safety features. However, their commercial viability is hindered by low ionic conductivity and poor solid-solid contact interfaces. In this study, a QSE synthesized by in situ polymerizing methyl methacrylate (MMA) in 1,2-dimethoxyethane (DME)-based electrolyte is introduced, which exhibits remarkable performance in high-loading graphite||LiNi0.8Co0.1Mn0.1O2 (NCM811) pouch cells. Owing to the unique solvent-lacking solvation structure, the graphite exfoliation caused by the well-known solvent co-intercalation is prohibited, and this unprecedented phenomenon is found to be universal for other graphite-unfriendly solvents. The high ionic conductivity and great interfacial contact provided by DME enable the quasi-solid graphite||NCM811 pouch cell to demonstrate superior C-rate capability even at a high cathode mass loading (17.5 mg cm-2), surpassing liquid carbonate electrolyte cells. Meanwhile, the optimized QSE based on carbonates exhibits excellent cycle life (92.4% capacity retention after 1700 cycles at 0.5C/0.5C) and reliable safety under harsh conditions. It also outperforms liquid electrolytes in other high-energy-density batteries with larger volume change. These findings elucidate the polymer's pivotal role in QSEs, offering new insights for advancing quasi-solid-state battery commercialization.

2.
Adv Mater ; 36(41): e2408161, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39136199

RESUMEN

Developing rechargeable batteries with high power delivery at low temperatures (LT) below 0 °C is significant for cold-climate applications. Initial anode-free sodium metal batteries (AFSMBs) promise high LT performances because of the low de-solvation energy and smaller Stokes radius of Na+, nondiffusion-limited plating/stripping electrochemistry, and maximized energy density. However, the severe reduction in electrolyte ionic conductivity and formation of unstable solid electrolyte interphase (SEI) hinder their practical applications at LT. In this study, a 2-methyltetrahydrofuran-based dilute electrolyte is designed to concurrently achieve an anion-coordinated solvation structure and impressive ionic conductivity of 3.58 mS cm-1 at -40 °C. The dominant aggregate solvates enable the formation of highly efficient and LT-resistant Na+ hopping channels in the electrolyte. Moreover, the methyl-regulated electronic structure in 2-methyltetrahydrofuran induces gradient decomposition toward an inorganic-organic bilayer SEI with high Na+ mobility, composition homogeneity, and mechanical robustness. As such, a record-high Coulombic efficiency beyond 99.9% is achieved even at -40 °C. The as-constructed AFSMBs sustain 300 cycles with 80% capacity maintained, and a 0.5-Ah level pouch cell delivers 85% capacity over 180 cycles at -25 °C. This study affords new insights into electrolyte formulation for fast ionic conduction and superior Na reversibility at ultralow temperatures.

3.
Ann Hematol ; 103(7): 2337-2346, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849603

RESUMEN

High hyperdiploid karyotype with ≥ 49 chromosomes (which will be referred to as HHK) is rare in acute myeloid leukemia (AML). The European leukemia network (ELN) excluded those harboring only numerical changes (with ≥ 3 chromosome gains) from CK and listed them in the intermediate risk group, while the UK National Cancer Research Institute Adult Leukaemia Working Group classification defined ≥ 4 unrelated chromosome abnormalities as the cutoff for a poorer prognosis. Controversies occurred among studies on the clinical outcome of HHK AML, and their molecular characteristics remained unstudied. We identified 1.31% (133/10,131) HHK cases within our center, among which 48 cases only had numerical changes (NUM), 42 had ELN defined adverse abnormalities (ADV) and 43 had other structural abnormalities (STR). Our study demonstrated that: (1) No statistical significance for overall survival (OS) was observed among three cytogenetic subgroups (NUM, STR and ADV) and HHK AML should be assigned to the adverse cytogenetic risk group. (2) The OS was significantly worse in HHK AML with ≥ 51 chromosomes compared with those with 49-50 chromosomes. (3) The clinical characteristics were similar between NUM and STR group compared to ADV group. The former two groups had higher white blood cell counts and blasts, lower platelet counts, and mutations associated with signaling, while the ADV group exhibited older age, higher chromosome counts, higher percentage of myelodysplastic syndrome (MDS) history, and a dominant TP53 mutation.


Asunto(s)
Leucemia Mieloide Aguda , Mutación , Proteína p53 Supresora de Tumor , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/diagnóstico , Persona de Mediana Edad , Femenino , Masculino , Adulto , Anciano , Proteína p53 Supresora de Tumor/genética , China/epidemiología , Pronóstico , Adolescente , Adulto Joven , Anciano de 80 o más Años , Aberraciones Cromosómicas , Cariotipo , Tasa de Supervivencia , Cariotipificación
4.
Adv Mater ; 36(32): e2404630, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857546

RESUMEN

The extreme fast charging performance of lithium metal batteries (LMBs) with a long life is an important focus in the development of next-generation battery technologies. The friable solid electrolyte interphase and dendritic lithium growth are major problems. The formation of an inorganic nanocrystal-dominant interphase produced by preimmersing the Li in molten lithium bis(fluorosulfonyl)imide that suppresses the overgrowth of the usual interphase is reported. Its high surface modulus combined with fast Li+ diffusivity enables a reversible dendrite-proof deposition under ultrahigh-rate conditions. It gives a record-breaking cumulative plating/stripping capacity of >240 000 mAh cm-2 at 30 mA cm-2@30 mAh cm-2 for a symmetric cell and an extreme fast charging performance at 6 C for 500 cycles for a Li||LiCoO2 full cell with a high-areal-capacity, thus expanding the use of LMBs to high-loading and power-intensive scenarios. Its usability both in roll-to-roll production and in different electrolytes indicating the scalable and industrial potential of this process for high-performance LMBs.

5.
Biochem Pharmacol ; 224: 116220, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38641307

RESUMEN

Alpha-enolase (ENO1), a multifunctional protein with carcinogenic properties, has emerged as a promising cancer biomarker because of its differential expression in cancer and normal cells. On the basis of this characteristic, we designed a cell-targeting peptide that specifically targets ENO1 and connected it with the drug doxorubicin (DOX) by aldehyde-amine condensation. A surface plasmon resonance (SPR) assay showed that the affinity for ENO1 was stronger (KD = 2.5 µM) for the resulting cell-targeting drug, DOX-P, than for DOX. Moreover, DOX-P exhibited acid-responsive capabilities, enabling precise release at the tumor site under the guidance of the homing peptide and alleviating DOX-induced cardiotoxicity. An efficacy experiment confirmed that, the targeting ability of DOX-P toward ENO1 demonstrated superior antitumor activity against colorectal cancer than that of DOX, while reducing its toxicity to cardiomyocytes. Furthermore, in vivo metabolic distribution results indicated low accumulation of DOX-P in nontumor sites, further validating its targeting ability. These results showed that the ENO1-targeted DOX-P peptide has great potential for application in targeted drug-delivery systems for colorectal cancer therapy.


Asunto(s)
Antibióticos Antineoplásicos , Neoplasias Colorrectales , Doxorrubicina , Sistemas de Liberación de Medicamentos , Fosfopiruvato Hidratasa , Proteínas Supresoras de Tumor , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Fosfopiruvato Hidratasa/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Animales , Proteínas Supresoras de Tumor/metabolismo , Humanos , Ratones , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/administración & dosificación , Ratones Endogámicos BALB C , Ratones Desnudos , Masculino , Línea Celular Tumoral , Células HCT116 , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Biomarcadores de Tumor
6.
ACS Appl Mater Interfaces ; 16(17): 22482-22492, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651802

RESUMEN

Herein, we present the preparation and properties of an ultrathin, mechanically robust, quasi-solid composite electrolyte (SEO-QSCE) for solid-state lithium metal battery (SLB) from a well-defined polystyrene-b-poly(ethylene oxide) diblock copolymer (SEO), Li6.75La3Zr1.75Ta0.25O12 nanofiller, and fluoroethylene carbonate plasticizer. Compared with the ordered lamellar microphase separation of SEO, the SEO-QSCE displays bicontinuous phases, consisting of a Li+ ion conductive poly(ethylene oxide) domain and a mechanically robust framework of the polystyrene domain. Therefore, the 12 µm-thick SEO-QSCE membrane exhibits an exceptional ionic conductivity of 1.3 × 10-3 S cm-1 at 30 °C, along with a remarkable tensile strength of 5.1 MPa and an elastic modulus of 2.7 GPa. The high mechanical robustness and the self-generated LiF-rich SEI enable the SEO-QSCE to have an extraordinary lithium dendrite prohibition effect. The SLB of Li|SEO-QSCE|LiFePO4 reveals superior cycling performances at 30 °C for over 600 cycles, maintaining an initial discharge capacity of 145 mAh g-1 and a remarkable capacity retention of 81% (117 mAh g-1) after 400 cycles at 0.5 C. The high-voltage SLB of Li|SEO-QSCE|LiNi0.5Co0.3Mn0.2O2 displays good cycling stability for over 150 cycles at 30 °C. Moreover, the exceptional robustness of SEO-QSCE enables the high-voltage solid-state pouch cell of Li|SEO-QSCE|LiNi0.5Co0.3Mn0.2O2 with high flexibility and excellent safety features. The current investigation delivers a promising and innovative approach for preparing quasi-solid electrolytes with features of ultrathin design, mechanical robustness, and exceptional electrochemical performance for high-voltage SLBs.

7.
Adv Mater ; 36(23): e2314063, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38444248

RESUMEN

Polymer/ceramic-based composite solid electrolytes (CSE) are promising candidates for all-solid-state lithium metal batteries (SLBs), benefiting from the combined mechanical robustness of polymeric electrolytes and the high ionic conductivity of ceramic electrolytes. However, the interfacial instability and poorly understood interphases of CSE hinder their application in high-voltage SLBs. Herein, a simple but effective CSE that stabilizes high-voltage SLBs by forming multiple intermolecular coordination interactions between polyester and ceramic electrolytes is discovered. The multiple coordination between the carbonyl groups in poly(ε-caprolactone) and the fluorosulfonyl groups in anions with Li6.5La3Zr1.5Ta0.5O12 nanoparticles is directly visualized by cryogenic transmission electron microscopy and further confirmed by theoretical calculation. Importantly, the multiple coordination in CSE not only prevents the continuous decomposition of polymer skeleton by shielding the vulnerable carbonyl sites but also establishes stable inorganic-rich interphases through preferential decomposition of anions. The stable CSE and its inorganic-rich interphases enable Li||Li symmetric cells with an exceptional lifespan of over 4800 h without dendritic shorting at 0.1 mA cm-2. Moreover, the high-voltage SLB with LiNi0.5Co0.2Mn0.3O2 cathode displays excellent cycling stability over 1100 cycles at a 1C charge/discharge rate. This work reveals the underlying mechanism behind the excellent stability of coordinating composite electrolytes and interfaces in high-voltage SLBs.

8.
ACS Nano ; 18(3): 1969-1981, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206167

RESUMEN

The components and structures of the solid-electrolyte interphase (SEI) are critical for stable cycling of lithium metal batteries (LMBs). LiF has been widely studied as the dominant component of SEI, but Li2O, which has a much lower diffusion barrier for Li+, has rarely been investigated as the dominant component of SEI. The effect of Li2O-dominated SEI on electrochemical performance still remains elusive. Herein, an ultrastrong coordinated cosolvation diluent, 2,3-difluoroethoxybenzene (DFEB), is designed to modulate solvation structure and tailor Li2O-dominated SEI for stable LMBs. In the DFEB-based LHCE (DFEB-LHCE), DFEB intensively participates in the first solvation shell and synergizes with FSI- to tailor an Li2O-dominated inorganic-rich SEI which is different from the LiF-dominated SEI formed in conventional LHCE. Benefiting from this special SEI architecture, a high Coulombic efficiency (CE) of 99.58% in Li||Cu half cells, stable voltage profiles, and dense and uniform lithium deposition, as well as effective inhibition of Li dendrite formation in the symmetrical cell, are achieved. More importantly, the DFEB-LHCE can be matched with various cathodes such as LFP, NCM811, and S cathodes, and the Li||LFP full cell using DFEB-LHCE possesses 85% capacity retention after 650 stable cycles with 99.9% CE. Especially the 1.5 Ah practical lithium metal pouch cell achieves an excellent capacity retention of 89% after 250 cycles with a superb average CE of 99.93%. This work unravels the superiority of the Li2O-dominated SEI and the feasibility of tailoring SEI components through modulation of solvation structures.

9.
Chem Commun (Camb) ; 59(85): 12779-12782, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37815463

RESUMEN

Efficient one-step oxidation of isobutylene to methacrylic acid was achieved over a Mo-V-Te-Cs catalyst. Mo-O-V as "asymmetric lattice oxygen" brings high activity. Te and Cs provide a suitable medium acidity to enhance the selectivity. A record single-step yield of 65% for methacrylic acid was obtained from isobutylene oxidation.

10.
Open Life Sci ; 18(1): 20220608, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304890

RESUMEN

This study was envisaged to identify a strain of bacteria isolated from the gill of mandarin fish. Identification and characterization of the bacterial strain were performed using morphological characteristics, growth temperature, physiological and biochemical tests, antibiotic sensitivity tests, artificial infection tests, and 16S rRNA gene sequencing homology analysis. The results showed that the bacterium was Gram-negative, with flagella at the end and the side. The bacterium exhibited a light brownish-gray colony on the Luria-Bertani culture and white colony on the blood agar plate without hemolytic ring. Normal growth was achieved at 42°C, and growth could be delayed in 7% NaCl broth medium. By homology comparison and analysis, the phylogenetic tree was constructed using MEGA7.0, and the bacterium was preliminarily identified as Achromobacter. The antibiotic sensitivity test showed that the strain was sensitive to piperacillin, carbenicillin, cefoperazone, cefazolin, ofloxacin, gentamicin, kanamycin, amikacin, neomycin, erythromycin, minocycline, doxycycline, polymyxin B, tetracycline, chloramphenicol, and other drugs. However, it was resistant to penicillin, ampicillin, oxacillin, ceftriaxone, cefradine, cefalexin, cefuroxime sodium, ciprofloxacin, norfloxacin, vancomycin, compound sulfamethoxazole, clindamycin, medimycin, and furazolidone.

11.
ACS Appl Mater Interfaces ; 15(26): 31552-31560, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37350737

RESUMEN

Solid-state lithium batteries with solid polymer electrolytes have recently attracted extensive attention due to their promising potential in high energy density and safety. However, the principal issues plaguing the solid polymer electrolytes are their restricted ionic conductivities at ambient temperature and the limited tolerance to the widely used high-voltage cathodes (such as LiNi0.8Mn0.1Co0.1O2, NCM811), thus limiting their practical applications seriously. In this regard, a superior polymer-in-salt solid electrolyte from poly(caprolactone)-graft-polyrotaxane (PGPE) is developed for high-voltage lithium batteries operated at room temperature. The PGPE displays remarkable electrochemical properties at room temperature, with an exceptional ionic conductivity of 4.89 × 10-4 S cm-1 and a lithium-ion transference number of approximately 0.64, stemming from the rapid segmental motions of PCL sidechains by the enhanced dynamics of the cyclic molecules along the axial polymer chain of polyrotaxane. More importantly, the PGPE demonstrates a high electrochemical oxidation voltage of ∼4.7 V, suggesting the excellent electrochemical stability of PGPE against the NCM811-based cathode. Owing to the dense LiF-rich CEI self-generated on the NCM811 particles in the cathode, the transition metal ion diffusion is successfully constrained and the PGPE is well protected from continuous decomposition. The PGPE also shows superior interfacial stability between the metallic Li and the electrolyte. As a result, the all-solid-state NCM811|PGPE|Li cell exhibits superior discharge capacity (196 mAh g-1) and extraordinary long-term cycling stability (74% capacity retention at 150 cycles) at 30 °C.

12.
Poult Sci ; 101(4): 101739, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35220033

RESUMEN

Pre-slaughter transport stress could induce multiple comprehensive variations in physiological and metabolic parameters of broilers. However, the entire metabolomics of pre-slaughter transport stress and supplementation of exogenous energy regulatory substances on broilers is still poorly understood. The metabolome characteristics of broilers subjected to 3 h pre-slaughter transport stress combined with 1,200 mg/kg guanidinoacetic acid (GAA1,200) supplementation were analyzed using gas chromatography-mass spectrometry (GC-MS) in this study. The results showed that, compared to the control group (no transport), 3 h pre-slaughter transport stress (T3h) decreased creatine (Cr), phosphocreatine (PCr) and adenosine triphosphate (ATP), and increased adenosine diphosphate (ADP), adenosine monophosphate (AMP) and the ratio of AMP to ATP in pectoralis muscle (PM) of broilers by high performance liquid chromatography (HPLC) analysis. However, GAA1,200 supplementation reversed the negative effects induced by 3 h pre-slaughter transport stress. Besides, GAA1,200 supplementation elevated mRNA expression of creatine transporter in PM. Our metabolomics approaches demonstrated that 38 and 48 significant metabolites were separately identified between the control group and T3h group, and T3h group and 3 h pre-slaughter transport stress combined with GAA1,200 supplementation group using the standard of variable importance in the projection values >1 and P < 0.05. Among these, the metabolites involved in amino acid metabolism (alanine, glycine, serine, threonine, cysteine , methionine, phenylalanine, tyrosine, and tryptophan), oxidative stress (3-methylhistidine, 1-methylhistidine and glutathione), non-protein amino acid (citrulline) metabolism, and energy metabolism (Cr, PCr, sarcosine, and glycocyamine) were confirmed through pathway enrichment analysis, which could be chosen as suitable candidate targets for further analysis of the effects of exogenous energy substances on broilers subjected to transport stress.


Asunto(s)
Alimentación Animal , Pollos , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Alimentación Animal/análisis , Animales , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos/análisis , Carne/análisis , Metabolómica , Músculos Pectorales/metabolismo
13.
Inflamm Res ; 71(1): 141-155, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34854954

RESUMEN

OBJECTIVE: The CagA (cytotoxin-related gene A, CagA) protein is an important factor for the pathogenicity of Helicobacter pylori (H. pylori). Although H. pylori has previously been shown to activate the NLRP3 inflammasome, it remains unclear what role CagA plays in this process. In the current study, we aimed to investigate the effect of CagA on NLRP3 activation and how it is linked to gastric cancer cell migration and invasion. METHODS: CagA positive H. pylori strain (Hp/CagA+) and CagA gene knockout mutant (Hp/ΔCagA) infected and the pcDNA3.1/CagA plasmid transfected gastric epithelial cell lines, respectively. The morphological alterations of cells under a microscope; the NLRP3 inflammasome-related markers: NLRP3, caspase-1, and ASC protein levels were detected by Western blot, IL-1ß and IL-18 levels were determined by ELISA; cell migration and invasion were determined by transwell assay; and the pyroptosis levels and intracellular ROS were determined by flow cytometry analysis. Then, pretreated with 5 mM NAC for 2 h and subsequently transfected with the pcDNA3.1/CagA plasmid for 48 h, the effects of NAC pretreatment on CagA-induced NLRP3 inflammasome-related markers expression and cell pyroptosis were examined, finally assessed the effect of CagA on migration and invasion in NLRP3-silenced cells. RESULTS: We found that Hp/CagA+ strain infection and pcDNA3.1/CagA vector transfection result in NLRP3 inflammasome activation, generation of intracellular ROS, and increased invasion and migration of gastric cancer cells. Moreover, we found that ROS inhibition via NAC effectively blocks NLRP3 activation and pyroptosis. Silencing of NLRP3 reduces the effects of CagA on gastric cancer cell migration and invasion. CONCLUSION: Our study shows that CagA can promote the invasion and migration of gastric cancer cells by activating NLRP3 inflammasome pathway. These findings provide novel insights into the mechanism of gastric cancer induction by H. pylori.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Movimiento Celular , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
14.
ACS Appl Mater Interfaces ; 13(25): 29676-29690, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34138532

RESUMEN

Electrolyte additives have been extensively used as an economical approach to improve Li-ion battery (LIB) performances; however, their selection has been conducted on an Edisonian trial-and-error basis, with little knowledge about the relationship between their molecular structure and reactivity as well as the electrochemical performance. In this work, a series of phosphate additives with systematic structural variation were introduced with the purpose of revealing the significance of additive structure in building a robust interphase and electrochemical property in LIBs. By comparing the interphases formed by tripropyl phosphate (TPPC1), triallyl phosphate (TPPC2), and tripropargyl phosphate (TPPC3) containing alkane, alkene, and alkyne functionalities, respectively, theoretical calculations and comprehensive characterizations reveal that TPPC3 and TPPC2 exhibit more reactivity than TPPC1, and both can preferentially decompose both reductively and oxidatively, forming dense and protective interphases on both the cathode and anode, but they lead to different long-term cycling behaviors at 55 °C. We herein correlate the electrochemical performance of the high energy Li-ion cells to the molecular structure of these additives, and it is found that the effectiveness of TPPC1, TPPC2, and TPPC3 in preventing gas generation, suppressing interfacial resistance growth, and improving cycling stability can be described as TPPC3 > TPPC2 > TPPC1, i.e., the most unsaturated additive TPPC3 is the most effective additive among them. The established correlation between structure-reactivity and interphase-performance will doubtlessly construct the principle foundation for the rational design of new electrolyte components for future battery chemistry.

15.
Radiology ; 297(3): 597-605, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32960726

RESUMEN

Background The 2019 Bosniak classification (version 2019) of cystic renal masses (CRMs) provides a systematic update to the currently used 2005 Bosniak classification (version 2005). Further validation is required before widespread application. Purpose To evaluate the interobserver agreement of MRI criteria, the impact of readers' experience, and the diagnostic performance between version 2019 and version 2005. Materials and Methods From January 2009 to December 2018, consecutive patients with CRM who had undergone renal MRI and surgical-pathologic examination were included in this retrospective study. On the basis of version 2019 and version 2005, all CRMs were independently classified by eight radiologists with different levels of experience. By using multirater κ statistics, interobserver agreement was evaluated with comparisons between classifications and between senior and junior radiologists. Diagnostic performance between classifications by dichotomizing classes I-IV into lower (I-IIF) and higher (III-IV) classes was compared by using the McNemar test. P < .05 was considered to indicate a statistically significant difference. Results A total of 207 patients (mean age ± standard deviation, 49 years ± 12; 139 male and 68 female patients) with CRMs were included. Overall, interobserver agreement was higher with version 2019 than version 2005 (weighted κ = 0.64 vs 0.50, respectively; P < .001). Interobserver agreement between senior and junior radiologists did not differ between version 2019 (weighted κ = 0.65 vs 0.64, respectively; P = .71) and version 2005 (weighted κ = 0.54 vs 0.46; P < .001). Diagnostic specificity for malignancy was higher with version 2019 than with version 2005 (83% [92 of 111] vs 68% [75 of 111], respectively; P < .001), without any difference in sensitivity (89% [85 of 96] vs 84% [81 of 96]; P = .34). Conclusion In the updated Bosniak classification, interobserver agreement improved and was unaffected by observers' experience. The diagnostic performance with version 2019 was superior to that with version 2005, with higher specificity. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Choyke in this issue.


Asunto(s)
Competencia Clínica , Enfermedades Renales Quísticas/clasificación , Enfermedades Renales Quísticas/diagnóstico por imagen , Imagen por Resonancia Magnética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Estudios Retrospectivos
16.
Nano Lett ; 20(4): 2724-2732, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32149520

RESUMEN

Three-dimensional (3D) lithiophilic host is one of the most effective ways to regulate the Li dendrites and volume change in working Li metal anode. The state-of-the-art 3D lithiophilic hosts are facing one main challenge in that the lithiophilic layer would melt or fall off in high-temperature environment when using the thermal infusion method. Herein, a 3D porous CuZn alloy host containing anchored lithiophilic Zn sites is employed to prestore Li using the thermal infusion strategy, and a 3D composite Li is thus fabricated. Benefiting from the lithiophilic Zn sites with a strong adsorption capacity with Li, which is based on the analyses of the nucleation overpotential, binding energy calculation, and the operando optical observation of Li plating/stripping behaviors, facile uniform Li nucleation and dendrite-free Li deposition could be achieved in the interior of the 3D porous CuZn alloy host and the 3D composite Li shows remarkable enhancement in electrochemical performance.

17.
Nanoscale ; 11(38): 17630-17636, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31538168

RESUMEN

The recent development of flexible and wearable electronic devices has increased the demand for energy storage devices with excellent flexibility and structural stability. Aqueous zinc-ion batteries (ZIBs) are promising energy storage devices due to their low cost, high safety, and eco-friendliness. Therefore, flexible ZIBs have to be considered. Herein, we design the flexible all-in-one ZIBs, where the reduced graphene oxide/polyaniline (rGO/PANI) cathode, cellulose nanofiber (CNF) separator, and exfoliated graphene (EG)/Zn anode are integrated together using an all-freeze-casting strategy. The continuous seamless connection of such all-in-one ZIBs can avoid displacing and detaching between the electrodes and separator under different bending states and improve the load-transfer capacity and interface strength between the neighboring component layers. As a result, the all-in-one ZIBs show excellent flexibility and superior electrochemical stability under different bending states.

18.
Mitochondrial DNA B Resour ; 5(1): 344-345, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33366549

RESUMEN

The complete mitochondrial genome of Sinibotia superciliaris was determined in this study. It contained 13 protein-coding genes (PCGs), 22 tRNA, 2 rRNAs, and a control region with the base composition 31.57% A, 27.18% C, 25.52% T, and 15.74% G. Here we compared this newly determined mitogenome with another one from the same species reported before. The variable sites and the genetic distances between the two mitogenomes were 20 bp and 0.1%. 15 variable sites were occurred in the PCGs. The results from the phylogenetic analysis showed that the genus Sinibotia is a monophyletic group and S. superciliaris demonstrate a sister relationship with Sinibotia pulchra.

19.
Small ; 14(23): e1800280, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29741805

RESUMEN

The emergence of flexible and wearable electronics has raised the demand for flexible supercapacitors with accurate sizes and aesthetic shapes. Here, a strategy is developed to prepare flexible all-in-one integrated supercapacitors by combining all-freeze-casting with typography technique. The continuous seamless connection of all-in-one supercapacitor devices enhances the load and/or electron transfer capacity and avoids displacing and detaching between their neighboring components at bending status. Therefore, such a unique structure of all-in-one integrated devices is beneficial for retaining stable electrochemical performance at different bending levels. More importantly, the sizes and aesthetic shapes of integrated supercapacitors could be controlled by the designed molds, like type matrices of typography. The molds could be assembled together and typeset randomly, achieving the controllable construction and series and/or parallel connection of several supercapacitor devices. The preparation of flexible integrated supercapacitors will pave the way for assembling programmable all-in-one energy storage devices into highly flexible electronics.

20.
Environ Sci Technol ; 52(11): 6610-6616, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29672033

RESUMEN

This study assesses the effects of long-term exposure to ambient air pollutants on inflammatory response and lung function. We selected 390 male coke oven workers with exposure to polycyclic aromatic hydrocarbons (PAHs) and fine particulate matter (PM2.5) and 115 control workers. The average duration in the exposed group was 9.10 years. The total amount of PAHs was more enriched in PM2.5 which collected from the coke oven workshops compared with the control areas. Correspondingly, the internal PAHs exposure indicated by urinary 1-hydroxypyrene (1-OHP) in the exposure group increased 25.7-fold compared to that of the control group. Moreover, the increasing level of urinary 1-OHP was associated with the decrease of forced expiratory volume in 1 s to forced vital capacity ratio (FEV1/FVC). In non-current smokers of exposure group, inverse correlation of 1-OHP with FEV1/FVC was also found. Particularly, an exposure duration-dependent decline in FEV1/FVC and mean forced expiratory flow between 25% and 75% of forced vital capacity (FEF25-75%) indicated that small airways were functionally obstructed. Furthermore, the increasing serum high-sensitivity C-reactive protein (hs-CRP) was correlated with the decline in pulmonary function in all subjects. These findings provide a clue that long-term exposure to PAHs-enriched PM2.5 impairs pulmonary function in occupational population.


Asunto(s)
Contaminantes Atmosféricos , Coque , Exposición Profesional , Hidrocarburos Policíclicos Aromáticos , Humanos , Masculino , Material Particulado , Pirenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...