Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502063

RESUMEN

Anthraquinones constitute the largest group of natural quinones, which are used as safe natural dyes and have many pharmaceutical applications. In plants, anthraquinones are biosynthesized through two main routes: the polyketide pathway and the shikimate pathway. The latter primarily forms alizarin-type anthraquinones, and the prenylation of 1,4-dihydroxy-2-naphthoic acid is the first pathway-specific step. However, the prenyltransferase responsible for this key step remains uncharacterized. In this study, the cell suspension culture of Madder (Rubia cordifolia), a plant rich in alizarin-type anthraquinones, was discovered to be capable of prenylating 1,4-dihydroxy-2-naphthoic acid to form 2-carboxyl-3-prenyl-1,4-naphthoquinone and 3-prenyl-1,4-naphthoquinone. Then, a candidate gene belonging to the UbiA superfamily, R. cordifolia  dimethylallyltransferase 1 (RcDT1), was shown to account for the prenylation activity. Substrate specificity studies revealed that the recombinant RcDT1 recognized naphthoic acids primarily, followed by 4-hydroxyl benzoic acids. The prenylation activity was strongly inhibited by 1,2- and 1,4-dihydroxynaphthalene. RcDT1 RNA interference significantly reduced the anthraquinones content in R. cordifolia callus cultures, demonstrating that RcDT1 is required for alizarin-type anthraquinones biosynthesis. The plastid localization and root-specific expression further confirmed the participation of RcDT1 in anthraquinone biosynthesis. The phylogenetic analyses of RcDT1 and functional validation of its rubiaceous homologs indicated that DHNA-prenylation activity evolved convergently in Rubiaceae via recruitment from the ubiquinone biosynthetic pathway. Our results demonstrate that RcDT1 catalyzes the first pathway-specific step of alizarin-type anthraquinones biosynthesis in R. cordifolia. These findings will have profound implications for understanding the biosynthetic process of the anthraquinone ring derived from the shikimate pathway.

2.
Plant Dis ; 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37807087

RESUMEN

Pinelliae rhizoma is the dried tuber of Pinellia ternata (Thunb.) Breit., and has been used for thousand of years in traditional Chinese medicine as an antivomit, anticough, and analgesic (Ying et al. 2007). In September 2022, P. ternata planted in Bijie, Guizhou Province, showed severe soft rot symptoms with incidence of about 50%. The diseased plants showed water-soaked symptoms and produced a foul soft rot smell, and finally the whole plant collapsed. Lesions were first observed at the tip of a leaf or wound, and symptoms of the disease spread rapidly, with the entire plant collapsing and dying within a week. The tissue sections of six plants with typical symptoms from the diseased field were disinfected with 75% ethanol for 30 seconds and 0.3% NaClO for 3 minutes. The tissue sections were then washed with sterile water for three times. A small piece of tissue (5x5mm) was removed from the edge of the lesion and mashed in a 1.5 ml centrifuge tube containing 20 µl of sterile water. The tissue liquid was then diluted 100 times with prepared sterile water. The bacteria were streaked on LB (tryptone/yeast extract/NaCl) AGAR medium and cultured at 37°C for 48 h (Kravitz, 1962). Isolated colonies were streaked on Luria-Bertani (LB) AGAR medium to obtain single colonies for further identification. A total of 13 representative isolates were selected for PCR amplification using primers targeting the conserved region of the 16S rDNA gene, which were in turn analyzed via the BLASTn search engine on the NCBI website. The results of the analysis revealed that seven of the isolates were similar to P. aroidearum strain SCRI 109 (GenBank accession no. NR_159926), with strain BX13 exhibiting the highest similarity to P. aroidearum (99.93% similarity), and therefore, this strain was selected for further investigation. The strain BX13 was incubated on LB solid medium for 24 h at 37 °C, and the single colonies were creamy white, translucent and round, slightly elevated in the center, with smooth surfaces and neat edges (Figure S1 B1). Then,the Scanning Electron Microscope revealed that the thalli of strain BX13 were short rod-shaped and somewhat blunt round at both ends (Figure S1 B2). The steward genes (icdA, gapA, proA) of BX13 were amplified and sequenced for further identification. The sequences of the amplified fragments were all deposited in GenBank 16S rDNA (OQ874505,) icdA (OQ954122),gapA (OQ954123), proA (OQ954124). Sequence analysis using the BLASTn program at the NCBI revealed gene icdA, gapA, and proA had 100% identity to P. aroidearum strain QJ002 (GenBank accession no. CP090597).. Meanwhile, a maximum likelihood phylogenetic tree was constructed based on multigene sequence analysis of BX13 16S rDNA and steward genes (gapA, icdA, proA) by MEGA X (Liang et al. 2022). Phylogenetic results also showed that BX13 and P. aroidearum strain QJ002 gathered in the same clade(Figure S2). Accordingly, the morphological and molecular characteristics of strain BX13 indicate that it is P. aroidearum. (Nabhan S., et al.2013,Xu et al. 2020). In order to confirm the pathogenicity of strain BX13, a bacterial suspension containing 107 CFU/ml (10 ml/ inoculation point) was injected into the base of a one-week-old P. ternata stems, control seedlings were inoculated with sterile water, inoculated and control seedlings (each of six plants) were kept in a growth chamber maintained at 26°C with a relative humidity range of 70% to 80%. Plants were watered as needed. After 3 days, the stem base of the plants inoculated with bacteria solution showed water-soaked necrosis and stems began to rot, while the plants inoculated with water did not show this symptom. The strains were then successfully re-isolated from the symptomatic P. ternata. Then the strain re-isolated was identified using the BLASTn program at the NCBI and found that it has the same 16S rDNA, icdA, gapA, and proA sequences as strain BX13, thus completing the Koch's postulates. To our knowledge, this is the first report of P. aroidearum causing P. ternata soft rot in China, which expands its known host range. Accordingly, this study provides essential information for the breeding of P. ternata resistant to bacterial soft rot and the development of control measures in China.

3.
Front Plant Sci ; 14: 1160571, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180378

RESUMEN

Shikonin derivatives are natural naphthoquinone compounds and the main bioactive components produced by several boraginaceous plants, such as Lithospermum erythrorhizon and Arnebia euchroma. Phytochemical studies utilizing both L. erythrorhizon and A. euchroma cultured cells indicate the existence of a competing route branching out from the shikonin biosynthetic pathway to shikonofuran. A previous study has shown that the branch point is the transformation from (Z)-3''-hydroxy-geranylhydroquinone to an aldehyde intermediate (E)-3''-oxo-geranylhydroquinone. However, the gene encoding the oxidoreductase that catalyzes the branch reaction remains unidentified. In this study, we discovered a candidate gene belonging to the cinnamyl alcohol dehydrogenase family, AeHGO, through coexpression analysis of transcriptome data sets of shikonin-proficient and shikonin-deficient cell lines of A. euchroma. In biochemical assays, purified AeHGO protein reversibly oxidized (Z)-3''-hydroxy-geranylhydroquinone to produce (E)-3''-oxo-geranylhydroquinone followed by reversibly reducing (E)-3''-oxo-geranylhydroquinone to (E)-3''-hydroxy-geranylhydroquinone, resulting in an equilibrium mixture of the three compounds. Time course analysis and kinetic parameters showed that the reduction of (E)-3''-oxo-geranylhydroquinone was stereoselective and efficient in presence of NADPH, which determined that the overall reaction proceeded from (Z)-3''-hydroxy-geranylhydroquinone to (E)-3''-hydroxy-geranylhydroquinone. Considering that there is a competition between the accumulation of shikonin and shikonofuran derivatives in cultured plant cells, AeHGO is supposed to play an important role in the metabolic regulation of the shikonin biosynthetic pathway. Characterization of AeHGO should help expedite the development of metabolic engineering and synthetic biology toward production of shikonin derivatives.

4.
Plant Physiol Biochem ; 196: 587-595, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36780721

RESUMEN

Shikonin is a red naphthoquinone natural product from plants with high economical and medical values. The para-hydroxybenzoic acid geranyltransferase (PGT) catalyzes the key regulatory step of shikonin biosynthesis. PGTs from Lithospermum erythrorhizon have been well-characterized and used in industrial shikonin production. However, its perennial medicinal plant Arnebia euchroma accumulates much more pigment and the underlying mechanism remains obscure. Here, we discovered and characterized the different isoforms of AePGTs. Phylogenetic study and structure modeling suggested that the N-terminal of AePGT6 contributed to its highest activity among 7 AePGTs. Indeed, AePGT2 and AePGT3 fused with 60 amino acids from the N-terminal of AePGT6 showed even higher activity than AePGT6, while native AePGT2 and AePGT3 don't have catalytic activity. Our result not only provided a mechanistic explanation of high shikonin contents in Arnebia euchroma but also engineered a best-performing PGT to achieve the highest-to-date production of 3-geranyl-4-hydroxybenzoate acid, an intermedium of shikonin.


Asunto(s)
Boraginaceae , Naftoquinonas , Filogenia , Boraginaceae/genética , Boraginaceae/metabolismo , Naftoquinonas/química , Naftoquinonas/metabolismo , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo
5.
Sci Adv ; 9(1): eabq3951, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608120

RESUMEN

Metastases arise from rare cancer cells that successfully adapt to the diverse microenvironments encountered during dissemination through the bloodstream and colonization of distant tissues. How cancer cells acquire the ability to appropriately respond to microenvironmental stimuli remains largely unexplored. Here, we report an epigenetic pliancy mechanism that allows cancer cells to successfully metastasize. We find that a decline in the activity of the transcriptional repressor ZBTB18 defines metastasis-competent cancer cells in mouse models. Restoration of ZBTB18 activity reduces chromatin accessibility at the promoters of genes that drive metastasis, such as Tgfbr2, and this prevents TGFß1 pathway activation and consequently reduces cell migration and invasion. Besides repressing the expression of metastatic genes, ZBTB18 also induces widespread chromatin closing, a global epigenetic adaptation previously linked to reduced phenotypic flexibility. Thus, ZBTB18 is a potent chromatin regulator, and the loss of its activity enhances chromatin accessibility and transcriptional adaptations that promote the phenotypic changes required for metastasis.


Asunto(s)
Cromatina , Proteínas Represoras , Animales , Ratones , Cromatina/genética , Epigénesis Genética , Proteínas Represoras/genética
6.
J Neurochem ; 165(2): 131-148, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36227087

RESUMEN

Heat shock factor 1 (HSF1) is a master stress-responsive transcriptional factor, protecting cells from death. However, its gene regulation in vivo in the brain in response to neuronal stimuli remains elusive. Here, we investigated its direct regulation of the brain-derived neurotrophic factor (BDNF) gene (Bdnf) in response to acute neuronal stress stimuli in the brain. The results of immunohistochemistry and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) showed that administration of kainic acid (a glutamate receptor agonist inducing excitotoxity) to young adult mice induced HSF1 nuclear translocation and its binding to multiple Bdnf promoters in the hippocampus. Footshock, a physical stressor used for learning, also induced HSF1 binding to selected Bdnf promoters I and IV. This is, to our knowledge, the first demonstration of HSF1 gene regulation in response to neuronal stimuli in the hippocampus in vivo. HSF1 binding sites (HSEs) in Bdnf promoters I and IV were also detected when immunoprecipitated by an antibody of phosphorylated (p)CREB (cAMP-responsive element-binding protein), suggesting their possible interplay in acute stress-induced Bdnf transcription. Interestingly, their promoter binding patterns differed by KA and footshock, suggesting that HSF1 and pCREB orchestrate to render fine-tuned promoter control depending on the types of stress. Further, HSF1 overexpression increased Bdnf promoter activity in a luciferase assay, while virus infection of constitutively active-form HSF1 increased levels of BDNF mRNA and protein in vitro in primary cultured neurons. These results indicated that HSF1 activation of Bdnf promoter was sufficient to induce BDNF expression. Taken together, these results suggest that HSF1 promoter-specific control of Bdnf gene regulation plays an important role in neuronal protection and plasticity in the hippocampus in response to acute stress, possibly interplaying with pCREB.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Ratones , Animales , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipocampo/metabolismo , Respuesta al Choque Térmico
7.
Hortic Res ; 9: uhac152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36168544

RESUMEN

O-methyltransferases play essential roles in producing structural diversity and improving the biological properties of benzylisoquinoline alkaloids (BIAs) in plants. In this study, Corydalis yanhusuo, a plant used in traditional Chinese medicine due to the analgesic effects of its BIA-active compounds, was employed to analyze the catalytic characteristics of O-methyltransferases in the formation of BIA diversity. Seven genes encoding O-methyltransferases were cloned, and functionally characterized using seven potential BIA substrates. Specifically, an O-methyltransferase (CyOMT2) with highly efficient catalytic activity of both 4'- and 6-O-methylations of 1-BIAs was found. CyOMT6 was found to perform two sequential methylations at both 9- and 2-positions of the essential intermediate of tetrahydroprotoberberines, (S)-scoulerine. Two O-methyltransferases (CyOMT5 and CyOMT7) with wide substrate promiscuity were found, with the 2-position of tetrahydroprotoberberines as the preferential catalytic site for CyOMT5 (named scoulerine 2-O-methyltransferase) and the 6-position of 1-BIAs as the preferential site for CyOMT7. In addition, results of integrated phylogenetic molecular docking analysis and site-directed mutation suggested that residues at sites 172, 306, 313, and 314 in CyOMT5 are important for enzyme promiscuity related to O-methylations at the 6- and 7-positions of isoquinoline. Cys at site 253 in CyOMT2 was proved to promote the methylation activity of the 6-position and to expand substrate scopes. This work provides insight into O-methyltransferases in producing BIA diversity in C. yanhusuo and genetic elements for producing BIAs by metabolic engineering and synthetic biology.

8.
Hortic Res ; 9: uhac140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072835

RESUMEN

Isatis indigotica accumulates several active substances, including C-glycosylflavonoids, which have important pharmacological activities and health benefits. However, enzymes catalyzing the methylation step of C-glycosylflavonoids in I. indigotica remain unknown. In this study, three O-methyltransferases (OMTs) were identified from I. indigotica that have the capacity for O-methylation of the C-glycosylflavonoid isoorientin. The Type II OMTs IiOMT1 and IiOMT2 efficiently catalyze isoorientin to form isoscoparin, and decorate one of the aromatic vicinal hydroxyl groups on flavones and methylate the C6, C8, and 3'-hydroxyl positions to form oroxylin A, wogonin, and chrysoeriol, respectively. However, the Type I OMT IiOMT3 exhibited broader substrate promiscuity and methylated the C7 and 3'-hydroxyl positions of flavonoids. Further site-directed mutagenesis studies demonstrated that five amino acids of IiOMT1/IiOMT2 (D121/D100, D173/D149, A174/A150R, N200/N176, and D248/D233) were critical residues for their catalytic activity. Additionally, only transient overexpression of Type II OMTs IiOMT1 and IiOMT2 in Nicotiana benthamiana significantly increased isoscoparin accumulation, indicating that the Type II OMTs IiOMT1 and IiOMT2 could catalyze the methylation step of C-glycosylflavonoid, isoorientin at the 3'-hydroxyl position. This study provides insights into the biosynthesis of methylated C-glycosylflavonoids, and IiOMTs could be promising catalysts in the synthesis of bioactive compounds.

9.
Front Plant Sci ; 13: 920826, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755641

RESUMEN

Arnebiae Radix is a traditional medicine with pleiotropic properties that has been used for several 100 years. There are five species of Arnebia in China, and the two species Arnebia euchroma and Arnebia guttata are the source plants of Arnebiae Radix according to the Chinese Pharmacopoeia. Molecular markers that permit species identification and facilitate studies of the genetic diversity and divergence of the wild populations of these two source plants have not yet been developed. Here, we sequenced the chloroplast genomes of 56 samples of five Arnebia species using genome skimming methods. The Arnebia chloroplast genomes exhibited quadripartite structures with lengths from 149,539 and 152,040 bp. Three variable markers (rps16-trnQ, ndhF-rpl32, and ycf1b) were identified, and these markers exhibited more variable sites than universal chloroplast markers. The phylogenetic relationships among the five Arnebia species were completely resolved using the whole chloroplast genome sequences. Arnebia arose during the Oligocene and diversified in the middle Miocene; this coincided with two geological events during the late Oligocene and early Miocene: warming and the progressive uplift of Tianshan and the Himalayas. Our analyses revealed that A. euchroma and A. guttata have high levels of genetic diversity and comprise two and three subclades, respectively. The two clades of A. euchroma exhibited significant genetic differences and diverged at 10.18 Ma in the middle Miocene. Three clades of A. guttata diverged in the Pleistocene. The results provided new insight into evolutionary history of Arnebia species and promoted the conservation and exploitation of A. euchroma and A. guttata.

10.
Nat Commun ; 13(1): 2370, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501350

RESUMEN

Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.


Asunto(s)
Caquexia , Neoplasias , Animales , Atrofia/metabolismo , Caquexia/metabolismo , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/metabolismo , Receptores de Superficie Celular/metabolismo
11.
J Agric Food Chem ; 70(21): 6328-6353, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35593935

RESUMEN

HMOs (human milk oligosaccharides) are the third most important nutrient in breast milk. As complex glycans, HMOs play an important role in regulating neonatal intestinal immunity, resisting viral and bacterial infections, displaying anti-inflammatory characteristics, and promoting brain development. Although there have been some previous reports of HMOs, a detailed literature review summarizing the structure-activity relationships and dose-dependent effects of HMOs is lacking. Hence, after introducing the structures and synthetic pathways of HMOs, this review summarizes and categorizes identified structure-function relationships of HMOs. Differential mechanisms of different structural HMOs utilization by microorganisms are summarized. This review also emphasizes the recent advances in the interactions between different health benefits and the variance of dosage effect based on in vitro cell tests, animal experiments, and human intervention studies. The potential relationships between the chemical structure, the dosage selection, and the physiological properties of HMOs as functional foods are vital for further understanding of HMOs and their future applications.


Asunto(s)
Leche Humana , Oligosacáridos , Animales , Humanos , Intestinos/microbiología , Leche Humana/química , Oligosacáridos/química , Relación Estructura-Actividad
12.
iScience ; 25(4): 104030, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35345459

RESUMEN

Bergamotenes are bicyclo[3.1.1]heptane sesquiterpenes found abundantly in plants and fungi. Known bergamotene derivatives all possess (2S,6S)-bergamotene backbone. In this study, two (+)-α-trans-bergamotene derivatives (1 and 2) with unusual (2R,6R) configuration were isolated and elucidated from marine fungus Nectria sp. HLS206. The first (+)-α-trans-bergamotene synthase NsBERS was characterized using genome mining and heterologous expression-based strategies. Based on homology search, we characterized another (+)-α-trans-bergamotene synthase LsBERS from Lachnellula suecica and an (+)-α-bisabolol synthase BcBOS from Botrytis cinerea. We proposed that the cyclization mechanism of (+)-α-trans-bergamotene involved endo-anti cyclization of left-handed helix farnesyl pyrophosphate by (6R)-bisabolyl cation, which was supported by molecular docking. The biosynthesis-based volatiles (3-6) produced by heterologous fungal expression systems elicited significant electroantennographic responses of Helicoverpa armigera and Spodoptera frugiperda, respectively, suggesting their potential in biocontrol of these pests. This work enriches diversity of sesquiterpenoids and fungal sesquiterpene synthases, providing insight into the enzymatic mechanism of formation of enantiomeric sesquiterpenes.

13.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6810-6816, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36604930

RESUMEN

"Medicine and food homology" is a precious health care concept rooted in the culture of Chinese medicine and plays an important role in the development of the national health industry. It is consistent with the current global trend that food and medicine are mutually penetrating. Accordingly, the Chinese medicinal materials with edible values have an increasing production scale. Especially, in the context that the development of Chinese medicinal materials is switching from pursuing quantity to quality, the food field has become the main market for the new production capacity of Chinese medicinal materials, which has presented a broad prospect. However, the quality standards of raw materials, production methods, and administration ways vary between the materials for edible and medicinal purposes. Specifically, the food for medicinal use on the market cannot meet the quality standards of medicinal mate-rials, while the medicinal materials fail to meet the taste requirements as food. As a result, these problems cause difficulties in market circulation and supervision. In this paper, we analyzed the formation of Chinese medicinal materials with edible values, compared the food with medicinal value, common food, and functional food, and analyzed the different quality requirements of Chinese medicinal materials used in different scenarios. Further, we advised the differential development of Chinese medicinal materials in different directions(edible or medicinal use) from production to supervision. Including:(1) In the variety registration of Chinese medicinal materials with edible values, the variety breeding direction should be announced according to the requirements that medicinal materials care more about the content of active ingredients and food use materials preferentially need to meet the requirements of edible palatability.(2) Differentiation can be reflected in the selection of cultivation mode and planting and processing technology of medicinal materials, The differential production technical specification of medicinal materials with edible values should be developed. Such as the "simulated cultivation" mode is encouraged in the plant of medicinal materials to ensure its quality and the strict management of inputs and sufficient cultivation years should be guaranteed. While for edible medicinal materials, more kinds of cultivation techniques can be selected according to their processing methods.(3) The market supervision of medicinal materials with edible values should be guided by the purpose of their sales and use, which depends on the accurately recognize of the relationship between the properties of medicinal materials with edible values and the situation of pharmacopeia collection.(4) During publicity, when used as ordinary food and health food medi-cinal materials, it should be noticed that the publicity of the product's efficacy must meet the requirements of corresponding regulations.


Asunto(s)
Medicamentos Herbarios Chinos , Plantas Medicinales , Humanos , Medicina Tradicional China , Fitomejoramiento , Alimentos , China
14.
Cancer Res ; 81(22): 5666-5677, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34385183

RESUMEN

Collagen remodeling contributes to many physiologic and pathologic processes. In primary tumors, the linearization of collagen fibers promotes cancer cell invasion and metastasis and is indicative of poor prognosis. However, it remains unknown whether there are endogenous inhibitors of collagen linearization that could be exploited therapeutically. Here, we show that collagen linearization is controlled by two secreted matricellular proteins with antagonistic functions. Specifically, WISP1 was secreted by cancer cells, bound to type I collagen (Col I), and linearized Col I via its cysteine-rich C-terminal (CT) domain. In contrast, WISP2, which lacks a CT domain, inhibited Col I linearization by preventing WISP1-Col I binding. Analysis of patient data revealed that WISP2 expression is lower in most solid tumors, in comparison with normal tissues. Consequently, genetic or pharmacologic restoration of higher WISP2 levels impaired collagen linearization and prevented tumor cell invasion and metastasis in vivo in models of human and murine breast cancer. Thus, this study uncovers WISP2 as the first inhibitor of collagen linearization ever identified and reveals that collagen architecture can be normalized and metastasis inhibited by therapeutically restoring a high WISP2:WISP1 ratio. SIGNIFICANCE: Two secreted factors, WISP1 and WISP2, antagonistically regulate collagen linearization, and therapeutically increasing the WISP2:WISP1 ratio in tumors limits collagen linearization and inhibits metastasis.See related commentary by Barcus and Longmore, p. 5611.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/prevención & control , Proteínas CCN de Señalización Intercelular/antagonistas & inhibidores , Proteínas CCN de Señalización Intercelular/metabolismo , Colágeno Tipo I/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/prevención & control , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas CCN de Señalización Intercelular/genética , Movimiento Celular , Proliferación Celular , Colágeno Tipo I/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Invasividad Neoplásica , Pronóstico , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Zhongguo Zhong Yao Za Zhi ; 46(9): 2182-2189, 2021 May.
Artículo en Chino | MEDLINE | ID: mdl-34047119

RESUMEN

Carboxyl CoA ligases(CCLs) is an important branch of adenylate synthetase gene family, which mainly has two-step catalytic reactions. Firstly, in the presence of adenosine triphosphate, it can catalyze the pyrophosphorylation of carboxylateswith diffe-rent structures to form corresponding acyl adenosine monophosphate intermediates. Secondly, adenosine monophosphate was replaced by free electrons in the mercaptan group of enzyme A or other acyl receptors by nucleophilic attack to form thioesters. In this study, on the basis of the transcriptome database of Arnebia euchroma, two genes were selected, named AeCCL5(XP_019237476.1) and AeCCL7(XP_019237476.1). Bioinformatics analysis showed that their relative molecular weights were 60.569 kDa and 60.928 kDa, theoretical PI were 8.59 and 8.92, respectively. They both have transmembrane domains but without signal peptide. By multiple sequence alignment and phylogenetic tree analysis, we found that the similarity between AeCCLs and other plant homologous proteins was not high, and the substrate binding sites of AeCCLs were not highly conserved. The reasons might be that the sequence and structure need to adapt to the changes of new substrates in the process of evolution. In this study, the full-length of AeCCL5 and AecCCL7 were cloned into the expression vector pCDFDuet-1. The proteins of AeCCL5 and AeCCL7 with His-tag were expressed in Escherichia coli. The proteins of AeCCL5 and AeCCL7 were purified by nickel column. In vitro enzymatic reactions proved that both AeCCL5 and AeCCL7 can participate in the upstream phenylpropane pathway of shikonin biosynthesisby catalyzing 4-coumaric acid to produce 4-coumarin-CoA, and then to synthesis p-hydroxybenzoic acid, which is an important precursor of shikonin biosynthesis in A. euchroma.


Asunto(s)
Boraginaceae , Coenzima A Ligasas , Boraginaceae/genética , Clonación Molecular , Coenzima A , Coenzima A Ligasas/genética , Ligasas , Filogenia
16.
Zhongguo Zhong Yao Za Zhi ; 46(8): 1858-1863, 2021 Apr.
Artículo en Chino | MEDLINE | ID: mdl-33982492

RESUMEN

As the most advanced environment-friendly production model in the international society, ecological agriculture of Chinese materia medica(CMM) is the only way for the development of modern agriculture. With the proposal of the declaration on ecolo-gical agriculture of CMM, "Don't grab land from farmland, don't be enemies of grass and insects, don't be afraid of barren slopes and forests, and live up to the green and green mountains", the ecological planting of CMM has blossomed all over the country, and formed a scientific theory, technology and model. Based on the theory and method of economics, this paper expounds the comprehensive benefits and development advantages of ecological agriculture of CMM from the perspectives of farmers(producers), patients(consumers) and the country. From the perspective of medicinal farmers, the input and output income of conventional agriculture and ecological agriculture of CMM such as Panax ginseng, Astragalus propinquus, Atractylodes lancea, and Bupleurum chinense were compared, and it was found that ecological agriculture of CMM had obvious advantages in net income, average annual income and input-output ratio, which could better promote farmers' income. From the perspective of patients, according to the same dose, the content of active ingredients in ecologically planted CMMs is significantly higher than that in conventionally-planted herbs, and the amount of effective substances taken by patients is also higher, so as to achieve better therapeutic effect. At the national level, ecological planting of CMM is the key to ensuring the high-quality development of CMM industry, increasing farmers' income, ensuring the safety of people's drug use and promoting the sustainable development of agriculture. It is also an important part of realizing the harmonious development of economy, society and environment and promoting ecological civilization. In general, the declaration on ecological agriculture of CMM embo-dies the core characteristics and goals of ecological agriculture, and also points of the path and vision of ecological agriculture of CMM in the future. The declaration will guide production practice, promote the benefit of farmers, and lay the foundation for the sustainable development of CMM industry.


Asunto(s)
Medicamentos Herbarios Chinos , Materia Medica , Plantas Medicinales , Agricultura , Humanos , Medicina Tradicional China
17.
Zhongguo Zhong Yao Za Zhi ; 46(8): 1927-1934, 2021 Apr.
Artículo en Chino | MEDLINE | ID: mdl-33982501

RESUMEN

The study is aimed through field experiments to study the effect of combined application of organic and chemical fertilizers on the growth and quality of Salvia miltiorrhiza, provide ideas for reducing fertilization while increasing the efficiency as well as improving the quality of produces. The experiment included 6 treatments viz., no fertilization(CK), full application of chemical fertilizer(F), 25% orga-nic fertilizer with 75% chemical fertilizer(M25), 50% organic fertilizer with 50% chemical fertilizer(M50), 75% organic fertilizer with 25% chemical fertilizer(M75), and fully apply organic fertilizer(M100). The results showed that:(1)from the perspective of yield and economic benefits, M75 was the best and M100 second;(2)for effective components, the combined application of organic and chemical fertilizers increased the content of main water-soluble components and the total content of effective components, among which M25 and M50 were better.


Asunto(s)
Fertilizantes , Salvia miltiorrhiza , Agricultura , Fertilizantes/análisis , Nitrógeno , Suelo
18.
Zhongguo Zhong Yao Za Zhi ; 46(1): 86-93, 2021 Jan.
Artículo en Chino | MEDLINE | ID: mdl-33645056

RESUMEN

Caffeic acid and its oligomers are the main water-soluble active constituents of the traditional Chinese medicine(TCM) Arnebiae Radix. These compounds possess multiple biological activities such as antimicrobial, antioxidant, cardiovascular protective, liver protective, anti-liver fibrosis, antiviral and anticancer activities. The phenylpropanoid pathway in plants is responsible for the biosynthesis of caffeic acid and its oligomers. Glycosylation can change phenylpropanoid solubility, stability and toxic potential, as well as influencing compartmentalization and biological activity. In view of the important role played by de-glycosylation in the regulation of phenylpropanoid homeostasis, the biosynthesis of caffeic acid and its oligomers are supposed to be under the control of relative UDP-glycosyltransferases(UGTs). Through the data mining of Arnebia euchroma transcriptome, we cloned 15 full-length putative UGT genes. After recombinant expression using the prokaryotic system, the crude enzyme solution of the putative UGTs was examined for the glycosylation activities towards caffeic acid and rosmarinic acid in vitro. AeUGT_01, AeUGT_02, AeUGT_03, AeUGT_04 and AeUGT_10 were able to glycosylate caffeic acid and/or rosmarinic acid resulting in different mono-and/or di-glycosylated products in the UPLC-MS analyses. The characterized UGTs were distantly related to each other and divided into different clades of the phylogenetic tree. Based on the observation that each characterized UGT exhibited substrate or catalytic similarity with the members in their own clade, we supposed the glycosylation abilities towards caffeic acid and/or rosmarinic acid were evolved independently in different clades. The identification of caffeic acid and rosmarinic acid UGTs from A. euchroma could lead to deeper understanding of the caffeic acid oligomers biosynthesis and its regulation. Furthermore, these UGTs might be used for regiospecific glycosylation of caffeic acid and rosmarinic acid to produce bioactive compounds for potential therapeutic applications.


Asunto(s)
Boraginaceae , Glicosiltransferasas , Boraginaceae/genética , Ácidos Cafeicos , Cromatografía Liquida , Cinamatos , Clonación Molecular , Depsidos , Glicosiltransferasas/genética , Filogenia , Espectrometría de Masas en Tándem , Ácido Rosmarínico
19.
Nat Commun ; 12(1): 685, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514704

RESUMEN

Tanshinones are the bioactive nor-diterpenoid constituents of the Chinese medicinal herb Danshen (Salvia miltiorrhiza). These groups of chemicals have the characteristic furan D-ring, which differentiates them from the phenolic abietane-type diterpenoids frequently found in the Lamiaceae family. However, how the 14,16-epoxy is formed has not been elucidated. Here, we report an improved genome assembly of Danshen using a highly homozygous genotype. We identify a cytochrome P450 (CYP71D) tandem gene array through gene expansion analysis. We show that CYP71D373 and CYP71D375 catalyze hydroxylation at carbon-16 (C16) and 14,16-ether (hetero)cyclization to form the D-ring, whereas CYP71D411 catalyzes upstream hydroxylation at C20. In addition, we discover a large biosynthetic gene cluster associated with tanshinone production. Collinearity analysis indicates a more specific origin of tanshinones in Salvia genus. It illustrates the evolutionary origin of abietane-type diterpenoids and those with a furan D-ring in Lamiaceae.


Asunto(s)
Abietanos/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Evolución Molecular , Proteínas de Plantas/genética , Salvia miltiorrhiza/enzimología , Abietanos/química , Ciclización , Sistema Enzimático del Citocromo P-450/metabolismo , Medicamentos Herbarios Chinos/química , Genes de Plantas/genética , Genoma de Planta , Familia de Multigenes/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Salvia miltiorrhiza/química , Salvia miltiorrhiza/genética
20.
Zhongguo Zhong Yao Za Zhi ; 45(14): 3422-3431, 2020 Jul.
Artículo en Chino | MEDLINE | ID: mdl-32726058

RESUMEN

In this study, based on the transcriptome database of suspension cells of Arnebia euchroma, we explored two candidate cytochrome P450 enzyme genes that might relate to the shikonin biosynthesis downstream pathway when CYP76B74 sequence was referenced. We constructed interference-type hairy roots of candidate genes and cultured them. We measured the fresh weight, dry weight, total naphthoquinone content, shikonin and its derivatives content and expression levels of key enzyme genes involved in shikonin biosynthesis pathway. The effects of candidate genes on the growth and shikonin production of A. euchroma hairy roots were discussed, and the possible regulatory mechanisms that candidate genes affected shikonin synthesis were discussed. Through local Blast and phylogenetic analysis, two candidate CYP450 genes(CYP76B75 and CYP76B100) with high homology to CYP76B74 in A. euchroma were screened, and corresponding interference hairy roots were constructed. Compared with the control(RNAi-control), the fresh weight of CYP76B75 interfered hairy root(RNAi-CYP76B75) and CYP76B100 interfered hairy root(RNAi-CYP76B100) were significantly reduced, while dry weight were not affected, so the dry rate increased significantly. Except for ß-acetoxyisovalerylalkannin, which is high in three groups of hairy roots, the contents of shikonin, deoxyshikonin, acetylshikonin, ß,ß'-dimethacrylicalkannin, ß-hydroxyisovalerylshikonin,ß-hydroxyisovalerylshikonin, isobutyrylshikonin and total naphthoquinones showed a consistent pattern: RNAi-CYP76B75>RNAi-CYP76B100>RNAi-control. Among them, the synthesis of ß-hydroxyisovalerylshikonin was most significantly promoted by interfering with the expression of CYP76B75. The content of ß-hydroxyisovalerylshikonin in RNAi-CYP76B75 was 11.7 times that of RNAi-control. RESULTS:: of real-time qPCR analysis showed that compared to RNAi-control, the expression levels of AePGT gene in RNAi-CYP76B75 and RNAi-CYP76B100 were not changed significantly, and the expression levels of CYP76B74 and AeHMGR were up-regulated. In addition, the expression level of CYP76B100 in RNAi-CYP76B75 was down-regulated, whereas in RNAi-CYP76B100, the expression of CYP76B75 was significantly up-regulated. Therefore, this study confirmed that when the expression of CYP76B75 and CYP76B100 were interrupted, the growth of hairy roots were suppressed, but the synthesis of shikonin were promoted. They might increase the shikonin biosynthesis by up-regulating the expression of CYP76B74 in the hairy roots of A. euchroma.


Asunto(s)
Boraginaceae/genética , Naftoquinonas , Sistema Enzimático del Citocromo P-450 , Filogenia , Raíces de Plantas , ARN , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA