Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38854092

RESUMEN

Objectives: Participation is essential to DBS research, yet circumstances that affect diverse participation remain unclear. Here we evaluate factors impacting participation in an adaptive DBS study of Parkinson's disease (PD) and dystonia. Methods: Twenty participants were implanted with a sensing-enabled DBS device (Medtronic Summit RC+S) that allows neural data streaming in naturalistic settings and encouraged to stream as much as possible for the first five months after surgery. Using standardized baseline data obtained through neuropsychological evaluation, we compared neuropsychological and social variables to streaming hours. Results: Marital status and irritability significantly impacted streaming hours (estimate=136.7, bootstrapped ( b ) CI b =45.0 to 249.0, p b =0.016, and estimate=-95.1, CI b =-159.9 to -49.2, p b =0.027, respectively). These variables remained significant after multivariable analysis. Composite scores on verbal memory evaluations predicted the number of hours of data streamed (R 2 =0.284, estimate=67.7, CI b =20.1 to 119.9, p b =0.019). Discussion: Verbal memory impairment, irritability, and lack of a caregiver may be associated with decreased participation. Further study of factors that impact research participation is critical to the sustained inclusion of diverse participants.

2.
Res Sq ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38645256

RESUMEN

Background: Movement and tone disorders in children and young adults with cerebral palsy are a great source of disability. Deep brain stimulation (DBS) of basal ganglia targets has a major role in the treatment of isolated dystonias, but its efficacy in dyskinetic cerebral palsy (DCP) is lower, due to structural basal ganglia and thalamic damage and lack of improvement of comorbid choreoathetosis and spasticity. The cerebellum is an attractive target for DBS in DCP since it is frequently spared from hypoxic ischemic damage, it has a significant role in dystonia network models, and small studies have shown promise of dentate stimulation in improving CP-related movement and tone disorders. Methods: Ten children and young adults with DCP and disabling movement disorders with or without spasticity will undergo bilateral DBS in the dorsal dentate nucleus, with the most distal contact ending in the superior cerebellar peduncle. We will implant Medtronic Percept, a bidirectional neurostimulator that can sense and store brain activity and deliver DBS therapy. The efficacy of cerebellar DBS in improving quality of life and motor outcomes will be tested by a series of N-of-1 clinical trials. Each N-of-1 trial will consist of three blocks, each consisting of one month of effective stimulation and one month of sham stimulation in a random order with weekly motor and quality of life scales as primary and secondary outcomes. In addition, we will characterize abnormal patterns of cerebellar oscillatory activity measured by local field potentials from the intracranial electrodes related to clinical assessments and wearable monitors. Pre- and 12-month postoperative volumetric structural and functional MRI and diffusion tensor imaging will be used to identify candidate imaging markers of baseline disease severity and response to DBS. Discussion: Our goal is to test a cerebellar neuromodulation therapy that produces meaningful changes in function and well-being for people with CP, obtain a mechanistic understanding of the underlying brain network disorder, and identify physiological and imaging-based predictors of outcomes useful in planning further studies. Trial registration: ClinicalTrials.gov NCT06122675, first registered November 7, 2023.

3.
iScience ; 27(4): 109414, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38532888

RESUMEN

In pancreatic ductal adenocarcinoma (PDAC), no recurrent metastasis-specific mutation has been found, suggesting that epigenetic mechanisms, such as DNA methylation, are the major contributors of late-stage disease progression. Here, we performed the first whole-genome bisulfite sequencing (WGBS) on mouse and human PDAC organoid models to identify stage-specific and molecular subtype-specific DNA methylation signatures. With this approach, we identified thousands of differentially methylated regions (DMRs) that can distinguish between the stages and molecular subtypes of PDAC. Stage-specific DMRs are associated with genes related to nervous system development and cell-cell adhesions, and are enriched in promoters and bivalent enhancers. Subtype-specific DMRs showed hypermethylation of GATA6 foregut endoderm transcriptional networks in the squamous subtype and hypermethylation of EMT transcriptional networks in the progenitor subtype. These results indicate that aberrant DNA methylation contributes to both PDAC progression and subtype differentiation, resulting in significant and reoccurring DNA methylation patterns with diagnostic and prognostic potential.

4.
bioRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38106063

RESUMEN

Choosing whether to exert effort to obtain rewards is fundamental to human motivated behavior. However, the neural dynamics underlying the evaluation of reward and effort in humans is poorly understood. Here, we investigate this with chronic intracranial recordings from prefrontal cortex (PFC) and basal ganglia (BG; subthalamic nuclei and globus pallidus) in people with Parkinson's disease performing a decision-making task with offers that varied in levels of reward and physical effort required. This revealed dissociable neural signatures of reward and effort, with BG beta (12-20 Hz) oscillations tracking subjective effort on a single trial basis and PFC theta (4-7 Hz) signaling previous trial reward. Stimulation of PFC increased overall acceptance of offers in addition to increasing the impact of reward on choices. This work uncovers oscillatory mechanisms that guide fundamental decisions to exert effort for reward across BG and PFC, as well as supporting a causal role of PFC for such choices.

5.
J Technol Behav Sci ; 7(3): 381-395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35527798

RESUMEN

Anxiety and depression are common non-motor symptoms of Parkinson's disease (PD). Caregivers of people with PD may experience severe caregiver burden. This study explored the feasibility and potential benefits of an online mindfulness-based cognitive therapy (MBCT) intervention for improving anxiety and depressive symptoms in people with PD and their caregivers (ClinicalTrials.gov NCT04469049, 7/8/2020). People with PD or parkinsonism and anxiety and/or depressive symptoms and caregivers of people with PD participated in one of three online MBCT groups. Demographic variables, pre- and post-MBCT behavioral measures (GAD-7, PHQ-9, Five Facet Mindfulness Questionnaire - FFMQ-15, Caregiver Self-Assessment Questionnaire - CSAQ), and satisfaction surveys were collected. Descriptive statistics were used to summarize data. Pre- and post-MBCT behavioral scores were compared using mixed-effect models. Fifty-six potential participants were assessed for eligibility. Twenty-eight entered MBCT groups; all but one completed the intervention. The overall sample analyzed (22 people with PD, 4 caregivers) showed significant GAD-7 and PHQ-9 score reductions and FFMQ-15 total and observing and non-reactivity subscale score increases (all p's < 0.05). Participants with PD and anxiety symptoms (n = 14) had a significant GAD-7 score reduction; those with PD and depressive symptoms (n = 12) had a significant PHQ-9 score reduction (both p's < 0.05). Participants with PD also had a significant FFMQ-15 observing subscale score increase (p < 0.05). The caregiver sample was too small to be analyzed separately. Online MBCT is feasible (as measured by high attendance, completion rate, and participant satisfaction) and may be effective in improving anxiety and depressive symptoms in people with PD.

6.
Front Neurosci ; 15: 748165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744613

RESUMEN

Objective: Anxiety and depression are prominent non-motor symptoms of Parkinson's disease (PD), but their pathophysiology remains unclear. We sought to understand their neurophysiological correlates from chronic invasive recordings of the prefrontal cortex (PFC). Methods: We studied four patients undergoing deep brain stimulation (DBS) for their motor signs, who had comorbid mild to moderate anxiety and/or depressive symptoms. In addition to their basal ganglia leads, we placed a permanent prefrontal subdural 4-contact lead. These electrodes were attached to an investigational pulse generator with the capability to sense and store field potential signals, as well as deliver therapeutic neurostimulation. At regular intervals over 3-5 months, participants paired brief invasive neural recordings with self-ratings of symptoms related to depression and anxiety. Results: Mean age was 61 ± 7 years, mean disease duration was 11 ± 8 years and a mean Unified Parkinson's Disease Rating Scale, with part III (UPDRS-III) off medication score of 37 ± 13. Mean Beck Depression Inventory (BDI) score was 14 ± 5 and Beck Anxiety Index was 16.5 ± 5. Prefrontal cortex spectral power in the beta band correlated with patient self-ratings of symptoms of depression and anxiety, with r-values between 0.31 and 0.48. Mood scores showed negative correlation with beta spectral power in lateral locations, and positive correlation with beta spectral power in a mesial recording location, consistent with the dichotomous organization of reward networks in PFC. Interpretation: These findings suggest a physiological basis for anxiety and depression in PD, which may be useful in the development of neurostimulation paradigms for these non-motor disease features.

7.
Biomolecules ; 11(8)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34439749

RESUMEN

Pancreatic cancer is the third leading cause of cancer-related deaths in the United States. Pancreatic ductal adenocarcinoma (PDA) is the most common (90%) and aggressive type of pancreatic cancer. Genomic analyses of PDA specimens have identified the recurrent genetic mutations that drive PDA initiation and progression. However, the underlying mechanisms that further drive PDA metastasis remain elusive. Despite many attempts, no recurrent genetic mutation driving PDA metastasis has been found, suggesting that PDA metastasis is driven by epigenetic fluctuations rather than genetic factors. Therefore, establishing epigenetic mechanisms of PDA metastasis would facilitate the development of successful therapeutic interventions. In this review, we provide a comprehensive overview on the role of epigenetic mechanisms in PDA as a critical contributor on PDA progression and metastasis. In particular, we explore the recent advancements elucidating the role of nucleosome remodeling, histone modification, and DNA methylation in the process of cancer metastasis.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Epigénesis Genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Adenocarcinoma/genética , Animales , Biomarcadores/metabolismo , Carcinogénesis/genética , Diferenciación Celular , Cromatina/metabolismo , Metilación de ADN , Progresión de la Enfermedad , Epigenómica , Regulación Neoplásica de la Expresión Génica , Histonas/química , Humanos , Ratones , Mutación , Metástasis de la Neoplasia , Pronóstico , Factores de Transcripción
8.
Nat Biotechnol ; 39(9): 1078-1085, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33941932

RESUMEN

Neural recordings using invasive devices in humans can elucidate the circuits underlying brain disorders, but have so far been limited to short recordings from externalized brain leads in a hospital setting or from implanted sensing devices that provide only intermittent, brief streaming of time series data. Here, we report the use of an implantable two-way neural interface for wireless, multichannel streaming of field potentials in five individuals with Parkinson's disease (PD) for up to 15 months after implantation. Bilateral four-channel motor cortex and basal ganglia field potentials streamed at home for over 2,600 h were paired with behavioral data from wearable monitors for the neural decoding of states of inadequate or excessive movement. We validated individual-specific neurophysiological biomarkers during normal daily activities and used those patterns for adaptive deep brain stimulation (DBS). This technological approach may be widely applicable to brain disorders treatable by invasive neuromodulation.


Asunto(s)
Adaptación Fisiológica , Monitorización Neurofisiológica/métodos , Enfermedad de Parkinson/fisiopatología , Tecnología Inalámbrica , Adulto , Estimulación Encefálica Profunda , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/fisiopatología , Movimiento , Enfermedad de Parkinson/terapia , Dispositivos Electrónicos Vestibles
9.
J Neurosurg Pediatr ; 27(2): 203-212, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33254134

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the feasibility and preliminary efficacy and safety of combined bilateral ventralis oralis posterior/ventralis intermedius (Vop/Vim) deep brain stimulation (DBS) for the treatment of acquired dystonia in children and young adults. Pallidal DBS is efficacious for severe, medication-refractory isolated dystonia, providing 50%-60% long-term improvement. Unfortunately, pallidal stimulation response rates in acquired dystonia are modest and unpredictable, with frequent nonresponders. Acquired dystonia, most commonly caused by cerebral palsy, is more common than isolated dystonia in pediatric populations and is more recalcitrant to standard treatments. Given the limitations of pallidal DBS in acquired dystonia, there is a need to explore alternative brain targets. Preliminary evidence has suggested that thalamic stimulation may be efficacious for acquired dystonia. METHODS: Four participants, 3 with perinatal brain injuries and 1 with postencephalitic symptomatic dystonia, underwent bilateral Vop/Vim DBS and bimonthly evaluations for 12 months. The primary efficacy outcome was the change in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and Barry-Albright Dystonia Scale (BADS) scores between the baseline and 12-month assessments. Video documentation was used for blinded ratings. Secondary outcomes included evaluation of spasticity (Modified Ashworth Scale score), quality of life (Pediatric Quality of Life Inventory [PedsQL] and modified Unified Parkinson's Disease Rating Scale Part II [UPDRS-II] scores), and neuropsychological assessments. Adverse events were monitored for safety. RESULTS: All participants tolerated the procedure well, and there were no safety concerns or serious adverse events. There was an average improvement of 21.5% in the BFMDRS motor subscale score, but the improvement was only 1.6% according to the BADS score. Following blinded video review, dystonia severity ratings were even more modest. Secondary outcomes, however, were more encouraging, with the BFMDRS disability subscale score improving by 15.7%, the PedsQL total score by 27%, and the modified UPDRS-II score by 19.3%. Neuropsychological assessment findings were unchanged 1 year after surgery. CONCLUSIONS: Bilateral thalamic neuromodulation by DBS for severe, medication-refractory acquired dystonia was well tolerated. Primary and secondary outcomes showed highly variable treatment effect sizes comparable to those of pallidal stimulation in this population. As previously described, improvements in quality of life and disability were not reflected in dystonia severity scales, suggesting a need for the development of scales specifically for acquired dystonia.Clinical trial registration no.: NCT03078816 (clinicaltrials.gov).


Asunto(s)
Estimulación Encefálica Profunda/métodos , Distonía/terapia , Tálamo , Adolescente , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/cirugía , Niño , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/psicología , Evaluación de la Discapacidad , Distonía/etiología , Distonía/psicología , Estudios de Factibilidad , Femenino , Globo Pálido , Humanos , Masculino , Pruebas Neuropsicológicas , Calidad de Vida , Resultado del Tratamiento , Núcleos Talámicos Ventrales , Adulto Joven
10.
J Neurosurg ; : 1-10, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31553940

RESUMEN

OBJECTIVE: The objective of this open-label, nonrandomized trial was to evaluate the efficacy and safety of bilateral caudate nucleus deep brain stimulation (DBS) for treatment-resistant tinnitus. METHODS: Six participants underwent DBS electrode implantation. One participant was removed from the study for suicidality unrelated to brain stimulation. Participants underwent a stimulation optimization period that ranged from 5 to 13 months, during which the most promising stimulation parameters for tinnitus reduction for each individual were determined. These individual optimal stimulation parameters were then used during 24 weeks of continuous caudate stimulation to reach the endpoint. The primary outcome for efficacy was the Tinnitus Functional Index (TFI), and executive function (EF) safety was a composite z-score from multiple neuropsychological tests (EF score). The secondary outcome for efficacy was the Tinnitus Handicap Inventory (THI); for neuropsychiatric safety it was the Frontal Systems Behavior Scale (FrSBe), and for hearing safety it was pure tone audiometry at 0.5, 1, 2, 3, 4, and 6 kHz and word recognition score (WRS). Other monitored outcomes included surgery- and device-related adverse events (AEs). Five participants provided full analyzable data sets. Primary and secondary outcomes were based on differences in measurements between baseline and endpoint. RESULTS: The treatment effect size of caudate DBS for tinnitus was assessed by TFI [mean (SE), 23.3 (12.4)] and THI [30.8 (10.4)] scores, both of which were statistically significant (Wilcoxon signed-rank test, 1-tailed; alpha = 0.05). Based on clinically significant treatment response categorical analysis, there were 3 responders determined by TFI (≥ 13-point decrease) and 4 by THI (≥ 20-point decrease) scores. Safety outcomes according to EF score, FrSBe, audiometric thresholds, and WRS showed no significant change with continuous caudate stimulation. Surgery-related and device-related AEs were expected, transient, and reversible. There was only one serious AE, a suicide attempt unrelated to caudate neuromodulation in a participant in whom stimulation was in the off mode for 2 months prior to the event. CONCLUSIONS: Bilateral caudate nucleus neuromodulation by DBS for severe, refractory tinnitus in this phase I trial showed very encouraging results. Primary and secondary outcomes revealed a highly variable treatment effect size and 60%-80% treatment response rate for clinically significant benefit, and no safety concerns. The design of a phase II trial may benefit from targeting refinement for final DBS lead placement to decrease the duration of the stimulation optimization period and to increase treatment effect size uniformity.Clinical trial registration no.: NCT01988688 (clinicaltrials.gov).

11.
J Neurosurg ; 132(3): 705-711, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30738400

RESUMEN

OBJECTIVE: The object of this study was to define caudate nucleus locations responsive to intraoperative direct electrical stimulation for tinnitus loudness modulation and relate those locations to functional connectivity maps between caudate nucleus subdivisions and auditory cortex. METHODS: Six awake study participants who underwent bilateral deep brain stimulation (DBS) electrode placement in the caudate nucleus as part of a phase I clinical trial were analyzed for tinnitus modulation in response to acute stimulation at 20 locations. Resting-state 3-T functional MRI (fMRI) was used to compare connectivity strength between centroids of tinnitus loudness-reducing or loudness-nonreducing caudate locations and the auditory cortex in the 6 DBS phase I trial participants and 14 other neuroimaging participants with a Tinnitus Functional Index > 50. RESULTS: Acute tinnitus loudness reduction was observed at 5 caudate locations, 4 positioned at the body and 1 at the head of the caudate nucleus in normalized Montreal Neurological Institute space. The remaining 15 electrical stimulation interrogations of the caudate head failed to reduce tinnitus loudness. Compared to the caudate head, the body subdivision had stronger functional connectivity to the auditory cortex on fMRI (p < 0.05). CONCLUSIONS: Acute tinnitus loudness reduction was more readily achieved by electrical stimulation of the caudate nucleus body. Compared to the caudate head, the caudate body has stronger functional connectivity to the auditory cortex. These first-in-human findings provide insight into the functional anatomy of caudate nucleus subdivisions and may inform future target selection in a basal ganglia-centric neuromodulation approach to treat medically refractory tinnitus.Clinical trial registration no.: NCT01988688 (clinicaltrials.gov).

12.
J Neurosurg ; 128(2): 605-616, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28409730

RESUMEN

OBJECTIVE Dysfunction of distributed neural networks underlies many brain disorders. The development of neuromodulation therapies depends on a better understanding of these networks. Invasive human brain recordings have a favorable temporal and spatial resolution for the analysis of network phenomena but have generally been limited to acute intraoperative recording or short-term recording through temporarily externalized leads. Here, the authors describe their initial experience with an investigational, first-generation, totally implantable, bidirectional neural interface that allows both continuous therapeutic stimulation and recording of field potentials at multiple sites in a neural network. METHODS Under a physician-sponsored US Food and Drug Administration investigational device exemption, 5 patients with Parkinson's disease were implanted with the Activa PC+S system (Medtronic Inc.). The device was attached to a quadripolar lead placed in the subdural space over motor cortex, for electrocorticography potential recordings, and to a quadripolar lead in the subthalamic nucleus (STN), for both therapeutic stimulation and recording of local field potentials. Recordings from the brain of each patient were performed at multiple time points over a 1-year period. RESULTS There were no serious surgical complications or interruptions in deep brain stimulation therapy. Signals in both the cortex and the STN were relatively stable over time, despite a gradual increase in electrode impedance. Canonical movement-related changes in specific frequency bands in the motor cortex were identified in most but not all recordings. CONCLUSIONS The acquisition of chronic multisite field potentials in humans is feasible. The device performance characteristics described here may inform the design of the next generation of totally implantable neural interfaces. This research tool provides a platform for translating discoveries in brain network dynamics to improved neurostimulation paradigms. Clinical trial registration no.: NCT01934296 (clinicaltrials.gov).


Asunto(s)
Interfaces Cerebro-Computador , Estimulación Encefálica Profunda/métodos , Red Nerviosa/fisiopatología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Artefactos , Interfaces Cerebro-Computador/efectos adversos , Estimulación Encefálica Profunda/efectos adversos , Terapia por Estimulación Eléctrica , Electrocorticografía , Electrodos Implantados , Potenciales Evocados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora , Procedimientos Neuroquirúrgicos/métodos , Enfermedad de Parkinson/psicología , Desempeño Psicomotor , Núcleo Subtalámico , Resultado del Tratamiento
13.
J Neurosci ; 36(24): 6445-58, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27307233

RESUMEN

UNLABELLED: Hyperkinetic states are common in human movement disorders, but their neural basis remains uncertain. One such condition is dyskinesia, a serious adverse effect of medical and surgical treatment for Parkinson's disease (PD). To study this, we used a novel, totally implanted, bidirectional neural interface to obtain multisite long-term recordings. We focus our analysis on two patients with PD who experienced frequent dyskinesia and studied them both at rest and during voluntary movement. We show that dyskinesia is associated with a narrowband gamma oscillation in motor cortex between 60 and 90 Hz, a similar, though weaker, oscillation in subthalamic nucleus, and strong phase coherence between the two. Dyskinesia-related oscillations are minimally affected by voluntary movement. When dyskinesia persists during therapeutic deep brain stimulation (DBS), the peak frequency of this signal shifts to half the stimulation frequency. These findings suggest a circuit-level mechanism for the generation of dyskinesia as well as a promising control signal for closed-loop DBS. SIGNIFICANCE STATEMENT: Oscillations in brain networks link functionally related brain areas to accomplish thought and action, but this mechanism may be altered or exaggerated by disease states. Invasive recording using implanted electrodes provides a degree of spatial and temporal resolution that is ideal for analysis of network oscillations. Here we used a novel, totally implanted, bidirectional neural interface for chronic multisite brain recordings in humans with Parkinson's disease. We characterized an oscillation between cortex and subcortical modulators that is associated with a serious adverse effect of therapy for Parkinson's disease: dyskinesia. The work shows how a perturbation in oscillatory dynamics might lead to a state of excessive movement and also suggests a possible biomarker for feedback-controlled neurostimulation to treat hyperkinetic disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/etiología , Trastorno por Déficit de Atención con Hiperactividad/patología , Encéfalo/fisiopatología , Ritmo Gamma/fisiología , Enfermedad de Parkinson/complicaciones , Estimulación Encefálica Profunda , Electroencefalografía , Femenino , Humanos , Masculino , Enfermedad de Parkinson/patología , Curva ROC , Índice de Severidad de la Enfermedad , Núcleo Subtalámico/fisiología
14.
J Neurophysiol ; 109(3): 873-88, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23114216

RESUMEN

Many species navigate in three dimensions and are required to maintain accurate orientation while moving in an Earth vertical plane. Here we explored how head direction (HD) cells in the rat anterodorsal thalamus responded when rats locomoted along a 360° spiral track that was positioned vertically within the room at the N, S, E, or W location. Animals were introduced into the vertical plane either through passive placement (experiment 1) or by allowing them to run up a 45° ramp from the floor to the vertically positioned platform (experiment 2). In both experiments HD cells maintained direction-specific firing in the vertical plane with firing properties that were indistinguishable from those recorded in the horizontal plane. Interestingly, however, the cells' preferred directions were linked to different aspects of the animal's environment and depended on how the animal transitioned into the vertical plane. When animals were passively placed onto the vertical surface, the cells switched from using the room (global cues) as a reference frame to using the vertically positioned platform (local cues) as a reference frame, independent of where the platform was located. In contrast, when animals self-locomoted into the vertical plane, the cells' preferred directions remained anchored to the three-dimensional room coordinates and their activity could be accounted for by a simple 90° rotation of the floor's horizontal coordinate system to the vertical plane. These findings highlight the important role that active movement signals play for maintaining and updating spatial orientation when moving in three dimensions.


Asunto(s)
Movimientos de la Cabeza , Locomoción , Neuronas/fisiología , Tálamo/fisiología , Potenciales de Acción , Animales , Señales (Psicología) , Femenino , Orientación , Ratas , Ratas Long-Evans , Tálamo/citología
15.
J Neurosci ; 30(15): 5289-302, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20392951

RESUMEN

The retrosplenial cortex (RSP), a brain region frequently linked to processes of spatial navigation, contains neurons that discharge as a function of a rat's head direction (HD). HD cells have been identified throughout the limbic system including the anterodorsal thalamus (ADN) and postsubiculum (PoS), both of which are reciprocally connected to the RSP. The functional relationship between HD cells in the RSP and those found in other limbic regions is presently unknown, but given the intimate connectivity between the RSP and regions such as the ADN and PoS, and the reported loss of spatial orientation in rodents and humans with RSP damage, it is likely that the RSP plays an important role in processing the limbic HD signal. To test this hypothesis, we produced neurotoxic or electrolytic lesions of the RSP and recorded HD cells in the ADN of female Long-Evans rats. HD cells remained present in the ADN after RSP lesions, but the stability of their preferred firing directions was significantly reduced even in the presence of a salient visual landmark. Subsequent tests revealed that lesions of the RSP moderately impaired landmark control over the cells' preferred firing directions, but spared the cells directional stability when animals were required to update their orientation using self-movement cues. Together, these results suggest that the RSP plays a prominent role in processing landmark information for accurate HD cell orientation and may explain the poor directional sense in humans that follows damage to the RSP.


Asunto(s)
Giro del Cíngulo/fisiología , Cabeza , Neuronas/fisiología , Percepción Espacial/fisiología , Tálamo/fisiología , Animales , Señales (Psicología) , Oscuridad , Electrodos Implantados , Femenino , Giro del Cíngulo/lesiones , Microelectrodos , Vías Nerviosas/lesiones , Vías Nerviosas/fisiología , Pruebas Neuropsicológicas , Orientación/fisiología , Ratas , Ratas Long-Evans , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...