Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 708
Filtrar
1.
Biomed Pharmacother ; 180: 117462, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39316973

RESUMEN

BACKGROUND: To delve into the precise mechanisms by which 6-gingerol ameliorates lipid metabolism disorders in skeletal muscle. METHODS: The level of triglycerides (TG) was used to evaluate lipid deposition. In skeletal muscle, transmission electron microscopy (TEM) was employed to observe mitochondrial morphology. Additionally, PCR was applied to detect mitochondrial biogenesis, and levels of malondialdehyde (MDA), catalase (CAT), glutathione, r-glutamyl cysteingl+glycine (GSH) and nicotinamide adenine dinucleotide (NADH) were measured to assess mitochondrial oxidative stress levels. In vivo, flow cytometry and immunofluorescence assays were conducted to quantify reactive oxygen species (ROS) and mitochondrial membrane potential (MMP). Furthermore, the Seahorse XF assays was utilized to assess mitochondrial respiratory capacity. Fluorescence confocal microscopy and molecular docking were applied to analyze the binding of 6-gingerol and adiponectin receptor 1 (AdipoR1). The expression of AdipoR1, AMPK, PGC-1α and SIRT1 were detected by Western Blot. RESULTS: In vivo, 6-gingerol could reduce body weight in mice induced by a high-fat diet, enhance metabolic profiles in plasma, decrease lipid accumulation in skeletal muscle and liver, and elevate adiponectin levels. In skeletal muscle, it could restore mitochondrial morphology, boost mitochondrial copy number and biogenesis, and mitigate oxidative stress. In vitro, 6-gingerol may directly interact with AdipoR1 to upregulate the expression of downstream proteins p-AMPK, SIRT1, and PGC-1α, leading to a reduction in lipid deposition, a decrease in ROS production, an increase in mitochondrial membrane potential, and an enhancement of mitochondrial respiratory capacity in C2C12 myotubes. CONCLUSION: 6-Gingerol ameliorated lipid metabolism in skeletal muscle by regulating the AdipoR1/AMPK signaling pathway.

2.
J Sci Food Agric ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319598

RESUMEN

BACKGROUND: The utilization of chemical fertilizers is a key measure for maintaining tea yield and quality, but excessive use has negative environmental impacts. The substitution of chemical fertilizer with organic fertilizer has been promoted to sustain crop yield and soil quality. However, knowledge gaps regarding the effects of organic substitution on soil quality and tea yield in tea plantations still exist. RESULTS: A field experiment was conducted to investigate the influence of organic substitution treatments (i.e. 25% partial substitution: biogas slurry + green manure + formula fertilizer, BFG; sheep manure + formula fertilizer, OFF; 100% complete substitution: sheep manure + green manure, OG) on the soil quality, tea yield and quality, and nitrogen utilization efficiency in southwestern China. Results showed that all organic substitution treatments slightly increased soil pH, and significantly increased soil organic matter by 13.22-14.88% compared to conventional fertilization (CF). The BFG treatment was the most effective in enhancing the soil quality index, showing increases of 16.80%, 8.37% and 24.87% higher than the CF, OFF and OG treatments, respectively. Tea yield significantly increased under the BFG, OFF and OG treatments by 11.97%, 13.58% and 5.90% compared to CF, respectively. The BFG treatment increased the amino acid content by 7.78% and decreased the tea polyphenol/amino acid ratio by 6.87%. Additionally, the BFG, OFF and OG treatments greatly increased the nitrogen utilization efficiency of young sprouts by 70.71%, 82.54% and 34.28%, respectively. CONCLUSION: Overall, partial organic substitution could effectively improve soil quality while maintaining tea yield. © 2024 Society of Chemical Industry.

3.
Fish Shellfish Immunol ; 154: 109906, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278379

RESUMEN

Interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms in the innate immune system. The activated PKR performs its antiviral function by inhibiting protein translation and inducing apoptosis. In our previous study, we identified grass carp TARBP2 as an inhibitor of PKR activity, thereby suppressing cell apoptosis. This study aimed to explore the effects of grass carp TARBP2 on PKR activity and cell apoptosis. Grass carp TARBP2 comprises two N-terminal dsRBDs and a C-terminal C4 domain. Subcellular localization analysis conducted in CIK cells revealed that TARBP2-FL (full-length TARBP2), TARBP2-Δ1 (lack of the first dsRBD), and TARBP2-Δ2 (lack of the second dsRBD) are predominantly located in the cytoplasm, while TARBP2-Δ3 (lack of the two dsRBDs) is distributed both in the nucleus and cytoplasm. Colocalization and immunoprecipitation assays confirmed the interaction of TARBP2-FL, TARBP2-Δ1, and TARBP2-Δ2 with PKR, while TARBP2-Δ3 showed no binding. Furthermore, our findings suggested that the inhibitory effect of TARBP2-Δ1 or TARBP2-Δ2 on the PKR-eIF2α pathway is depressed compared to TARBP2-FL. In cell apoptosis assays, it was observed that TARBP2-FL inhibits PKR-mediated cell apoptosis. TARBP2-Δ1 or TARBP2-Δ2 exhibits decreased inhibition to PKR-mediated cell apoptosis, whereas TARBP2-Δ3 nearly completely loses this inhibitory effect. These findings highlight the critical importance of two dsRBDs of TARBP2 in interaction with PKR, as well as in the inhibition of PKR activity, resulting in the suppression of cell apoptosis triggered by prolonged PKR activation.

4.
Nat Commun ; 15(1): 8166, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289365

RESUMEN

Microbial communities exhibit intricate interactions underpinned by metabolic dependencies. To elucidate these dependencies, we present a workflow utilizing random matrix theory on metagenome-assembled genomes to construct co-occurrence and metabolic complementarity networks. We apply this approach to a temperature gradient hot spring, unraveling the interplay between thermal stress and metabolic cooperation. Our analysis reveals an increase in the frequency of metabolic interactions with rising temperatures. Amino acids, coenzyme A derivatives, and carbohydrates emerge as key exchange metabolites, forming the foundation for syntrophic dependencies, in which commensalistic interactions take a greater proportion than mutualistic ones. These metabolic exchanges are most prevalent between phylogenetically distant species, especially archaea-bacteria collaborations, as a crucial adaptation to harsh environments. Furthermore, we identify a significant positive correlation between basal metabolite exchange and genome size disparity, potentially signifying a means for streamlined genomes to leverage cooperation with metabolically richer partners. This phenomenon is also confirmed by another composting system which has a similar wide range of temperature fluctuations. Our workflow provides a feasible way to decipher the metabolic complementarity mechanisms underlying microbial interactions, and our findings suggested environmental stress regulates the cooperative strategies of thermophiles, while these dependencies have been potentially hardwired into their genomes during co-evolutions.


Asunto(s)
Archaea , Bacterias , Redes y Vías Metabólicas , Metagenoma , Microbiota , Redes y Vías Metabólicas/genética , Archaea/genética , Archaea/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Metagenoma/genética , Manantiales de Aguas Termales/microbiología , Filogenia , Interacciones Microbianas , Calor
5.
Transl Cancer Res ; 13(8): 3935-3939, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39262470
6.
Microbiome ; 12(1): 166, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244624

RESUMEN

BACKGROUND: Microbial anaerobic metabolism is a key driver of biogeochemical cycles, influencing ecosystem function and health of both natural and engineered environments. However, the temporal dynamics of the intricate interactions between microorganisms and the organic metabolites are still poorly understood. Leveraging metagenomic and metabolomic approaches, we unveiled the principles governing microbial metabolism during a 96-day anaerobic bioreactor experiment. RESULTS: During the turnover and assembly of metabolites, homogeneous selection was predominant, peaking at 84.05% on day 12. Consistent dynamic coordination between microbes and metabolites was observed regarding their composition and assembly processes. Our findings suggested that microbes drove deterministic metabolite turnover, leading to consistent molecular conversions across parallel reactors. Moreover, due to the more favorable thermodynamics of N-containing organic biotransformations, microbes preferentially carried out sequential degradations from N-containing to S-containing compounds. Similarly, the metabolic strategy of C18 lipid-like molecules could switch from synthesis to degradation due to nutrient exhaustion and thermodynamical disadvantage. This indicated that community biotransformation thermodynamics emerged as a key regulator of both catabolic and synthetic metabolisms, shaping metabolic strategy shifts at the community level. Furthermore, the co-occurrence network of microbes-metabolites was structured around microbial metabolic functions centered on methanogenesis, with CH4 as a network hub, connecting with 62.15% of total nodes as 1st and 2nd neighbors. Microbes aggregate molecules with different molecular traits and are modularized depending on their metabolic abilities. They established increasingly positive relationships with high-molecular-weight molecules, facilitating resource acquisition and energy utilization. This metabolic complementarity and substance exchange further underscored the cooperative nature of microbial interactions. CONCLUSIONS: All results revealed three key rules governing microbial anaerobic degradation. These rules indicate that microbes adapt to environmental conditions according to their community-level metabolic trade-offs and synergistic metabolic functions, further driving the deterministic dynamics of molecular composition. This research offers valuable insights for enhancing the prediction and regulation of microbial activities and carbon flow in anaerobic environments. Video Abstract.


Asunto(s)
Biodegradación Ambiental , Reactores Biológicos , Metabolómica , Microbiota , Anaerobiosis , Reactores Biológicos/microbiología , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Metagenómica , Metano/metabolismo , Termodinámica , Multiómica
7.
Am J Cancer Res ; 14(7): 3523-3532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113858

RESUMEN

Various first-line gemcitabine-based or fluorouracil-based combination regimens were approved in patients with advanced pancreatic cancer. Recent randomized clinical trials (RCTs) have investigated chemotherapy backbones in combination with novel investigational drugs, including chemotherapy agents or targeted drugs. However, the comparative efficacy of these different combination therapies remains limited. This systematic review and network meta-analysis aimed to assess the efficacy of first-line combination therapies for advanced pancreatic cancer. The study included 46 RCTs with 10,499 patients and 47 distinct regimens, using data sources from MEDLINE, EMBASE, Cochrane Clinical Trials, and ClinicalTrials.gov from January 1, 2010 to April 23, 2024. The primary outcomes were overall survival (OS) and progression-free survival (PFS), while secondary outcomes included overall response rate (ORR) and disease control rate (DCR). The analysis revealed that gemcitabine+nab-paclitaxel (GA), GA with platinum and fluorouracil (GA+Plat+FU), gemcitabine with fluorouracil (G+FU), G+Plt+FU, and FOLFIRINOX were associated with superior OS and PFS compared to gemcitabine monotherapy. Triplet or quadruplet polychemotherapy combinations, such as GA+Plat+FU, G+Plt+FU, and FOLFIRINOX, demonstrated better OS benefit with hazard ratios of 0.42 (95% CI, 0.26-0.68), 0.41 (95% CI, 0.24-0.71), and 0.58 (95% CI, 0.48-0.71), respectively, compared to doublet regimens like GA and G+FU, which had hazard ratios of 0.70 (95% CI, 0.59-0.82) and 0.82 (95% CI, 0.72-0.95), respectively. Notably, no targeted drugs, monoclonal antibodies, or other medications showed improved survival when added to chemotherapy backbones. These findings support the use of gemcitabine-based or fluorouracil-based triplet or quadruplet regimens for better survival outcomes in patients with advanced pancreatic cancer. Further research is warranted to explore the potential benefits of adding chemotherapy agents, such as fluorouracil, to the GA doublet regimen.

8.
J Clin Immunol ; 44(8): 184, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177867

RESUMEN

PURPOSE: Heterozygous STAT1 Gain-of-Function (GOF) mutations are the most common cause of chronic mucocutaneous candidiasis (CMC) among Inborn Errors of Immunity. Clinically, these mutations manifest as a broad spectrum of immune dysregulation, including autoimmune diseases, vascular disorders, and malignancies. The pathogenic mechanisms of immune dysregulation and its impact on immune cells are not yet fully understood. In treatment, JAK inhibitors have shown therapeutic effectiveness in some patients. METHODS: We analyzed clinical presentations, cellular phenotypes, and functional impacts in five Taiwanese patients with STAT1 GOF. RESULTS: We identified two novel GOF mutations in 5 patients from 2 Taiwanese families, presenting with symptoms of CMC, late-onset rosacea, and autoimmunity. The enhanced phosphorylation and delayed dephosphorylation were displayed by the patients' cells. There are alterations in both innate and adaptive immune cells, including expansion of CD38+HLADR +CD8+ T cells, a skewed activated Tfh cells toward Th1, reduction of memory, marginal zone and anergic B cells, all main functional dendritic cell lineages, and a reduction in classical monocyte. Baricitinib showed therapeutic effectiveness without side effects. CONCLUSION: Our study provides the first comprehensive clinical and molecular characteristics in STAT1 GOF patient in Taiwan and highlights the dysregulated T and B cells subsets which may hinge the autoimmunity in STAT1 GOF patients. It also demonstrated the therapeutic safety and efficacy of baricitinib in pediatric patient. Further research is needed to delineate how the aberrant STAT1 signaling lead to the changes in cellular populations as well as to better link to the clinical manifestations of the disease.


Asunto(s)
Candidiasis Mucocutánea Crónica , Mutación con Ganancia de Función , Inmunofenotipificación , Pirazoles , Factor de Transcripción STAT1 , Humanos , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Candidiasis Mucocutánea Crónica/genética , Candidiasis Mucocutánea Crónica/diagnóstico , Candidiasis Mucocutánea Crónica/terapia , Masculino , Femenino , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Azetidinas/uso terapéutico , Purinas/uso terapéutico , Niño , Adolescente , Taiwán , Adulto
9.
Small ; : e2312004, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206612

RESUMEN

Thermochromic vanadium dioxide (VO2) can intelligently modulate the transmittance of indoor solar radiation to reduce the energy consumption of air conditioning in buildings. Nevertheless, it remains a great challenge to simultaneously improve the luminous transmittance (Tlum) and solar modulation ability (ΔTsol) of VO2. In this study, a novel approach is employed utilizing a coordination compound to finely tune the growth of a VO2 based composite film, yielding a hierarchical film comprising Zn2V2O7 nanoflakes and VO2@Zn2V2O7 core-shell nanoparticles. Remarkably, the resulting composite films showcase exceptional optical performance, achieving a Tlum of up to 73.0% and ΔTsol of 15.7%. These outcomes are attributed to the antireflection properties inherent in the nanoflake structure and the localized surface plasmon resonance of well-dispersed VO2 nanoparticles. In addition, the Zn2V2O7-VO2 film demonstrates remarkable environmental durability, retaining 90% of its initial ΔTsol even after undergoing aging at 100 °C under 50% relative humidity for a substantial period of 30 days - a durability equivalent to ≈20 years under ambient conditions. This work not only achieves a harmonious balance between Tlum and ΔTsol but also introduces a promising avenue for the design of distinctive composite nanostructures.

10.
Opt Lett ; 49(17): 4895-4898, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39207991

RESUMEN

A method for maintaining a fixed phase relationship between the driving signal of acousto-optic modulator (AOM) and the original mode-locked seed laser is proposed and realized, which stabilizes the amplitude of diffracted signal output from the AOM for subsequent amplification. A field-programmable gate array (FPGA), combined with external summing amplifiers, is used to directly synthesize high-timing-precision driving signals that are synchronized with the seed laser pulses, and the accuracy of signal timing control reaches 160 ps. Using this driver, the standard deviation of the diffracted signal output from the AOM is significantly decreased from 0.52% to 0.18%. This pulse-picking solution also includes a control system that can flexibly control the frequency, gating width, etc., of the driving signal, which makes it more convenient for subsequent laser amplification and makes it suitable for a variety of mode-locked lasers.

11.
J Clin Immunol ; 44(8): 176, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133333

RESUMEN

PURPOSE: Anti-granulocyte-macrophage colony-stimulating factor autoantibodies (anti-GM-CSF Abs) are implicated in the pathogenesis of Cryptococcus gattii (C. gattii) infection and pulmonary alveolar proteinosis (PAP). Their presence has also been noted in nocardiosis cases, particularly those with disseminated disease. This study delineates a case series characterizing clinical features and specificity of anti-GM-CSF Abs in nocardiosis patients. METHODS: In this study, eight patients were recruited to determine the presence or absence of anti-GM-CSF Abs. In addition to the detailed description of the clinical course, we thoroughly investigated the autoantibodies regarding the characteristics, isotypes, subclasses, titers, and neutralizing capacities by utilizing the plasma samples from patients. RESULTS: Of eight patients, five tested positive for anti-GM-CSF Abs, all with central nervous system (CNS) involvement; patients negative for these antibodies did not develop CNS nocardiosis. Distinct from previously documented cases, none of our patients with anti-GM-CSF Abs exhibited PAP symptoms. The titer and neutralizing activity of anti-GM-CSF Abs in our cohort did not significantly deviate from those found in C. gattii cryptococcosis and PAP patients. Uniquely, one individual (Patient 3) showed a minimal titer and neutralizing action of anti-GM-CSF Abs, with no relation to disease severity. Moreover, IgM autoantibodies were notably present in all CNS nocardiosis cases investigated. CONCLUSION: The presence of anti-GM-CSF Abs suggests an intrinsic immunodeficiency predisposing individuals toward CNS nocardiosis. The presence of anti-GM-CSF Abs helps to elucidate vulnerability to CNS nocardiosis, even with low titer of autoantibodies. Consequently, systematic screening for anti-GM-CSF Abs should be considered a crucial diagnostic step for nocardiosis patients.


Asunto(s)
Autoanticuerpos , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Nocardiosis , Humanos , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Nocardiosis/inmunología , Nocardiosis/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adulto , Proteinosis Alveolar Pulmonar/inmunología , Proteinosis Alveolar Pulmonar/diagnóstico , Cryptococcus gattii/inmunología
12.
Biotechnol Lett ; 46(5): 725-737, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39017763

RESUMEN

Pentachlorophenol (PCP) was once used as a pesticide, germicide, and preservative due to its stable properties and resistance to degradation. This study aimed to design a biosensor for the quantitative and prompt detection of capable of PCP. A cell-free fluorescence biosensor was developed while employing NalC, an allosteric Transcription Factor responsive to PCP and In Vitro Transcription. By adding a DNA template and PCP and employing Electrophoretic Mobility Shift Assay while monitoring the dynamic fluorescence changes in RNA, this study offers evidence of NalC's potential applicability in sensor systems developed for the specific detection of PCP. The biosensor showed the capability for the quantitative detection of PCP, with a Limit of Detection (LOD) of 0.21 µM. Following the addition of Nucleic Acid Sequence-Based Amplification, the fluorescence intensity of RNA revealed an excellent linear relationship with the concentration of PCP, showing a correlation coefficient (R2) of 0.9595. The final LOD was determined to be 0.002 µM. This study has successfully translated the determination of PCP into a fluorescent RNA output, thereby presenting a novel approach for detecting PCP within environmental settings.


Asunto(s)
Técnicas Biosensibles , Pentaclorofenol , Pentaclorofenol/análisis , Técnicas Biosensibles/métodos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Límite de Detección , Fluorescencia , Sistema Libre de Células
13.
Phytother Res ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038923

RESUMEN

Tubular injury and oxidative stress are involved in the pathogenesis of diabetic kidney disease (DKD). Astragaloside IV (ASIV) is a natural antioxidant. The effects and underlying molecular mechanisms of ASIV on DKD have not been elucidated. The db/db mice and high-glucose-stimulated HK2 cells were used to evaluate the beneficial effects of ASIV in vivo and in vitro. Succinylated proteomics was used to identify novel mechanisms of ASIV against DKD and experimentally further validated. ASIV alleviated renal dysfunction and proteinuria, downregulated fasting blood glucose, and upregulated insulin sensitivity in db/db mice. Meanwhile, ASIV alleviated tubular injury, oxidative stress, and mitochondrial dysfunction in vivo and in vitro. Mechanistically, ASIV reversed downregulated 17beta-hydroxysteroid dehydrogenase type 10 (HSD17B10) lysine succinylation by restoring carnitine palmitoyl-transferase1alpha (Cpt1a or CPT1A) activity in vivo and in vitro. Molecular docking and cell thermal shift assay revealed that ASIV may bind to CPT1A. Molecular dynamics simulations demonstrated K99 succinylation of HSD17B10 maintained mitochondrial RNA ribonuclease P (RNase P) stability. The K99R mutation of HSD17B10 induced oxidative stress and disrupted its binding to CPT1A or mitochondrial ribonuclease P protein 1 (MRPP1). Importantly, ASIV restored the interaction between HSD17B10 and MRPP1 in vivo and in vitro. We also demonstrated that ASIV reversed high-glucose-induced impaired RNase P activity in HK2 cells, which was suppressed upon K99R mutation of HSD17B10. These findings suggest that ASIV ameliorates oxidative stress-associated proximal tubular injury by upregulating CPT1A-mediated K99 succinylation of HSD17B10 to maintain RNase P activity.

14.
J Clin Med ; 13(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064190

RESUMEN

Background: For patients with obstructive jaundice and who are indicated for pancreaticoduodenectomy (PD) or biliary intervention, either endoscopic retrograde cholangiopancreatography (ERCP) or percutaneous transhepatic cholangiography and drainage (PTCD) may be indicated preoperatively. However, the possibility of procedure-related postoperative biliary tract infection (BTI) should be a concern. We tried to evaluate the impact of ERCP and PTCD on postoperative BTI. Methods: Patients diagnosed from June 2013 to March 2022 with periampullary lesions and with PD indicated were enrolled in this cohort. Patients without intraoperative bile culture and non-neoplastic lesions were excluded. Clinical information, including demographic and laboratory data, pathologic diagnosis, results of microbiologic tests, and relevant infectious outcomes, was extracted from medical records for analysis. Results: One-hundred-and-sixty-four patients from the cohort (164/689) underwent preoperative biliary intervention, either ERCP (n = 125) or PTCD (n = 39). The positive yield of intraoperative biliary culture was significantly higher in patients who underwent ERCP than in PTCD (90.4% vs. 41.0%, p < 0.001). Although there was no significance, a trend of higher postoperative BTI (13.8% vs. 2.7%) and BTI-related septic shock (5 vs. 0, 4.0% vs. 0%) in the ERCP group was noticed. While the risk factors for postoperative BTI have not been confirmed, a trend suggesting a higher incidence of BTI associated with ERCP procedures was observed, with a borderline p-value (p = 0.05, regarding ERCP biopsy). Conclusions: ERCP in patients undergoing PD increases the positive yield of intraoperative biliary culture. PTCD may be the favorable option if preoperative biliary intervention is indicated.

15.
Biomolecules ; 14(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39062469

RESUMEN

Radiotherapy is an important treatment for many unresectable advanced malignant tumors, and radiotherapy-associated inflammatory reactions to radiation and other toxic side effects are significant reasons which reduce the quality of life and survival of patients. FLASH-radiotherapy (FLASH-RT), a prominent topic in recent radiation therapy research, is an ultra-high dose rate treatment known for significantly reducing therapy time while effectively targeting tumors. This approach minimizes radiation side effects on at-risk organs and maximally protects surrounding healthy tissues. Despite decades of preclinical exploration and some notable achievements, the mechanisms behind FLASH effects remain debated. Standardization is still required for the type of FLASH-RT rays and dose patterns. This review addresses the current state of FLASH-RT research, summarizing the biological mechanisms behind the FLASH effect. Additionally, it examines the impact of FLASH-RT on immune cells, cytokines, and the tumor immune microenvironment. Lastly, this review will discuss beam characteristics, potential clinical applications, and the relevance and applicability of FLASH-RT in treating advanced cancers.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/radioterapia , Microambiente Tumoral/efectos de la radiación , Animales , Radioterapia/métodos , Radioterapia/efectos adversos , Citocinas/metabolismo
16.
Environ Int ; 190: 108869, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968831

RESUMEN

Assessing the risk of human pathogens in the environment is crucial for controlling the spread of diseases and safeguarding human health. However, conducting a thorough assessment of low-abundance pathogens in highly complex environmental microbial communities remains challenging. This study compiled a comprehensive catalog of 247 human-pathogenic bacterial taxa from global biosafety agencies and identified more than 78 million genome-specific markers (GSMs) from their 17,470 sequenced genomes. Subsequently, we analyzed these pathogens' types, abundance, and diversity within 474 shotgun metagenomic sequences obtained from diverse environmental sources. The results revealed that among the four habitats studied (air, water, soil, and sediment), the detection rate, diversity, and abundance of detectable pathogens in the air all exceeded those in the other three habitats. Air, sediment, and water environments exhibited identical dominant taxa, indicating that these human pathogens may have unique environmental vectors for their transmission or survival. Furthermore, we observed the impact of human activities on the environmental risk posed by these pathogens, where greater amounts of human activities significantly increased the abundance of human pathogenic bacteria, especially in water and air. These findings have remarkable implications for the environmental risk assessment of human pathogens, providing valuable insights into their presence and distribution across different habitats.


Asunto(s)
Microbiología del Aire , Bacterias , Microbiología del Suelo , Humanos , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Microbiología del Agua , Monitoreo del Ambiente , Metagenómica , Reservorios de Enfermedades/microbiología , Medición de Riesgo
17.
Pract Radiat Oncol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019209

RESUMEN

Traditionally, renal cell carcinoma (RCC) was considered a radioresistant tumor, thereby limiting definitive radiation therapy management options. However, several recent studies have demonstrated that stereotactic body radiation therapy (SBRT) can achieve high rates of local control for the treatment of primary RCC. In the setting of expanding use of SBRT for primary RCC, it is crucial to provide guidance on practical considerations such as patient selection, fractionation, target delineation, and response assessment. This is particularly important in challenging scenarios where a paucity of evidence exists, such as in patients with a solitary kidney, bulky tumors, or tumor thrombus. The Radiosurgery Society endorses this case-based guide to provide a practical framework for delivering SBRT to primary RCC, exemplified by 3 cases. This article explores topics of tumor size and dose fractionation, impact on renal function and treatment in the setting of a solitary kidney, and radiation's role in the management of inferior vena cava tumor thrombus. Additionally, we review existing evidence and expert opinion on target delineation, advanced techniques such as magnetic resonance imaging guided SBRT, and SBRT response assessment.

18.
Arch Med Sci ; 20(3): 863-875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050167

RESUMEN

Introduction: Accumulating evidence has proved that long non-coding RNAs (lncRNAs) are involved in progression of glioma. Nevertheless, the role of TUBA4B in glioma remains unclear. Material and methods: The expression of the target gene was measured by quantitative RT-PCR. The prognostic role of TUBA4B was analyzed by Meier survival analysis. Cell proliferation, colony formation, apoptosis, cell cycle, migration and invasion were detected by MTS, soft agar colony forming assay, flow cytometry, and transwell assay. The target interaction of the target gene was validated by the luciferase reporter assay, biotin pull-down assay, and RNA immunoprecipitation. Results: We found that the expression of TUBA4B was lower in glioma tissues and cells. Moreover, patients with a low TUBA4B expression level exhibited poorer prognosis than those with high TUBA4B expression. Meanwhile, ROC analysis revealed that TUBA4B had diagnostic value to distinguish tumor patients from the healthy population. Overexpression of TUBA4B prohibited the malignancy of glioma, such as inhibition of proliferation, decrease of colony formation, arrest of the cell cycle, decline of migration and invasion, and promotion of cell apoptosis. In addition, we found that TUBA4B directly interacted with miR-183 and negatively regulated the expression of miR-183. We also observed that SMAD4 was a downriver target of miR-183 and TUBA4B subsequently exerted its tumor-suppressive effects by coordinating the expression of SMAD4 in glioma. Conclusions: This study revealed for the first time that TUBA4B could be a tumor suppressor gene in glioma by adjustment of the TUBA4B/miR-183/SMAD4 axis, which may provide a useful prognostic biomarker and promising therapeutic target for glioma treatment.

19.
Adv Sci (Weinh) ; 11(34): e2402818, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38898769

RESUMEN

Stretchable electrodes based on liquid metals (LM) are widely used in human-machine interfacing, wearable bioelectronics, and other emerging technologies. However, realizing the high-precision patterning and mechanical stability remains challenging due to the poor wettability of LM. Herein, a method is reported to fabricate LM-based multilayer solid-liquid electrodes (m-SLE) utilizing electrohydrodynamic (EHD) printed confinement template. In these electrodes, LM self-assembled onto these high-resolution templates, assisted by selective wetting on the electrodeposited Cu layer. This study shows that a m-SLE composed of PDMS/Ag/Cu/EGaIn exhibits line width of ≈20 µm, stretchability of ≈100%, mechanical stability ≈10 000 times (stretch/relaxation cycles), and recyclability. The multi-layer structure of m-SLE enables the adjustability of strain sensing, in which the strain-sensitive Ag part can be used for non-distributed detection in human health monitoring and the strain-insensitive EGaIn part can be used as interconnects. In addition, this study demonstrates that near field communication (NFC) devices and multilayer displays integrated by m-SLEs exhibit stable wireless signal transmission capability and stretchability, suggesting its applicability in creating highly-integrated, large-scale commercial, and recyclable wearable electronics.

20.
Food Res Int ; 188: 114454, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823832

RESUMEN

The Amadori rearrangement products are an important flavor precursor in the Maillard reaction. Its thermal decomposition products usually contribute good flavors in foods. Therefore, investigating the thermal breakdown of Amadori products is significant for understanding the flavor forming mechanism in the Maillard reaction. In this study, volatiles from thermal decomposition of Amadori products in cysteine and glucose Maillard reaction was investigated by a thermal desorption cryo-trapping system combined with gas chromatography-mass spectrometry (GC-MS). A total of 60 volatiles were detected and identified. Meanwhile, the forming mechanism of 2-methylthiophene, a major decomposition product, was also investigated by using density functional theory. Seventeen reactions, 12 transition states, energy barrier and rate constant of each reaction were finally obtained. Results reveal that it is more likely for Amadori products of cysteine and glucose to undergo decomposition under neutral or weakly alkaline conditions.


Asunto(s)
Cisteína , Cromatografía de Gases y Espectrometría de Masas , Glucosa , Reacción de Maillard , Compuestos Orgánicos Volátiles , Cisteína/química , Glucosa/química , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Teoría Funcional de la Densidad , Calor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...