Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros












Intervalo de año de publicación
1.
Nanoscale ; 16(26): 12411-12419, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832551

RESUMEN

Metallic Pd has been proved highly promising when paired with Cu for industrially important acetylene semi-hydrogenation. Herein, we demonstrate that high-surface-area siloxene can feasibly enable alloying between Pd and Cu via room-temperature reduction with Si-H bonds. Unprecedentedly small Cu nanoparticles with isolated Pd were in situ loaded on siloxene, addressing the core problem of low selectivity of Pd and low activity of Cu. This devised structure outclassed the traditional impregnated SiO2 in every aspect of the catalytic performance for the semi-hydrogenation of acetylene under industry conditions, with a 91% acetylene conversion and an impressive 93% selectivity to ethylene at 200 °C, and showed long-term stability with negligible activity decay at this harsh temperature. This work provides new insights for the design of economic bimetallic loaded catalysts for balancing the activity-selectivity dilemma, demonstrating the viability of siloxene as both a synthetic reagent and a carrier material for efficient catalysis.

2.
Chem Asian J ; : e202400626, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924352

RESUMEN

This study explores the synthesis, structural characterization, and host-guest interactions of heteroatom bridged nanobelts, focusing on a cyclothianthrene nanobelt and a fused nanobelt incorporating thianthrene and phenoxathiin. Utilizing a cyclization-followed-by-bridging synthetic approach, both molecular belts were successfully synthesized, and their structures confirmed through NMR and MALDI-TOF-MS analysis. Crystallographic studies revealed that the cyclothianthrene nanobelt adopts an octagonal column-like conformation, while the hybrid belt forms an oval tub-shaped shape, both exhibiting distinct assembly motifs. The host-guest chemistry of these nanobelts was investigated with fullerenes (C60, C70, and PC61BM). The cyclothianthrene belt showed no interaction with these fullerenes, whereas the other belt demonstrated adaptive binding capabilities, forming stable complexes with C60 and C70 through π-π interactions and C-H⋅⋅⋅S hydrogen bonds. The binding constants indicated that the hybrid belt has a stronger affinity for C70 due to better size complementarity. Additionally, its interaction with PC61BM showcased a specific 1 : 1 binding mode despite exhibiting a smaller binding constant. This study underscores the impact of heteroatom incorporation on the structural and functional properties of nanobelts, offering insights for future molecular design strategies.

3.
Heliyon ; 10(4): e26594, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420373

RESUMEN

Background: Atelectasis is a commonly observed postoperative complication of general anesthesia in children. Pulmonary protective ventilation strategies have been reported to have a beneficial effect on postoperative atelectasis in children. Therefore, the present study aimed to evaluate the efficacy of the ultrasound-guided transversus abdominis plane (TAP) block technique in preventing the incidence of postoperative atelectasis in children. Materials and methods: This study enrolled 100 consecutive children undergoing elective laparoscopic bilateral hernia repair and randomly divided them into the control and TAP groups. Conventional lung-protective ventilation was initiated in both groups after the induction of general anesthesia. The children in the TAP group received an ultrasound-guided TAP block with 0.3 mL/kg of 0.5% ropivacaine after the induction of anesthesia. Results: Anesthesia-induced atelectasis was observed in 24% and 84% of patients in the TAP (n = 50) and control (n = 50) groups, respectively, before discharge from the post-anesthetic care unit (T3; PACU) (odds ratio [OR], 0.062; 95% confidence interval [CI], 0.019-0.179; P < 0.001). No significant difference was observed between the control and TAP groups in terms of the lung ultrasonography (LUS) scores 5 min after endotracheal intubation (T1). However, the LUS scores were lower in the TAP group than those in the control group at the end of surgery (T2, P < 0.01) and before discharge from the PACU (T3, P < 0.001). Moreover, the ace, legs, activity, cry and consolability (FLACC) pain scores in the TAP group were lower than those in the control group at each postoperative time point. Conclusion: Ultrasound-guided TAP block effectively reduced the incidence of postoperative atelectasis and alleviated pain in children undergoing laparoscopic surgery.

4.
Adv Mater ; 36(9): e2308859, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37931240

RESUMEN

Improving the solar-to-thermal energy conversion efficiency of photothermal nanomaterials at no expense of other physicochemical properties, e.g., the catalytic reactivity of metal nanoparticles, is highly desired for diverse applications but remains a big challenge. Herein, a synergistic strategy is developed for enhanced photothermal conversion by a greenhouse-like plasmonic superstructure of 4 nm cobalt nanoparticles while maintaining their intrinsic catalytic reactivity. The silica shell plays a key role in retaining the plasmonic superstructures for efficient use of the full solar spectrum, and reducing the heat loss of cobalt nanoparticles via the nano-greenhouse effect. The optimized plasmonic superstructure catalyst exhibits supra-photothermal CO2 methanation performance with a record-high rate of 2.3 mol gCo -1 h-1 , close to 100% CH4 selectivity, and desirable catalytic stability. This work reveals the great potential of nanoscale greenhouse effect in enhancing photothermal conversions through the combination with conventional promoting strategies, shedding light on the design of efficient photothermal nanomaterials for demanding applications.

5.
Nanoscale ; 16(3): 1312-1319, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38131277

RESUMEN

Oxidative dehydrogenation of propane (ODHP) is a promising technique for producing propene due to its low operative temperature and coke-resistant feature. Recently, boron-based catalysts have been widely investigated for ODHP owing to their brilliant performance. Herein, we report that boron in the form of nanosheets can be prepared feasibly by exfoliating layered MgB2 with hydrochloric acid, and can efficiently and stably catalyze ODHP. At 530 °C, the catalyst exhibits propene and ethene selectivities as high as 63.5% and 18.4%, respectively, at a 40% propane conversion. The olefin productivity reaches 2.48 golefin gcat-1 h-1, superior to the commercial h-BN and other reported boron-based catalysts. Even after testing for 100 h at 530 °C, the catalyst still maintains excellent stability. This work expands the effective boron-based catalyst family for ODHP and demonstrates the great potential of the new type of 2D material-boron nanosheet for energy and catalytic applications.

6.
iScience ; 26(11): 108135, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37876808

RESUMEN

Oxidative dehydrogenation of propane (ODHP) is a promising process for producing propene. Recently, some boron-based catalysts have exhibited excellent olefin selectivity in ODHP. However, their complex synthetic routes and poor stability under high-temperature reaction conditions have hindered their practical application. Herein, we report a self-evolution method rather than conventional assembly approaches to acquire structures with excellent stability under a high propane conversion, from a single precursor-MgB2. The catalyst feasibly prepared and optimized exhibited a striking performance: 60% propane conversion with a 43.2% olefin yield at 535°C. The BOx corona pinned by the strong interaction with the borate enabled zero loss of the high conversion (around 40%) and olefins selectivity (above 80%) for over 100 h at 520°C. This all-in-one strategy of deriving all the necessary components from just one raw chemical provides a new way to synthesize effective and economic catalysts for potential industrial implementation.

7.
Microbiol Spectr ; : e0422522, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36939351

RESUMEN

The endoplasmic reticulum (ER) stress response is a highly conserved stress-defense mechanism and activates the adaptive unfolded protein response (UPR) to mitigate imbalance. The ER stress-activated signaling pathways can also trigger autophagy to facilitate cellular repair. Bovine viral diarrhea virus (BVDV) utilizes the host cellular ER as the primary site of the life cycle. However, the interplay between cellular ER stress and BVDV replication remains unclear. This report reveals that cytopathic (cp) and noncytopathic (ncp) BVDV have distinct strategies to regulate UPR mechanisms and ER stress-mediated autophagy for their own benefit. Immunoblot analysis revealed that cp and ncp BVDV differentially regulated the abundance of ER chaperone GRP78 for viral replication, while the protein kinase RNA-like ER kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α)-activating transcription factor 4 (ATF4) pathway of the UPR was switched on at different stages of infection. Pretreatment with ER stress inducer promoted virion replication, but RNA interference (RNAi) knockdown of ATF4 in BVDV-infected cells significantly attenuated BVDV infectivity titers. More importantly, the effector ATF4 activated by cp BVDV infection translocated into the nucleus to mediate autophagy, but ATF4 was retained in the cytoplasm during ncp BVDV infection. In addition, we found that cp BVDV core protein was localized in the ER to induce ER stress-mediated autophagy. Overall, the potential therapeutic target ATF4 may contribute to the global eradication campaign of BVDV. IMPORTANCE The ER-tropic viruses hijack the host cellular ER as the replication platform of the life cycle, which can lead to strong ER stress. The UPR and related transcriptional cascades triggered by ER stress play a crucial role in viral replication and pathogenesis, but little is known about these underlying mechanisms. Here, we report that cytopathic and noncytopathic BVDV use different strategies to reprogram the cellular UPR and ER stress-mediated autophagy for their own advantage. The cytopathic BVDV unconventionally downregulated the expression level of GRP78, creating perfect conditions for self-replication via the UPR, and the noncytopathic BVDV retained ATF4 in the cytoplasm to provide an advantage for its persistent infection. Our findings provide new insights into exploring how BVDV and other ER-tropic viruses reprogram the UPR signaling pathway in the host cells for replication and reveal the attractive host target ATF4 for new antiviral agents.

8.
Angew Chem Int Ed Engl ; 62(22): e202218694, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36972170

RESUMEN

To overcome the thermodynamic and kinetic impediments of the Sabatier CO2 methanation reaction, the process must be operated under very high temperature and pressure conditions, to obtain an industrially viable conversion, rate, and selectivity. Herein, we report that these technologically relevant performance metrics have been achieved under much milder conditions using solar rather than thermal energy, where the methanation reaction is enabled by a novel nickel-boron nitride catalyst. In this regard, an in situ generated HOB⋅⋅⋅B surface frustrated Lewis's pair is considered responsible for the high Sabatier conversion 87.68 %, reaction rate 2.03 mol gNi -1 h-1 , and near 100 % selectivity, realized under ambient pressure conditions. This discovery bodes well for an opto-chemical engineering strategy aimed at the development and implementation of a sustainable 'Solar Sabatier' methanation process.

9.
Mol Biol Rep ; 50(5): 4707-4713, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36849860

RESUMEN

BACKGROUND: Bovine viral diarrhea virus (BVDV) causes continuous economic losses to the livestock industry. Monitoring antibodies with enzyme-linked immunosorbent assay (ELISA) is a valuable tool to ensure the purification of BVDV in cattle. However, currently available ELISA kits based on the whole BVDV virion are both costly and time-consuming. The E2 protein has good immunogenicity, induces the secretion of neutralizing antibodies and is an essential immunogen for serological detection. METHODS AND RESULTS: We developed a novel recombinant E2 protein-based indirect ELISA (rE2-iELISA) and conducted a serological survey for BVDV antibodies in 2021-2022 in Beijing, China. The results showed that E2 protein was successfully expressed with high immunogenicity and the optimal rE2-iELISA displayed high sensitivity, reproducibility and specificity. Clinical testing of 566 serum specimens indicated that 318 BVDV positive samples and 194 BVDV negative samples were tested by rE2-iELISA and the IDEXX BVDV ELISA-Ab kit, with a positive coincidence rate of 93.3%, a negative coincidence rate of 86.3%, and an overall coincidence rate of 90.5%. CONCLUSION: This study established an rE2-iELISA method, which is a highly sensitive, specific and robust ELISA-test validated to detect anti-BVDV antibodies. These findings indicate that the newly developed rE2-iELISA method has the potential to be used as a rapid, reliable and cost-effective screening tool for BVDV infection and provides technical support for the evaluation of vaccine efficacy in cattle herds in the future.


Asunto(s)
Virus de la Diarrea Viral Bovina , Virosis , Animales , Bovinos , Antígeno 12E7 , Reproducibilidad de los Resultados , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas Recombinantes , Anticuerpos Antivirales , Diarrea
10.
ACS Nano ; 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36584240

RESUMEN

Driving metal-cluster-catalyzed high-temperature chemical reactions by sunlight holds promise for the development of negative-carbon-footprint industrial catalysis, which has yet often been hindered by the poor ability of metal clusters to harvest and utilize the full spectrum of solar energy. Here, we report the preparation of Mo2TiC2 MXene-supported Ru clusters (Ru/Mo2TiC2) with pronounced broadband sunlight absorption ability and high sintering resistance. Under illumination of focused sunlight, Ru/Mo2TiC2 can catalyze the reverse water-gas shift (RWGS) reaction to produce carbon monoxide from the greenhouse gas carbon dioxide and renewable hydrogen with enhanced activity, selectivity, and stability compared to their nanoparticle counterparts. Notably, the CO production rate of MXene-supported Ru clusters reached 4.0 mol·gRu-1·h-1, which is among the best reported so far for photothermal RWGS catalysts. Detailed studies suggest that the production of methane is kinetically inhibited by the rapid desorption of CO from the surface of the Ru clusters.

11.
Nanoscale ; 15(1): 154-161, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36478182

RESUMEN

Catalysis based on two-dimensional silicon has been under intense investigation recently. However, its substandard catalytic activity is far from industrialization. In this work, we demonstrate a new solution to this problem formulated on the batch synthesis of siloxene with an enhanced specific surface area (217.8 m2 g-1). A two-dimensional porous structure was prepared, enabling great support and dispersion of metal nanoparticles. Catalytic evaluations of such hybrid structures for the (photo)thermal CO2 hydrogenation reaction and the electrochemical hydrogen evolution reaction revealed a significant performance advantage over the benchmark two-dimensional silicon structures synthesized via the conventional method. This work may confer notable viability on two-dimensional silicon for advanced energy, catalytic, and environmental applications.

12.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362066

RESUMEN

Escherichia coli (E. coli) is a major environmental pathogen causing coliform mastitis, characterized by cell death and mammary tissue damage. Our previous study has shown the antimicrobial effect of Zophobas morio (Z. morio) hemolymph against mastitis pathogens. In this study, we established E. coli-induced cellular and animal models for mastitis, aiming to evaluate the protective effect of Z. morio hemolymph against E. coli-induced mastitis in vivo and in vitro. In mice with E. coli, Z. morio hemolymph attenuated bacterial burden and histopathological impairment, reduced the production of interleukin (IL)-1ß, IL-18, tumor necrosis factor-α (TNF-α) and the ratio of CD4+ T/CD8+ T, and increased the production of IL-2 triggered by E. coli. Z. morio hemolymph also enhanced the integrity of the blood-milk barrier in E. coli-induced mastitis. In E. coli-stimulated porcine mammary epithelial cells, Z. morio hemolymph inhibited E. coli-induced inflammatory responses and upregulated tight junction proteins (ZO-1, Claudin-3 and Occludin). Moreover, we found that the anti-inflammatory effect of Z. morio hemolymph was mediated by inhibiting E. coli-induced NLRP3 inflammasome assembly, Caspase-1 activation, and reversing the inhibitory effect of E. coli on autophagy. Besides, Z. morio hemolymph augmented ATG5/ATG16L1-mediated autophagy activation, negatively regulated NLRP3 inflammasome activation. Our results reveal that Z. morio hemolymph alleviates E. coli-induced mastitis via lessening the inflammatory response by regulating the NLRP3 and ATG5/ATG16L1 signaling pathway, as well as repairing the blood-milk barrier.


Asunto(s)
Infecciones por Escherichia coli , Hemolinfa , Mastitis , Animales , Femenino , Humanos , Ratones , Escherichia coli/metabolismo , Infecciones por Escherichia coli/metabolismo , Hemolinfa/efectos de los fármacos , Hemolinfa/metabolismo , Inflamasomas/metabolismo , Lipopolisacáridos/farmacología , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Mastitis/tratamiento farmacológico , Mastitis/metabolismo , Mastitis/microbiología , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Porcinos , Escarabajos/química , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
13.
Curr Microbiol ; 79(12): 356, 2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36245036

RESUMEN

Bovine viral diarrhea virus (BVDV) is an important animal pathogen and has a negative economic impact on cattle industries worldwide. In this study, the BVDV strain named BJ175170 was detected, isolated, and identified from cattle in Beijing, China, during herd screening by BVDV antigen-ELISA and indirect immunofluorescence assay (IFA). To investigate its genomic features, the characteristic 5'UTR region of the isolates were sequenced and BLAST analyzed. BVDV BJ175170 belongs to the BVDV-1c subtype, which differs from the Beijing prevalent BVDV strains. The BVDV particles were further observed by transmission electron microscopy (TEM). To evaluate the virulence of the BVDV BJ175170, the BVDV seronegative rabbits were intraperitoneally inoculated with the virus suspension. Blood samples were analyzed for changes in leukocyte number and antibody titer, and tissue samples were taken for histopathology analysis. These data confirmed again that rabbits could act as the reservoir of BVDV, which poses a small but non-zero risk of re-infection for BVDV-free cattle herds. To our knowledge, this is the first report of pathological changes in rabbits after exposure to BVDV-1c subtype, which could act as experimental reference. Meanwhile, the results of this study indicate that rabbits could act as a potential model for studying the mechanism of BVDV in vivo.


Asunto(s)
Diarrea Mucosa Bovina Viral , Virus de la Diarrea Viral Bovina Tipo 1 , Virus de la Diarrea Viral Bovina , Regiones no Traducidas 5' , Animales , Diarrea Mucosa Bovina Viral/genética , Diarrea Mucosa Bovina Viral/prevención & control , Bovinos , Diarrea , Virus de la Diarrea Viral Bovina Tipo 1/genética , Virus de la Diarrea Viral Bovina/genética , Filogenia , Conejos , Virulencia
14.
Nat Commun ; 13(1): 5305, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085305

RESUMEN

Treating hazardous waste Ni from the electroplating industry is mandated world-wide, is exceptionally expensive, and carries a very high CO2 footprint. Rather than regarding Ni as a disposable waste, the chemicals and petrochemicals industries could instead consider it a huge resource. In the work described herein, we present a strategy for upcycling waste Ni from electroplating wastewater into a photothermal catalyst for converting CO2 to CO. Specifically, magnetic nanoparticles encapsulated in amine functionalized porous SiO2, is demonstrated to efficiently scavenge Ni from electroplating wastewater for utilization in photothermal CO2 catalysis. The core-shell catalyst architecture produces CO at a rate of 1.9 mol·gNi-1·h-1 (44.1 mmol·gcat-1·h-1), a selectivity close to 100%, and notable long-term stability. This strategy of upcycling metal waste into functional, catalytic materials offers a multi-pronged approach for clean and renewable energy technologies.

15.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36012654

RESUMEN

Bovine viral diarrhea virus (BVDV) is a critical animal pathogen that leads to cattle production losses associated with acute disease, immune dysregulation, reproductive failure, and respiratory disease. Due to the monotonous control technique and neglect of BVDV, increasing prevalence of BVDV has caused significant economic losses in the cattle industry worldwide. Therefore, novel anti-BVDV drugs are essential to prevent and control BVDV. Our previous studies have found that Forsythoside A (FTA) could inhibit the replication of BVDV via TRAF2-dependent CD28-4-1BB signaling in bovine peripheral blood mononuclear cells (PBMCs), but whether they can directly inhibit the BVDV remains unclear. Here, we further investigated the effects of FTA on BVDV and its underlying mechanisms of action. We found that FTA significantly inhibited the replication of BVDV in the MDBK cell directly. The results demonstrated that FTA could reduce the functional activation of Caspase-1 to inhibit the inflammatory response caused by BVDV infection and increase the expression of type I interferon (IFN-I) to clear the virus in vitro. The animal experiment was performed to evaluate the antiviral effect of FTA in vivo. Notably, after challenged with BVDV, mice with FTA + Erns-E2 protein displayed alleviated pathological damage and decreased the viral load in the spleen compared with mice inoculated with Erns-E2 protein. Furthermore, treatment with FTA enhanced body defense and delayed infection by the BVDV. Our results reveal that FTA suppresses BVDV replication both in vitro and in vivo and therefore shows promise as an anti-BVDV agent.


Asunto(s)
Virus de la Diarrea Viral Bovina , Vacunas Virales , Virosis , Animales , Bovinos , Diarrea , Virus de la Diarrea Viral Bovina/fisiología , Glicósidos , Leucocitos Mononucleares , Ratones , Proteínas Recombinantes/farmacología , Vacunas Sintéticas
16.
Materials (Basel) ; 15(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35407751

RESUMEN

Increasing welding speed can promote the productivity of laser welding. However, humping defects often occur, which limits the application of this strategy. The existing explanations for the humping formation remain vague, and mitigation and suppression methods are limited. In this research, high-speed imaging experiments and numerical simulation of the high-speed laser welding process are performed. Through careful examination, the humping phenomenon is explained. At high welding speed, the high-speed melt flow caused by recoil pressure is hindered by the solidified region in the melt pool, leading to the occurrence of a swelling. The swelling then grows, forming a valley in front of the swelling under the effect of surface tension. The solidification of the valley results in the occurrence of a second swelling. This process repeats and humping defect forms. Marangoni force and viscous force also have influence on this process. In addition, it is found that adding a Tungsten Inert Gas arc behind the laser beam can effectively suppress the humping.

17.
Front Physiol ; 13: 843825, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222097

RESUMEN

Spermatogonia are the source of spermatogenic waves. Abnormal spermatogonia can cause ab-normal spermatogenic waves, which manifest as spermatogenic disorders such as oligospermia, hypospermia, and azoospermia. Among them, the self-renewal of spermatogonia serves as the basis for maintaining the process of spermatogenesis, and the closely regulated balance between self-renewal and differentiation of spermatogonia can maintain the continuous production of spermatozoa. Tet methylcytosine dioxygenase 1(TET1) is an important epitope modifying enzyme that catalyzes the conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), thereby causing the methylation of specific genes site hydroxylation, enabling the DNA de-methylation process, and regulating gene expression. However, the hydroxymethylation sites at which TET1 acts specifically and the mechanisms of interaction affecting key differential genes are not clear. In the present study, we provide evidence that the expression of PLZF, a marker gene for spermatogonia self-renewal, was significantly elevated in the TET1 overexpression group, while the expression of PCNA, a proliferation-related marker gene, was also elevated at the mRNA level. Significant differential expression of SP1 was found by sequencing. SP1 expression was increased at both mRNA level and protein level after TET1 overexpression, while differential gene DAXX expression was downregulated at protein level, while the expression of its reciprocal protein P53 was upregulated. In conclusion, our results suggest that TET1 overexpression causes changes in the expression of SP1, DAXX and other genes, and that there is a certain antagonistic effect between SP1 and DAXX, which eventually reaches a dynamic balance to maintain the self-renewal state of spermatogonia for sustained sperm production. These findings may contribute to the understanding of male reproductive system disorders.

18.
Adv Sci (Weinh) ; 9(9): e2104972, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35075801

RESUMEN

Cu-based catalysts exhibit excellent performance in hydrogenation reactions. However, the poor stability of Cu catalysts under high temperatures has restricted their practical applications. The preparation of stable Cu catalysts supported by SiO2 with strong metal-support interaction (SMSI) has thus aroused great interest due to the high abundance, low toxicity, feasible processability, and low cost of SiO2 . The challenge in the construction of such SMSI remains to be the inertness of SiO2 . Herein, a simple and scalable method is developed to prepare 2D silica (2DSiO2 ) supported Cu catalysts with SMSI by carefully manipulating the topological exfoliation of CaSi2 with CuCl2 and thereafter calcination. The prepared Cu-2DSiO2 catalysts with the unique encapsulated Cu nanoparticles exhibit excellent activity and long-term stability in high-temperature CO2 hydrogenation reactions. This feasible and low-cost solution for stabilizing Cu catalysts might shed light on their realistic applications.

19.
Viruses ; 13(9)2021 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-34578391

RESUMEN

Bovine viral diarrhea virus (BVDV) causes a severe threat to the cattle industry due to ineffective control measures. Gypenoside is the primary component of Gynostemma pentaphyllum, which has potential medicinal value and has been widely applied as a food additive and herbal supplement. However, little is known about the antiviral effects of gypenoside. The present study aimed to explore the antiviral activities of gypenoside against BVDV infection. The inhibitory activity of gypenoside against BVDV was assessed by using virus titration and performing Western blotting, quantitative reverse transcription PCR (RT-qPCR), and immunofluorescence assays in MDBK cells. We found that gypenoside exhibited high anti-BVDV activity by interfering with the viral attachment to and internalization in cells. The study showed that BVDV infection inhibits apoptosis of infected cells from escaping the innate defense of host cells. Our data further demonstrated that gypenoside inhibited BVDV infection by electively activating the apoptosis of BVDV-infected cells for execution, as evidenced by the regulation of the expression of the apoptosis-related protein, promotion of caspase-3 activation, and display of positive TUNEL staining; no toxicity was observed in non-infected cells. Collectively, the data identified that gypenoside exerts an anti-BVDV-infection role by inhibiting viral attachment and internalization and selectively purging virally infected cells. Therefore, our study will contribute to the development of a novel prophylactic and therapeutic strategy against BVDV infection.


Asunto(s)
Antivirales/farmacología , Apoptosis/efectos de los fármacos , Virus de la Diarrea Viral Bovina/efectos de los fármacos , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Diarrea Mucosa Bovina Viral/tratamiento farmacológico , Bovinos , Línea Celular , Gynostemma , Extractos Vegetales/farmacología
20.
Vet Microbiol ; 259: 109084, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34153721

RESUMEN

Bovine viral diarrhea virus (BVDV), a major infectious pathogen and is associated with major economic losses and significant impact on animal welfare worldwide. Here, recombinant Erns-LTB protein vaccine containing MF59 adjuvant was prepared and assessed using a mouse model. The recombinant plasmid (pET32a-Erns-LTB) was constructed and transformed into BL21 (DE3) cells to produce Erns-LTB protein. The Erns-LTB protein was formulated with MF59 adjuvant, when delivered intraperitoneally in mice, exhibited higher immunogenic and induced superior levels of anti-BVDV IgG compared with the MF59 adjuvanted Erns protein. Importantly, after challenged with different BVDV BJ175170 and BJ1305 isolate strains, mice inoculated with Erns-LTB protein displayed alleviated pathological damage and decreased plasma virus shedding compared with mice inoculated with Erns protein. The enhanced protection from Erns-LTB protein is mediated by T cell immunity and primarily based on CD4+ T helper (Th) and CD8+ cytotoxic T lymphocyte (CTL), these results suggest that Erns-LTB protein has potential to protect against a broad range of BVDV strains thereby providing a novel direction for developing broadly protective vaccines.


Asunto(s)
Anticuerpos Antivirales/sangre , Diarrea Mucosa Bovina Viral/prevención & control , Virus de la Diarrea Viral Bovina/inmunología , Inmunización/veterinaria , Vacunas Virales/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Diarrea Mucosa Bovina Viral/inmunología , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/virología , Citocinas/inmunología , Femenino , Inmunidad Celular , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Esparcimiento de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...