Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEBS J ; 290(20): 4921-4932, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37329190

RESUMEN

Assembly of cell division protein FtsZ into the Z-ring at the division site is a key step in bacterial cell division. The Min proteins can restrict the Z-ring to the middle of the cell. MinC is the main protein that obstructs Z-ring formation by inhibiting FtsZ assembly. Its N-terminal domain (MinCN ) regulates the localization of the Z-ring by inhibiting FtsZ polymerization, while its C-terminal domain (MinCC ) binds to MinD as well as to FtsZ. Previous studies have shown that MinC and MinD form copolymers in vitro. This copolymer may greatly enhance the binding of MinC to FtsZ, and/or prevent FtsZ filaments from diffusing to the ends of the cell. Here, we investigated the assembly properties of MinCC -MinD of Pseudomonas aeruginosa. We found that MinCC is sufficient to form the copolymers. Although MinCC -MinD assembles into larger bundles, most likely because MinCC is spatially more readily bound to MinD, its copolymerization has similar dynamic properties: the concentration of MinD dominates their copolymerization. The critical concentration of MinD is around 3 µm and when MinD concentration is high enough, a low concentration MinCC could still be copolymerized. We also found that MinCC -MinD can still rapidly bind to FtsZ protofilaments, providing direct evidence that MinCC also interacts directly with FtsZ. However, although the presence of minCC can slightly improve the division defect of minC-knockout strains and shorten the cell length from an average of 12.2 ± 6.7 to 6.6 ± 3.6 µm, it is still insufficient for the normal growth and division of bacteria.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Adenosina Trifosfatasas/metabolismo , División Celular , Proteínas de la Membrana/metabolismo
2.
Opt Express ; 30(11): 18617-18627, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36221659

RESUMEN

In this paper, the magnetically tunable and enhanced photonic spin Hall effect (PSHE) of reflected light beam at terahertz frequencies is achieved by using a multilayer structure where anisotropic graphene is inserted. This enhanced PSHE phenomenon results from the excitation of surface plasmon polariton (SPP) at the interface between two dielectric materials. By considering the 4×4 transfer matrix method and the quantum response of graphene, the PSHE of the reflected light can be enhanced by harnessing the anisotropic conductivity of graphene. Besides, the PSHE can be tuned through the external magnetic field and structural parameters. This enhanced and tunable PSHE approach is promising for fabricating anisotropic graphene-based terahertz spin devices and other applications in nanophotonics.

3.
Opt Lett ; 47(8): 2125-2128, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427353

RESUMEN

We investigate the low-threshold optical bistability of transmitted beams at the terahertz range based on the photonic crystal Fabry-Perot cavity with graphene. Graphene with strong nonlinear conductivity is placed in the middle of the Fabry-Perot cavity and the resonance of the cavity plays a positive role in promoting the low-threshold optical bistability. The optical bistability curve is closely related to the incident angle of light, the parameters of graphene, and the structural parameters of the Fabry-Perot cavity. Through parameter optimization, optical bistability with threshold of 105 V/m can be obtained, which has reached or is close to the range of the weak field.

4.
Biosensors (Basel) ; 11(10)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34677333

RESUMEN

In this work, a high-sensitivity terahertz (THz) biosensor is achieved by using a graphene/Bragg reflector hybrid structure. This high-sensitivity THz biosensor is developed from the sharp Fano resonance transmission peak created by coupling the graphene Tamm plasmons (GTPs) mode to a defect mode. It is found that the proposed THz biosensor is highly sensitive to the Fermi energy of graphene, as well as the thickness and refractive index of the sensing medium. Through specific parameter settings, the composite structure can achieve both a liquid biosensor and a gas biosensor. For the liquid biosensor, the maximum sensitivity of > 1000 °/RIU is obtained by selecting appropriate parameters. We believe the proposed layered hybrid structure has the potential to fabricate graphene-based high-sensitivity biosensors.


Asunto(s)
Técnicas Biosensibles , Grafito , Refractometría
5.
Opt Express ; 29(19): 30348-30356, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34614760

RESUMEN

In this paper, the reflected and transmitted group delay from a one-dimensional photonic crystal heterostructure with graphene at communication band are investigated theoretically. It is shown that the negative reflected group delay of the beam in this structure can be significantly enhanced and can be switched to positive. The large reflected group delay originates from the sharp phase change caused by the excitation of topological edge state at the interface between the two one-dimensional photonic crystals. Besides, the introduction of graphene provides an effective approach for the dynamic control of the group delay. It is clear that the positive and negative group delay can be actively manipulated through the Fermi energy and the relaxation time of the graphene. In addition, we also investigate the transmitted group delay of the structure, which is much less than the reflected one. The enhanced and tunable delay scheme is promising for fabricating optical delay devices like optical buffer, all-optical delays and other applications at optical communication band.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...