RESUMEN
Liquiritin (LIQ), a major constituent of Glycyrrhiza Radix, exhibits various pharmacological activities. In this study, to explore the potential anti-cancer effects and its underlying molecular mechanisms of LIQ in hepatocellular carcinoma (HCC) cells. LIQ significantly decreased viability and induced apoptosis in HepG2 cells by decreasing mitochondrial membrane potential and regulating Bcl-2 family proteins, cytochrome c, cle-caspase-3, and cle-PARP. The cell cycle analysis and western blot analysis revealed that LIQ induced G2/M phase arrest through increased expression of p21 and decreased levels of p27, cyclin B, and CDK1/2. The flow cytometry and western blot analysis also suggested that LIQ promoted the accumulation of ROS in HepG2 cells and up-regulated the phosphorylation expression levels of p38 kinase, c-Jun N-terminal kinase (JNK), and inhibitor of NF-κB (IκB-α); the phosphorylation levels of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), signal transducer activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) were down-regulated. However, these effects were reversed by N-acetyl-L-cysteine (NAC), MAPK, and AKT inhibitors. The findings demonstrated that LIQ induced cell cycle arrest and apoptosis via the ROS-mediated MAPK/AKT/NF-κB signaling pathway in HepG2 cells, and the LIQ may serve as a potential therapeutic agent for the treatment of human HCC.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de los fármacos , Flavanonas/farmacología , Glucósidos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Flavanonas/uso terapéutico , Glucósidos/uso terapéutico , Glycyrrhiza , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
1,4Naphthoquinone derivatives have superior anticancer effects, but their use has been severely limited in clinical practice due to adverse side effects. To reduce the side effects and extend the anticancer effects of 1,4naphthoquinone derivatives, 2(butane1sulfinyl)1,4naphthoquinone (BQ) and 2(octane1sulfinyl)1,4naphthoquinone (OQ) were synthesized, and their anticancer activities were investigated. The antiproliferation effects, determined by MTT assays, showed that BQ and OQ significantly inhibited the viability of gastric cancer cells and had no significant cytotoxic effect on normal cell lines. The apoptotic effect was determined by flow cytometry, and the results showed that BQ and OQ induced cell apoptosis by regulating the mitochondrial pathway and cell cycle arrest at the G2/M phase via inhibition of the Akt signaling pathway in AGS cells. Furthermore, BQ and OQ significantly increased the levels of reactive oxygen species (ROS) and this effect was blocked by the ROS scavenger NAC in AGS cells. BQ and OQ induced apoptosis by upregulating the protein expression of p38 and JNK and downregulating the levels of ERK and STAT3. Furthermore, expression levels of these proteins were also blocked after NAC treatment. These results demonstrated that BQ and OQ induced apoptosis and cell cycle arrest at the G2/M phase in AGS cells by stimulating ROS generation, which caused subsequent activation of MAPK, Akt and STAT3 signaling pathways. Thus, BQ and OQ may serve as potential therapeutic agents for the treatment of human gastric cancer.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Naftoquinonas/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Antineoplásicos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Naftoquinonas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologíaRESUMEN
The 1,4-naphthoquinones and their derivatives have garnered great interest due to their antitumor pharmacological properties in various cancers; however, their clinical application is limited by side effects. In this study, to reduce side effects and improve therapeutic efficacy, a novel 1,4-naphthoquinone derivative-2-(4-methoxyphenylthio)-5,8-dimethoxy-1,4-naphthoquinone (MPTDMNQ) was synthesized. We investigated the effects and underlying mechanisms of MPTDMNQ on cell viability, apoptosis, and reactive oxygen species (ROS) generation in human gastric cancer cells. Our results showed that MPTDMNQ decreased cell viability in nine human gastric cancer cell lines. MPTDMNQ significantly induced apoptosis accompanied by the accumulation of ROS in GC cells. However, pre-treatment with the ROS scavenger N-acetyl-L-cysteine (NAC) attenuated the MPTDMNQ-induced apoptosis. Moreover, MPTDMNQ decreased the phosphorylation levels of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3); and increased the phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 kinase. However, phosphorylation was inhibited by NAC and a mitogen-activated protein kinase (MAPK) inhibitor. These findings showed that MPTDMNQ induced AGS cell apoptosis via ROS-mediated MAPK and STAT3 signaling pathways. Thus, MPTDMNQ may be a promising candidate for treating gastric cancer.
Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Naftoquinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/metabolismoRESUMEN
1,4-Naphthoquinone compounds are a class of organic compounds derived from naphthalene. They exert a wide variety of biological effects, but when used as anticancer drugs, have varying levels of side effects. In the present study, in order to reduce toxicity and improve the antitumor activity, we synthesized two novel 1,4-naphthoquinone derivatives, 2-(butane-1-sulfinyl)-1,4-naphthoquinone (BSQ) and 2-(octane-1-sulfinyl)-1,4-naphthoquinone (OSQ). We investigated the antitumor effects of BSQ and OSQ in human lung cancer cells and the underlying molecular mechanisms of these effects, focusing on the relationship between these compounds and reactive oxygen species (ROS) production. MTT assay and trypan blue exclusion assay results showed that BSQ and OSQ had significant cytotoxic effects in human lung cancer cells. Flow cytometry results indicated that the number of apoptotic cells and the intracellular ROS levels significantly increased after treatment with BSQ and OSQ. However, cell apoptosis was inhibited by pretreatment with the ROS scavenger N-acetyl-l-cysteine (NAC). Western blotting results showed that BSQ and OSQ increased the expression levels of p-p38 kinase and p-c-Jun N-terminal kinase (p-JNK), and decreased the expression levels of p-extracellular signal-regulated kinase (p-ERK), p-protein kinase B (p-Akt), and p-signal transducer and activator of transcription-3 (p-STAT3). These phenomena were blocked by mitogen-activated protein kinase (MAPK) inhibitors, Akt inhibitors and NAC. In conclusion, BSQ and OSQ induce human lung cancer A549â¯cell apoptosis by ROS-mediated MAPKs, Akt, and STAT3 signaling pathways. Therefore, BSQ and OSQ may be therapeutic potential agents for the treatment of human lung cancer.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Naftalenos/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Células A549 , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Naftalenos/farmacología , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Células Tumorales CultivadasRESUMEN
Isoliquiritigenin (ISL), a natural flavonoid isolated from plant licorice, has various pharmacological properties, including anticancer, anti-inflammatory, and antiviral effects. However, the underlying mechanisms and signaling pathways of ISL in human hepatocellular carcinoma (HCC) cells remain unknown. In this study, we evaluated the effects of ISL on the apoptosis of human HCC cells with a focus on reactive oxygen species (ROS) production. Our results showed that ISL exhibited cytotoxic effects on two human liver cancer cells in a dose-dependent manner. ISL significantly induced mitochondrial-related apoptosis and cell cycle arrest at the G2/M phase, which was accompanied by ROS accumulation in HepG2 cells. However, pretreatment with an ROS scavenger, N-acetyl-l-cysteine (NAC), inhibited ISL-induced apoptosis. In addition, ISL increased the phosphorylation levels of c-Jun N-terminal kinase (JNK), p38 kinase and inhibitor of NF-κB (IκB), and decreased the phosphorylation levels of extracellular signal-regulated kinase (ERK), signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappa B (NF-κB), these effects were blocked by NAC and mitogen-activated protein kinase (MAPK) inhibitors. Taken together, the findings of this study indicate that ISL induced HepG2 cell apoptosis via ROS-mediated MAPK, STAT3, and NF-κB signaling pathways. Therefore, ISL may be a potential treatment for human HCC, as well as other cancer types.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Chalconas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismoRESUMEN
Derivatives of 1,4naphthoquinone have excellent anticancer effects, but their use has been greatly limited due to their serious side effects. To develop compounds with decreased side effects and improved anticancer activity, two novel types of 1,4naphthoquinone derivatives, 2,3dihydro2,3epoxy2propylsulfonyl5,8dimethoxy1,4naphthoquinone (EPDMNQ) and 2,3dihydro2,3epoxy2nonylsulfonyl5,8dimethoxy1,4naphthoquinone (ENDMNQ) were synthesized and their antitumor activities were investigated. The effects of EPDMNQ and ENDMNQ on cell viability, apoptosis and accumulation of reactive oxygen species (ROS) in liver cancer cells were determined by MTT cell viability assay and flow cytometry. The expression levels of mitochondrial, mitogen activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathwayassociated proteins in Hep3B liver cancer cells were analyzed by western blot analysis. The results demonstrated that EPDMNQ and ENDMNQ inhibited the proliferation of liver cancer Hep3B, HepG2, and Huh7 cell lines but not that of normal liver L02, normal lung IMR90 and stomach GES1 cell lines. The number of apoptotic cells and ROS levels were significantly increased following treatment with EPDMNQ and ENDMNQ, and these effects were blocked by the ROS inhibitor NacetylLcysteine (NAC) in Hep3B cells. EPDMNQ and ENDMNQ induced apoptosis by upregulating the protein expression of p38 MAPK and cJun Nterminal kinase and downregulating extracellular signalregulated kinase and STAT3; these effects were inhibited by NAC. The results of the present study demonstrated that EPDMNQ and ENDMNQ induced apoptosis through ROSmodulated MAPK and STAT3 signaling pathways in Hep3B cells. Therefore, these novel 1,4naphthoquinone derivatives may be useful as anticancer agents for the treatment of liver cancer.
Asunto(s)
Neoplasias Hepáticas/tratamiento farmacológico , Naftoquinonas/farmacología , Factor de Transcripción STAT3/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Bone morphogenetic protein-7 (BMP7), a member of the transforming growth factor-beta (TGF-beta) superfamily of cytokines, is highly expressed in renal tubules and generally promotes maintenance of epithelial phenotype. It was examined whether, during the evolution of experimental diabetic nephropathy, the renal expression of BMP7 and BMP7 receptors declines, and the hypothesis that loss of BMP7 activity is profibrogenic in proximal tubular cells was tested. Moreover, in vitro studies in cultured proximal tubular cells were performed to examine putative mechanisms that cause these changes. At 15 wk of streptozotocin-induced diabetes, renal expression of BMP7 is declined by about half, and it decreased further by 30 wk to <10% of timed controls. Renal expression of the high-affinity BMP type II receptor and the type I receptor Alk2 (activin receptor-like kinase-2) decreased. Alk3 tended to decrease, but Alk6 remained unchanged. During the evolution of diabetic nephropathy, the secreted BMP antagonist gremlin increased substantially. In cultured tubular cells, TGF-beta reduced BMP7 and Alk3 expression and increased gremlin but did not interrupt BMP7-induced activation of smad5 or Erk1 and -2. In contrast, BMP7 did not alter TGF-beta expression. Neutralization of endogenous BMP7 in cultured proximal tubular cells raised the expression of fibronectin and tended to increase collagen alpha(1) III mRNA levels. In conclusion, in experimental diabetic nephropathy, renal tubular BMP7 and some of its receptors decreased and gremlin, a secreted BMP antagonist, increased. Some, but not all, of these changes are explained by increased TGF-beta. The loss of BMP7 activity per se is profibrogenic in tubular cells.