Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Small ; : e2407659, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350445

RESUMEN

Photo-assisted electrocatalysis has arisen as a promising approach for hydrogen generation by incorporating photocatalysts into electrocatalysts. 2D SnS2 is a photocatalyst that absorbs visible light. However, the rapid recombination of photo-generated electron-hole pairs significantly reduces the overall photocatalytic efficiency of SnS2, limiting its practical application. Thus, this study prepares an in situ heterojunction SnS2@SnO2 using a one-step hydrothermal method. The degradation efficiency of methyl orange (MO) using SnS2@SnO2 is measured, achieving a degradation rate of 92.75% within 1 h, which is 1.9 times higher than that of pure SnS2. Additionally, FeNiS/SnS2@SnO2 is synthesized and exhibited significant improvements in the photo-assisted oxygen evolution reaction (OER). It achieves an overpotential of 260 mV and a Tafel slope of 65.1 mV dec-1 at 10 mA cm-2, showing reductions of 11.8% and 31.8%, respectively, compared to FeNiS alone. These enhancements highlight the strong photo-response capability of SnS2@SnO2. Under the internal electric field of SnS2@SnO2, the photogenerated electrons in the conduction band of SnS2 quickly move toward SnO2, facilitating efficient photocatalytic reactions. FeNiS, with a lower Fermi energy level (EF), facilitates electron transfer from SnS2@SnO2 and enhances OER performance by efficiently participating in the reaction. This study paves a new path for 2D photocatalyst materials.

2.
J Ethnopharmacol ; 337(Pt 2): 118881, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362328

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi (SCB, Huangqin) is a traditional medicinal plant used to treat fever and respiratory diseases. SCB has a good therapeutic effect on asthma and anti-inflammation in traditional clinic use. However, the molecular mechanism and targets of SCB in treating asthma are still unclear. AIM OF THE STUDY: Combining transcriptomic analysis and in vitro experimental validation, this study aimed to reveal the molecular mechanism and targets of SCB in treating asthma. MATERIALS AND METHODS: The anti-asthmatic effects of SCB and its active components, scutellarin and oroxylin A, were evaluated in ovalbumin (OVA)-induced rats by analysis of pulmonary function and pathology. The signaling pathways in rat pulmonary tissue were analyzed using transcriptomics and protein interaction network analysis. Calcium mobilization assay and molecular docking were utilized to discover the active compounds from SCB with agonism activity of type 2 taste receptors (TAS2Rs). The anti-asthmatic effect and transcriptional regulation of TAS2Rs regulated by SCB and its active components were analyzed in vitro. RESULTS: Extracts of SCB (ESB), scutellarin, and oroxylin A ameliorated airway function and inflammation in OVA-induced rats. The anti-asthma mechanism of ESB, scutellarin and oroxylin A was highly related to immune and taste transduction pathways based on transcriptomic analysis, especially the TAS2Rs signaling pathway. ESB was the direct agonist of TAS2R4 and TAS2R14 with EC50 of 209.1 and 217.2 µg/mL based on calcium mobilization assay, respectively. Baicalein was the main active component for TAS2R4 agonism activity, and scutellarin and oroxylin A had weak agonism activity of TAS2R4 and TAS2R14 through calcium mobilization assay and molecular docking. However, scutellarin and oroxylin A significantly upregulated the gene expression of Tas2r108 (the mouse ortholog of the TAS2R4) in lung tissue. ESB, scutellarin, and oroxylin A inhibited LPS-induced lactate dehydrogenase release and gene expression of TNF through transcriptional regulation of TAS2R4 and TAS2R14 on bronchial epithelial cells. ESB and oroxylin A ameliorated IgE-induced ß-hexosaminidase release and gene expression of Il4 and Tnf and upregulated gene expression of Tas2r108. CONCLUSION: These results provided new insight into the anti-asthmatic mechanism of SCB and active components, scutellarin and oroxylin A, through agonism and transcriptional regulation of TAS2Rs to ameliorate allergic airway inflammation.

3.
Vet Microbiol ; 298: 110264, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39395372

RESUMEN

The H9N2 inactivated avian influenza vaccine cannot induce cellular and mucosal immune responses, while the attenuated Salmonella vector as an intracellular bacterium can induce dominant cellular and mucosal immune responses. However, it provides low protection against the virus when delivering viral antigens and needs further optimization. Chicken C-C motif chemokine ligand 5 (chCCL5) is an important CC chemokine associated with immune cell chemotaxis, migration, and viral infection. This study connected the sequence of chCCL5 (CCL5) with the hemagglutinin sequence of the H9N2 avian influenza virus (yH9HA), utilizing the attenuated Salmonella typhimurium vector containing the delayed lysis system MazE/F regulated by arabinose as a carrier. A vaccine strain of recombinant attenuated Salmonella typhimurium and H9N2 avian influenza virus HA, rSC0130 (pS0017-yH9HA-CCL5), was successfully constructed. The experimental results indicate that yH9HA-CCL5 can be expressed in 293 T cells; compared to the strain without CCL5, rSC0130 (pS0017-yH9HA-CCL5) can induce significantly increased cellular immune responses and provide better protective effects in H9N2 virus challenge experiments. The above results indicate that chCCL5 can significantly enhance the protective effect of Salmonella delivering H9N2 avian influenza virus HA protein vaccine against H9N2 avian influenza virus infection, providing valuable theoretical support for further improving the protective efficiency of recombinant attenuated Salmonella vectors for delivering viral antigens.

4.
Ibrain ; 10(3): 323-344, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346794

RESUMEN

This study aims to explore the expression profile of PANoptosis-related genes (PRGs) and immune infiltration in Alzheimer's disease (AD). Based on the Gene Expression Omnibus database, this study investigated the differentially expressed PRGs and immune cell infiltration in AD and explored related molecular clusters. Gene set variation analysis (GSVA) was used to analyze the expression of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes in different clusters. Weighted gene co-expression network analysis was utilized to find co-expressed gene modules and core genes in the network. By analyzing the intersection genes in random forest, support vector machine, generalized linear model, and extreme gradient boosting (XGB), the XGB model was determined. Eventually, the first five genes (Signal Transducer and Activator of Transcription 3, Tumor Necrosis Factor (TNF) Receptor Superfamily Member 1B, Interleukin 4 Receptor, Chloride Intracellular Channel 1, TNF Receptor Superfamily Member 10B) in XGB model were selected as predictive genes. This research explored the relationship between PANoptosis and AD and established an XGB learning model to evaluate and screen key genes. At the same time, immune infiltration analysis showed that there were different immune infiltration expression profiles in AD.

5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(4): 708-714, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39218596

RESUMEN

The establishment of brain metabolic network is based on 18fluoro-deoxyglucose positron emission computed tomography ( 18F-FDG PET) analysis, which reflect the brain functional network connectivity in normal physiological state or disease state. It is now applied to basic and clinical brain functional network research. In this paper, we constructed a metabolic network for the cerebral cortex firstly according to 18F-FDG PET image data from patients with temporal lobe epilepsy (TLE).Then, a statistical analysis to the network properties of patients with left or right TLE and controls was performed. It is shown that the connectivity of the brain metabolic network is weakened in patients with TLE, the topology of the network is changed and the transmission efficiency of the network is reduced, which means the brain metabolic network connectivity is extensively impaired in patients with TLE. It is confirmed that the brain metabolic network analysis based on 18F-FDG PET can provide a new perspective for the diagnose and therapy of epilepsy by utilizing PET images.


Asunto(s)
Encéfalo , Epilepsia del Lóbulo Temporal , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Redes y Vías Metabólicas , Corteza Cerebral/metabolismo , Corteza Cerebral/diagnóstico por imagen
6.
Small ; : e2406002, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286891

RESUMEN

Recent research on SnS2 materials aims to enhance their photocatalytic efficiency for water pollution remediation through doping and constructing heterojunctions. These methods face challenges in cost-effectiveness and practical scalability. This study synthesizes hexagonal SnS2 nanosheets of various sizes via a hydrothermal method, assessing their performance in degrading methyl orange (MO) and reducing hexavalent chromium (Cr(VI)). The results show that smaller SnS2 nanosheets exhibit higher photocatalytic efficiency under sunlight. Specifically, 50 mg of small-sized nanosheets degraded 100 ml of MO (10 mgL-1) in 30 min and reduced Cr(VI) (10 mgL-1) in 105 min. The enhanced performance is attributed to: i) an energy bandgap of 2.17 eV suitable for visible light, and ii) more surface sulfur (S) vacancies in smaller nanosheets, which create electronic states near the Fermi level, reducing electron-hole recombination. This study offers a straightforward strategy for improving 2D materials like SnS2.

7.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126116

RESUMEN

Plantaginis semen is the dried ripe seed of Plantago asiatica L. or Plantago depressa Willd., which has a long history in alleviating hyperuricemia (HUA) and chronic kidney diseases. While the major chemical ingredients and mechanism remained to be illustrated. Therefore, this work aimed to elucidate the chemicals and working mechanisms of PS for HUA. UPLC-QE-Orbitrap-MS was applied to identify the main components of PS in vitro and in vivo. RNA sequencing (RNA-seq) was conducted to explore the gene expression profile, and the genes involved were further confirmed by real-time quantitative PCR (RT-qPCR). A total of 39 components were identified from PS, and 13 of them were detected in the rat serum after treating the rat with PS. The kidney tissue injury and serum uric acid (UA), xanthine oxidase (XOD), and cytokine levels were reversed by PS. Meanwhile, renal urate anion transporter 1 (Urat1) and glucose transporter 9 (Glut9) levels were reversed with PS treatment. RNA-seq analysis showed that the PPAR signaling pathway; glycine, serine, and threonine metabolism signaling pathway; and fatty acid metabolism signaling pathway were significantly modified by PS treatment. Further, the gene expression of Slc7a8, Pck1, Mgll, and Bhmt were significantly elevated, and Fkbp5 was downregulated, consistent with RNA-seq results. The PPAR signaling pathway involved Pparα, Pparγ, Lpl, Plin5, Atgl, and Hsl were elevated by PS treatment. URAT1 and PPARα proteins levels were confirmed by Western blotting. In conclusion, this study elucidates the chemical profile and working mechanisms of PS for prevention and therapy of HUA and provides a promising traditional Chinese medicine agency for HUA prophylaxis.


Asunto(s)
Hiperuricemia , Ácido Oxónico , Plantago , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Animales , Ratas , Ácido Oxónico/efectos adversos , Masculino , Plantago/química , Ácido Úrico/sangre , Extractos Vegetales/farmacología , Riñón/metabolismo , Riñón/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Xantina Oxidasa/metabolismo
8.
J Ethnopharmacol ; 335: 118662, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39117022

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bge. (SMB) is an herbal medicine extensively used for improving metabolic disorders, including Nonalcoholic fatty liver disease (NAFLD). However, the potential material basis and working mechanism still remained to be elucidated. AIM OF THE STUDY: To find potential ingredients for therapy of NAFLD by high content screening and further verify the efficacy on restoring hepatic steatosis and insulin resistance, and clarify the potential working mechanism. MATERIALS AND METHODS: The mouse transcription factor EB (Tfeb) in preadipocytes was knocked out by CRISPR-Cas9 gene editing. High content screening of TFEB nuclear translocation was performed to identify TFEB activators. The effect of candidate compounds on reducing lipid accumulation was evaluated using Caenorhabditis elegans (C. elegans). Then the role of Salvia miltiorrhiza extract (SMB) containing Tanshinone IIA and the derivatives were further investigated on high-fat diet (HFD) fed mice. RNA-seq was performed to explore potential molecular mechanism of SMB. Finally, the gut microbiota diversity was evaluated using 16S rRNA sequencing to investigate the protective role of SMB on regulating gut microbiota homeostasis. RESULTS: Knockout of Tfeb led to excessive lipid accumulation in adipocytes while expression of TFEB homolog HLH-30 in C. elegans (MAH240) attenuated lipid deposition. Screening of TFEB activators identified multiple candidates from Salvia miltiorrhiza, all of them markedly induced lysosome biogenesis in HepG2 cells. One of the candidate compounds Tanshinone IIA significantly decreased lipid droplet deposition in HFD fed C. elegans. Administration of SMB on C57BL/6J mice via gastric irrigation at the dose of 15 g/kg/d markedly alleviated hepatic steatosis, restored serum lipid profile, and glucose tolerance. RNA-seq showed that gene expression profile was altered and the genes related to lipid metabolism were restored. The disordered microbiome was remodeled by SMB, Firmicutes and Actinobacteriotawere notably reduced, Bacteroidota and Verrucomicrobiota were significantly increased. CONCLUSION: Taken together, the observations presented here help address the question concerning what were the main active ingredients in SMB for alleviating NAFLD, and established that targeting TFEB was key molecular basis for the efficacy of SMB.


Asunto(s)
Abietanos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Caenorhabditis elegans , Resistencia a la Insulina , Ratones Endogámicos C57BL , Salvia miltiorrhiza , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Caenorhabditis elegans/efectos de los fármacos , Abietanos/farmacología , Ratones , Masculino , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Dieta Alta en Grasa , Células 3T3-L1
9.
Mitochondrial DNA B Resour ; 9(6): 766-770, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895512

RESUMEN

The giant triton snail, Charonia tritonis (Linnaeus, 1758), crucial for coral reef ecosystems as a primary predator of the crown-of-thorns sea star, is experiencing a significant decline due to overfishing for its ornamental shell, underscoring the urgent need for conservation and deeper understanding of its role within marine biodiversity. This study presents the first complete mitogenome sequence of C. tritonis. Spanning 15,346 bp, the C. tritonis mitogenome comprises 13 protein-coding genes (PCGs), 22 tRNA genes, and two rRNA genes. Phylogenetic analysis of 88 Littorinimorpha mitogenomes confirms C. tritonis and C. lampas are grouped together within the family Charoniidae as a sister group to the remaining Tonnoidea families. This research not only enhances the taxonomic classification and conservation efforts for marine gastropods but also serves as a vital reference for future evolutionary and genetic studies within the Caenogastropoda.

10.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931487

RESUMEN

Loop-closure detection plays a pivotal role in simultaneous localization and mapping (SLAM). It serves to minimize cumulative errors and ensure the overall consistency of the generated map. This paper introduces a multi-sensor fusion-based loop-closure detection scheme (TS-LCD) to address the challenges of low robustness and inaccurate loop-closure detection encountered in single-sensor systems under varying lighting conditions and structurally similar environments. Our method comprises two innovative components: a timestamp synchronization method based on data processing and interpolation, and a two-order loop-closure detection scheme based on the fusion validation of visual and laser loops. Experimental results on the publicly available KITTI dataset reveal that the proposed method outperforms baseline algorithms, achieving a significant average reduction of 2.76% in the trajectory error (TE) and a notable decrease of 1.381 m per 100 m in the relative error (RE). Furthermore, it boosts loop-closure detection efficiency by an average of 15.5%, thereby effectively enhancing the positioning accuracy of odometry.

11.
ACS Omega ; 9(22): 23584-23596, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854525

RESUMEN

The escalating problem of water pollution has become an urgent concern, as it significantly undermines people's quality of life and overall public health. The increasing severity of water pollution represents a global challenge, with profound implications for human society. In this study, hydrothermal carbonization coupled with alkaline activation was utilized to repurpose barley straw into activated carbon (AC) as an absorbent. Silver phosphate (Ag3PO4) was synthesized as a potent photocatalyst. Subsequent ultrasound-assisted loading integrated the robust adsorptive capabilities of the AC with the advanced photocatalytic efficiency of silver phosphate, resulting in a superior composite material (AC/Ag3PO4) and implementing a novel "absorption-photocatalysis" active circular degradation strategy to remove hazardous organics in water. Comprehensive characterization assays confirmed the successful synthesis and incorporation of Ag3PO4 onto the AC scaffold. The composite with a Ag3PO4 concentration of 3 wt % exhibited a high methylene blue (MB) removal efficiency of 99.4% within 100 min. The reaction rate of this composite surpassed that of standalone AC by a factor of 2.89. Furthermore, cyclic regeneration studies via adsorption-desorption methodologies revealed the composite's resilience and sustained performance. The MB removal efficiency was maintained at 85.5% over five consecutive cycles, demonstrating the composite's remarkable stability. The integration of adsorptive and photocatalytic functionalities within a single system mitigates potential secondary pollution arising during the AC's desorption phase and enhances the organic contaminant removal efficiency. Moreover, the utilization of this integrated material reduces the quantity of chemicals and energy required for conventional adsorption water treatment techniques, as the material harnesses sunlight or alternative light sources to catalyze contaminant decomposition. This reduces the dependence on chemical treatment agents, contributing to resource conservation and alleviating environmental burdens. This pioneering approach offers a novel paradigm for addressing pollutant challenges in aqueous environments.

12.
Fish Shellfish Immunol ; 150: 109644, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777252

RESUMEN

Enteritis poses a significant threat to fish farming, characterized by symptoms of intestinal and hepatic inflammation, physiological dysfunction, and dysbiosis. Focused on the leopard coral grouper (Plectropomus leopardus) with an enteritis outbreak on a South China Sea farm, our prior scrutiny did not find any abnormalities in feeding or conventional water quality factors, nor were any specific pathogen infections related to enteritis identified. This study further elucidates their intestinal flora alterations, host responses, and their interactions to uncover the underlying pathogenetic mechanisms and facilitate effective prevention and management strategies. Enteritis-affected fish exhibited substantial differences in intestinal flora compared to control fish (P = 0.001). Notably, norank_f_Alcaligenaceae, which has a negative impact on fish health, predominated in enteritis-affected fish (91.76 %), while the probiotic genus Lactococcus dominated in controls (93.90 %). Additionally, certain genera with pathogenesis potentials like Achromobacter, Sphingomonas, and Streptococcus were more abundant in diseased fish, whereas Enterococcus and Clostridium_sensu_stricto with probiotic potentials were enriched in control fish. At the transcriptomic level, strong inflammatory responses, accompanied by impaired metabolic functions, tissue damage, and iron death signaling activation were observed in the intestines and liver during enteritis. Furthermore, correlation analysis highlighted that potential pathogen groups were positively associated with inflammation and tissue damage genes while presenting negatively correlated with metabolic function-related genes. In conclusion, dysbiosis in the intestinal microbiome, particularly an aberrantly high abundance of Alcaligenaceae with pathogenic potential may be the main trigger for this enteritis outbreak. Alcaligenaceae alongside Achromobacter, Sphingomonas, and Streptococcus emerged as biomarkers for enteritis, whereas some species of Lactococcus, Clostridium_sensu_stricto, and Enterococcus showed promise as probiotics to alleviate enteritis symptoms. These findings enhance our understanding of enteritis pathogenesis, highlight intestinal microbiota shifts in leopard coral grouper, and propose biomarkers for monitoring, probiotic selection, and enteritis management.


Asunto(s)
Enteritis , Enfermedades de los Peces , Microbioma Gastrointestinal , Animales , Enteritis/veterinaria , Enteritis/inmunología , Enteritis/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Perciformes/inmunología , China , Expresión Génica
13.
Vet Microbiol ; 294: 110131, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805917

RESUMEN

Outer membrane vesicles (OMVs) are membranous structures frequently observed in Gram-negative bacteria that contain bioactive substances. These vesicles are rich in bacterial antigens that can activate the host's immune system, making them a promising candidate vaccine to prevent and manage bacterial infections. The aim of this study was to assess the immunogenicity and protective efficacy of OMVs derived from Salmonella enterica serovar Typhimurium and S. Choleraesuis, while also focusing on enhancing OMV production. Initial experiments showed that OMVs from wild-type strains did not provide complete protection against homologous Salmonella challenge, possible due to the presence of flagella in the purified OMVs samples, which may elicit an unnecessary immune response. To address this, flagellin-deficient mutants of S. Typhimurium and S. Choleraesuis were constructed, designated rSC0196 and rSC0199, respectively. These mutants exhibited reduced cell motility and their OMVs were found to be flagellin-free. Immunization with non-flagellin OMVs derived from rSC0196 induced robust antibody responses and improved survival rates in mice, as compared to the OMVs derived from the wild-type UK-1. In order to enhance OMV production, deletions of ompA or tolR were introduced into rSC0196. The deletion of tolR not only increase the yield of OMVs, but also conferred complete protection against homologous S. Typhimurium challenge in mice. Collectively, these findings indicate that the flagellin-deficient OMVs with a tolR mutation have the potential to serve as a versatile vaccine platform, capable of inducing broad-spectrum protection against significant pathogens.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Ratones Endogámicos BALB C , Vacunas contra la Salmonella , Salmonella typhimurium , Animales , Salmonella typhimurium/inmunología , Salmonella typhimurium/genética , Ratones , Vacunas contra la Salmonella/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Femenino , Flagelina/inmunología , Flagelina/genética , Salmonelosis Animal/prevención & control , Salmonelosis Animal/microbiología , Salmonelosis Animal/inmunología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Membrana Externa Bacteriana/inmunología , Salmonella/inmunología , Salmonella/genética , Inmunogenicidad Vacunal , Antígenos Bacterianos/inmunología
15.
Heliyon ; 10(10): e30966, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38784544

RESUMEN

Oxygen evolution reaction (OER) is a very complex process with slow reaction kinetics and high overpotential, which is the main limitation for the commercial application of water splitting. Thus, it is of necessary to design high-performance OER catalysts. NiFe based layered double hydroxides (NiFe-LDHs) have recently gained a lot of attention due to their high reaction activity and simple manufacturing process. In this study, a novel electrocatalyst based on NiFe-LDH was constructed by introducing Ti3C2, which was utilized to modulate the structural and electronic properties of the electrocatalysts. Structural examinations reveal that the Ti3C2 of 2D structure successfully dope the NiFe-LDHs nanosheets, forming NiFe-LDH/Ti3C2 heterojunctions. Firstly, the heterojunction substantially reduces the charge transfer resistance, promoting the electron migration between the LDH nanosheets. Secondly, theoretical calculations demonstrate that the energy barrier between the rate-determining step from *OH to *O is lowered, favoring the formation of the reaction intermediates and thus the occurrence of OER. As a result, the composite electrocatalyst exhibits a low overpotential of 334 mV at a current density of 10 mA/cm2 and a small Tafel slope of 55 mV/dec, which are superior to those of the NiFe-LDH by 11.2 % and 38.5 %, respectively. This study provides inspiration for promoting the performances of NiFe based electrocatalysts by utilizing 2D materials.

16.
Heliyon ; 10(10): e30817, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38779020

RESUMEN

The discharge of organic pollutants by the textile and dyeing industries presents an escalating threat to aquatic environments, necessitating the development of effective remediation strategies. This study introduces the utilization of graphite-like structured activated carbon (AC), derived from highland barley straw-a biomass unique to the Plateau regions of China, including Tibet, Qinghai, and Gansu-as a support material for the TiO2 catalyst. TiO2/AC composites with different TiO2 loadings were synthesized by ultrasonic impregnation. The TiO2/AC composites were found to be polycrystalline materials composed of anatase and rutile phases. The TiO2 nanoparticles are well-dispersed over the surface of the AC. The photocatalytic activity of these composites was evaluated through their capacity to degrade a methylene blue (MB) solution upon irradiation. It was observed that the inclusion of TiO2 increases the number of adsorption sites and active sites for methylene blue, with the photocatalytic activity being notably higher at a 3-wt% TiO2 loading, achieving a remarkable 99.6 % degradation efficiency for 100 mg/L MB within 100 min. The experimental kinetic data for the photocatalytic process follow the pseudo-first-order kinetic model. Furthermore, TiO2/AC retains high photocatalytic activity after five reaction cycles. This research provides valuable insights into the application of biomass-derived materials for the purification of water, offering a sustainable solution to both pollution and agricultural waste challenges in Plateau areas of China.

17.
J Opt Soc Am A Opt Image Sci Vis ; 41(4): 739-748, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568675

RESUMEN

With the development of autonomous driving, there has been considerable attention on 3D object detection using LiDAR. Pillar-based LiDAR point cloud detection algorithms are extensively employed in the industry due to their simple structure and high real-time performance. Nevertheless, the pillar-based detection network suffers from significant loss of 3D coordinate information during the feature degradation and extraction process. In the paper, we introduce a novel framework with high performance, termed EFNet. The EFNet uses the Enhancing Pillar Feature Module (EPFM) to provide more accurate representations of features from two directions: pillar internal space and pillar external space. Additionally, the Head Up Module (HUM) is utilized in the detection head to integrate multi-scale information and enhance the network's information perception ability. The EFNet achieves impressive results on the nuScenes datasets, namely, 53.3% NDS and 42.4% mAP. Compared to the baseline PointPillars, EFNet improves 8% NDS and 11.9% mAP. The results demonstrate that the proposed framework can effectively improve the network's accuracy while ensuring deployability.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38668627

RESUMEN

NiFe-layered double hydroxides (NiFe-LDHs), as promising electrocatalysts, have received significant research attention for hydrogen and oxygen generation through water splitting. However, the slow oxidation kinetics of NiFe-LDH, due to the limited number of active sites and the low conductivity, hinders the improvement of the water-splitting efficiency. Therefore, to overcome the obstacles, two-dimensional (2D) SnS was first explored to tailor the prepared NiFe-LDH via the hydrothermal method. A NiFe-LDH/SnS heterojunction is built, which is observed from the microstructural investigations. SnS incorporation could greatly improve the conductivity of the NiFe-LDH sheets, which was reflected by the reduced charge transfer resistance. Moreover, SnS layers modulated the electronic environment around the active sites, favoring the adsorption of intermediates during the oxygen evolution reaction (OER) process, which was verified by density functional theory calculations. A synergistic effect induced by the NiFe-LDH/SnS heterostructure promoted the OER activities in electrical, electronic, and energetic aspects. Consequently, the as-prepared NiFe-LDH/SnS electrocatalyst greatly improved the electrocatalytic performance, exhibiting 20% and 27% reductions in the overpotential and Tafel slope compared with those of pristine NiFe-LDH, respectively. The results provide a strategy for regulating NiFe-based electrocatalysts by using emerging 2D materials to enhance water-splitting efficiency.

19.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38610267

RESUMEN

In recent years, computer vision has witnessed remarkable advancements in image classification, specifically in the domains of fully convolutional neural networks (FCNs) and self-attention mechanisms. Nevertheless, both approaches exhibit certain limitations. FCNs tend to prioritize local information, potentially overlooking crucial global contexts, whereas self-attention mechanisms are computationally intensive despite their adaptability. In order to surmount these challenges, this paper proposes cross-and-diagonal networks (CDNet), innovative network architecture that adeptly captures global information in images while preserving local details in a more computationally efficient manner. CDNet achieves this by establishing long-range relationships between pixels within an image, enabling the indirect acquisition of contextual information. This inventive indirect self-attention mechanism significantly enhances the network's capacity. In CDNet, a new attention mechanism named "cross and diagonal attention" is proposed. This mechanism adopts an indirect approach by integrating two distinct components, cross attention and diagonal attention. By computing attention in different directions, specifically vertical and diagonal, CDNet effectively establishes remote dependencies among pixels, resulting in improved performance in image classification tasks. Experimental results highlight several advantages of CDNet. Firstly, it introduces an indirect self-attention mechanism that can be effortlessly integrated as a module into any convolutional neural network (CNN). Additionally, the computational cost of the self-attention mechanism has been effectively reduced, resulting in improved overall computational efficiency. Lastly, CDNet attains state-of-the-art performance on three benchmark datasets for similar types of image classification networks. In essence, CDNet addresses the constraints of conventional approaches and provides an efficient and effective solution for capturing global context in image classification tasks.

20.
Animals (Basel) ; 14(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612301

RESUMEN

In the realm of modern aquaculture, the utilization of probiotics has gained prominence, primarily due to their ability to enhance growth, boost immunity, and prevent diseases in aquatic species. This study primarily investigates the efficacy of Bacillus subtilis strains, both host-derived and from other sources, in influencing fish growth, immunity, lipid metabolism, and disease resistance. Employing a 42-day feeding trial, we divided hybrid grouper into four distinct groups: a control group on a basal diet and three experimental groups supplemented with 1 × 108 CFU/g of different Bacillus subtilis strains-BS, 6-3-1, and HAINUP40. Remarkably, the study demonstrated that the 6-3-1 and HAINUP40 groups exhibited significant enhancements across key growth parameters: final body weight (FBW), weight gain rate (WGR), feed intake (FI), feed efficiency ratio (FER), and feed conversion ratio (FCR). The investigation into lipid metabolism revealed that the 6-3-1 strain upregulated seven metabolism-related genes, HAINUP40 affected four metabolism-related genes, and the BS strain influenced two metabolism-related genes, indicating diverse metabolic impacts by different strains. Further, a notable reduction in liver enzymes AST and ALT was observed across all supplemented groups, implying improved liver health. Noteworthy was the BS strain's superior antioxidative capabilities, positively affecting all four measured parameters (CAT, GSH-Px, MDA). In the sphere of immune-related gene expression, the BS strain significantly decreased the expression of both inflammation and apoptosis-related genes, whereas the HAINUP40 strain demonstrated an upregulation in these genes. The challenge test results were particularly telling, showcasing improved survival rates against Vibrio harveyi infection in the BS and 6-3-1 groups, unlike the HAINUP40 group. These outcomes highlight the strain-specific nature of probiotics and their varying mechanisms of action within the host. In conclusion, this study reveals that probiotic strains, varying by source, demonstrate unique, strain-specific effects in promoting growth and modulating immunity in hybrid grouper. This research highlights the promise of tailored probiotic applications in improving aquaculture practices. Such advancements contribute to more sustainable and efficient fish farming methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...