Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
2.
Bioresour Technol ; 410: 131306, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39155020

RESUMEN

Livestock manure harbors antibiotic resistance genes (ARGs), and aerobic composting (AC) is widely adopted for waste management. However, mitigating ARG resurgence in later stages remains challenging. This work aims to curb ARGs rebounding through a Fenton-like reaction during food waste and swine manure co-composting. Results revealed that 0.025 % zerovalent iron (ZVI) + 0.5 % hydrogen peroxide (H2O2) facilitated maximum ARG, mobile genetic elements (MGEs), and 16 s rRNA removal with reductions of 2.68, 2.69, and 1.4 logs. Spectroscopic analysis confirmed Fenton-like reaction and cell apoptosis analysis indicated that 0.025 % ZVI and 0.5 % H2O2 treatment had the maximum early apoptosis, least observed, and normal cells on day 30. Redundancy analysis highlighted the influence of bacterial communities and physicochemical properties on ARGs, with MGEs playing a crucial role in Fenton treatments. Our findings suggest incorporating ZVI and H2O2 in composting can significantly reduce ARGs and enhance waste management practices.


Asunto(s)
Compostaje , Farmacorresistencia Microbiana , Peróxido de Hidrógeno , Hierro , Estiércol , Compostaje/métodos , Farmacorresistencia Microbiana/genética , Animales , Porcinos , Secuencias Repetitivas Esparcidas , ARN Ribosómico 16S/genética , Genes Bacterianos , Antibacterianos/farmacología
3.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000408

RESUMEN

Nucleotide-binding and leucine-rich repeat receptors (NLRs) are the most important and largest class of immune receptors in plants. The Pi36 gene encodes a canonical CC-NBS-LRR protein that confers resistance to rice blast fungal infections. Here, we show that the CC domain of Pi36 plays a role in cell death induction. Furthermore, self-association is required for the CC domain-mediated cell death, and the self-association ability is correlated with the cell death level. In addition, the NB-ARC domain may suppress the activity of the CC domain through intramolecular interaction. The mutations D440G next to the RNBS-D motif and D503V in the MHD motif autoactivated Pi36, but the mutation K212 in the P-loop motif inhibited this autoactivation, indicating that nucleotide binding of the NB-ARC domain is essential for Pi36 activation. We also found that the LRR domain is required for D503V- and D440G-mediated Pi36 autoactivation. Interestingly, several mutations in the CC domain compromised the CC domain-mediated cell death without affecting the D440G- or D503V-mediated Pi36 autoactivation. The autoactivate Pi36 variants exhibited stronger self-associations than the inactive variants. Taken together, we speculated that the CC domain of Pi36 executes cell death activities, whereas the NB-ARC domain suppressed CC-mediated cell death via intermolecular interaction. The NB-ARC domain releases its suppression of the CC domain and strengthens the self-association of Pi36 to support the CC domain, possibly through nucleotide exchange.


Asunto(s)
Proteínas NLR , Oryza , Proteínas de Plantas , Oryza/metabolismo , Oryza/genética , Oryza/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas NLR/metabolismo , Proteínas NLR/genética , Proteínas NLR/química , Muerte Celular , Mutación , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Dominios Proteicos , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética
4.
PLoS One ; 19(6): e0305761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38889159

RESUMEN

To explore the reaction mechanism of sludge, slag, lime, and fly ash in high temperature environments, the unconfined compressive strength (UCS) test was hereby implemented to study the effect on curing age, curing temperature, slag content and fly ash content about the strength of sludge. Scanning electron microscopy (SEM) was used to observe the microscopic composition of the substance, and X-ray diffraction (XRD) was used to analyze the mineral composition at the micro level to further disclose its reinforcement mechanism. The experimental results demonstrate the difference in the strength measured by different dosage of curing agent, and results indicate that the strength of high temperature curing sample was obviously higher than that of low temperature curing sample. When the curing temperature rises, the pozzolanic reaction and hydration reaction between materials are accelerated, and a certain amount of gel products are produced, playing a precipitation and bonding role between particles. The 28 days and 90 days strengths of the sludge samples with 20% fly ash and 80% slag dosing at 40°C were 1139 KPa and 1194 KPa, which were 1.4 and 1.1 times of that of pure cement solidified sludge. At 60°C, the strength of 14 days, 28 days and 90 days were 802 KPa, 1298 KPa and 1363 KPa, which were 1.1, 1.5 and 1.3 times of that of pure cement solidified sludge. Under the influence of an alkaline environment, the silicon-aluminum grid structure was interconnected into a denser network structure, and the compressive strength of lime-activated fly ash-slag was thus continuously enhanced. Affected by the high temperature, lime-activated fly ash-slag solidified sludge could significantly improve the middle and late strength of the sample. The research showed that the new solidification material can replace partly the concrete curing agent, thereby alleviating the carbon emission and environmental pollution problems arising from cement solidified sludge.


Asunto(s)
Compuestos de Calcio , Ceniza del Carbón , Óxidos , Aguas del Alcantarillado , Ceniza del Carbón/química , Compuestos de Calcio/química , Aguas del Alcantarillado/química , Óxidos/química , Calor , Fuerza Compresiva , Difracción de Rayos X , Microscopía Electrónica de Rastreo , Materiales de Construcción/análisis
5.
Mol Neurobiol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856794

RESUMEN

Post-stroke depression (PSD) is a significant complication in stroke patients, increases long-term mortality, and exaggerates ischemia-induced brain injury. However, the underlying molecular mechanisms and effective therapeutic targets related to PSD have remained elusive. Here, we employed an animal behavioral model of PSD by combining the use of middle cerebral artery occlusion (MCAO) followed by spatial restraint stress to study the molecular underpinnings and potential therapies of PSD. Interestingly, we found that sub-chronic application of gastrodin (Gas), a traditional Chinese medicinal herb Gastrodia elata extraction, relieved depression-related behavioral deficits, increased the impaired expression of synaptic transmission-associated proteins, and restored the altered spine density in hippocampal CA1 of PSD animals. Furthermore, our results indicated that the anti-PSD effect of Gas was dependent on membrane cannabinoid-1 receptor (CB1R) expression. The contents of phosphorated protein kinase A (p-PKA) and phosphorated Ras homolog gene family member A (p(ser188)-RhoA) were decreased in the hippocampus of PSD-mice, which was reversed by Gas treatment, and CB1R depletion caused a diminished efficacy of Gas on p-PKA and p-RhoA expression. In addition, the anti-PSD effect of Gas was partially blocked by PKA inhibition or RhoA activation, indicating that the anti-PSD effect of Gas is associated with the CB1R-mediated PKA/RhoA signaling pathway. Together, our findings revealed that Gas treatment possesses protective effects against the post-stroke depressive-like state; the CB1R-involved PKA/RhoA signaling pathway is critical in mediating Gas's anti-PSD potency, suggesting that Gas application may be beneficial in the prevention and adjunctive treatment of PSD.

6.
Redox Biol ; 74: 103234, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38861834

RESUMEN

Glycophagy has evolved from an alternative glycogen degradation pathway into a multifaceted pivot to regulate cellular metabolic hemostasis in peripheral tissues. However, the pattern of glycophagy in the brain and its potential therapeutic impact on ischemic stroke remain unknown. Here, we observed that the dysfunction of astrocytic glycophagy was caused by the downregulation of the GABA type A receptor-associated protein like 1 (GABARAPL1) during reperfusion in ischemic stroke patients and mice. PI3K-Akt pathway activation is involved in driving GABARAPL1 downregulation during cerebral reperfusion. Moreover, glycophagy dysfunction-induced glucosamine deficiency suppresses the nuclear translocation of specificity protein 1 and TATA binding protein, the transcription factors for GABARAPL1, by decreasing their O-GlcNAcylation levels, and accordingly feedback inhibits GABARAPL1 in astrocytes during reperfusion. Restoring astrocytic glycophagy by overexpressing GABARAPL1 decreases DNA damage and oxidative injury in astrocytes and improves the survival of surrounding neurons during reperfusion. In addition, a hypocaloric diet in the acute phase after cerebral reperfusion can enhance astrocytic glycophagic flux and accelerate neurological recovery. In summary, glycophagy in the brain links autophagy, metabolism, and epigenetics together, and glycophagy dysfunction exacerbates reperfusion injury after ischemic stroke.


Asunto(s)
Astrocitos , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Astrocitos/metabolismo , Astrocitos/patología , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Ratones , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Humanos , Masculino , Glucógeno/metabolismo , Modelos Animales de Enfermedad , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Transducción de Señal , Autofagia
7.
Sci Rep ; 14(1): 6966, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521864

RESUMEN

To reveal the mechanism of the influence of the curing temperature on the strength of lime activated fly ash-GGBS cured silt soil, the curing of dredged silt was carried out by using fly ash and GGBS as the curing agent and lime as the activator. Unconfined compressive strength (UCS) experiments were carried out, and the micro-analysis of the cured silt was carried out by experimental methods including scanning electron microscope (SEM) tests, X-ray diffraction (XRD), etc. to reveal the mechanism of the curing temperature on the dredged silt. According to the test results, the hydration reaction and pozzolanic reaction between lime-fly ash-GGBS and silt soil were promoted with the increase of the curing temperature. when the curing temperature of the sample reached 40 â„ƒ, a large amount of gel products such as hydrated calcium aluminate (C-A-H) and hydrated calcium silicate (C-S-H) were generated, which enhanced the bonding force between soil particles and filled up the inter-particle pore space, thereby improving the UCS of the sample. The results of SEM confirmed that C-A-H and C-S-H were the main substances for the construction of cured silt skeleton. C-S-H and C-A-H were detected by XRD. The results of the study fill the gap in the effect of curing temperature on the direction of lime-activated fly ash-GGBS cured silt soil.

8.
Brain Res ; 1829: 148798, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38403038

RESUMEN

Menopausal women experience neuropathic pain 63% more frequently than men do, which may attribute to the estrogen withdrawal. However, the underlying mechanisms remain unclear. Here, the role of estrogen receptors (ERs) in ovariectomized (OVX) female mice following chronic constriction injury (CCI) was investigated. With 17ß-estradiol (E2) supplemented, aggravated mechanical allodynia in OVX mice could be significantly alleviated, particularly after intra-anterior cingulate cortex (ACC) E2 delivery. Pharmacological interventions further demonstrated that the agonist of G-protein-coupled estrogen receptor 30 (GPR30), rather than ERα or ERß in the ACC, exhibited the similar analgesic effect as E2, whereas antagonist of GPR30 exacerbated allodynia. Furthermore, OVX surgery reduced GPR30 expression in the ACC, which could be restored with estrogen supplementation. Selective downregulation of GPR30 in the ACC of naïve female mice induces mechanical allodynia, whereas GPR30 overexpression in the ACC remarkedly alleviated OVX-exacerbated allodynia. Collectively, estrogen withdrawal could downregulate the ACC GPR30 expression, resulting in exacerbated neuropathic pain. Our findings highlight the importance of GPR30 in the ACC in aggravated neuropathic pain during menopause, and offer a potential therapeutic candidate for neuropathic pain management in menopausal women.


Asunto(s)
Hiperalgesia , Neuralgia , Animales , Femenino , Humanos , Masculino , Ratones , Estradiol/farmacología , Estrógenos/farmacología , Estrógenos/metabolismo , Giro del Cíngulo/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
9.
Plant Biotechnol J ; 22(2): 512-526, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37862261

RESUMEN

Grain size and weight determine rice yield. Although numerous genes and pathways involved in regulating grain size have been identified, our knowledge of post-transcriptional control of grain size remains elusive. In this study, we characterize a rice mutant, decreased grain width and weight 1 (dgw1), which produces small grains. We show that DGW1 encodes a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family protein and preferentially expresses in developing panicles, positively regulating grain size by promoting cell expansion in spikelet hulls. Overexpression of DGW1 increases grain weight and grain numbers, leading to a significant rise in rice grain yield. We further demonstrate that DGW1 functions in grain size regulation by directly binding to the mRNA of Grain Width 6 (GW6), a critical grain size regulator in rice. Overexpression of GW6 restored the grain size phenotype of DGW1-knockout plants. DGW1 interacts with two oligouridylate binding proteins (OsUBP1a and OsUBP1b), which also bind the GW6 mRNA. In addition, the second RRM domain of DGW1 is indispensable for its mediated protein-RNA and protein-protein interactions. In summary, our findings identify a new regulatory module of DGW1-GW6 that regulates rice grain size and weight, providing important insights into the function of hnRNP-like proteins in the regulation of grain size.


Asunto(s)
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , Regulación de la Expresión Génica de las Plantas/genética , Grano Comestible/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Oryza/genética , Oryza/metabolismo
10.
Redox Biol ; 69: 102983, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064762

RESUMEN

Shank3, a key molecule related to the development and deterioration of autism, has recently been found to downregulate in the murine brain after ischemia/reperfusion (I/R). Despite this discovery, however, its effects on neuronal injury and the mechanism underlying the effects remain to be clarified. To address this, in this study, based on genetically modified mice models, we revealed that the expression of Shank3 showed a time-dependent change in murine hippocampal neurons after I/R, and that conditional knockout (cko) of Shank3 in neurons resulted in aggravated neuronal injuries. The protective effects of Shank3 against oxidative stress and inflammation after I/R were achieved through direct binding STIM1 and subsequent proteasome-mediated degradation of STIM1. The STIM1 downregulation induced the phosphorylation of downstream Nrf2 Ser40, which subsequently translocated to the nucleus, and further increased the expression of antioxidant genes such as NQO1 and HO-1 in HT22 cells. In vivo, the study has further confirmed that double knockout of Shank3 and Stim1 alleviated oxidative stress and inflammation after I/R in Shank3cko mice. In conclusion, the present study has demonstrated that Shank3 interacts with STIM1 and inhibits post-I/R neuronal oxidative stress and inflammatory response via the Nrf2 pathway. This interaction can potentially contribute to the development of a promising method for I/R treatment.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Estrés Oxidativo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Inflamación/genética , Inflamación/metabolismo , Reperfusión , Neuronas/metabolismo , Apoptosis , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
11.
J Neuroinflammation ; 20(1): 264, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968698

RESUMEN

BACKGROUND: Lipid metabolism has a crucial role in neural repair in neurodegenerative diseases. We recently revealed that lipogenesis-mediated interleukin-33 (IL-33) upregulation lead to blood-brain barrier (BBB) repair after ischemic stroke. However, manipulating the key enzyme fatty acid synthase (FASN) to enhance lipogenesis was very challenging. Glyceryl triacetate (GTA) was used as a donor of acetate and precursor of acetyl coenzyme A, the key substrate for de novo lipogenesis catalyzed by FASN. Therefore, we hypothesized that GTA would promote lipogenesis the peri-infarct after ischemic stroke and contribute to the BBB repair through IL-33. METHODS: Middle cerebral artery occlusion (MCAO) was performed on C57BL mice and GTA was gavage administrated (4 g/kg) on day 2 and 4 after MCAO. Lipogenesis was evaluated by assessment of the protein level of FASN, lipid droplets, and fatty acid products through liquid chromatography-mass spectrometry in the peri-infarct area on day 3 after MCAO, respectively. BBB permeability was determined by extravasation of Evans blue, IgG and dextran, and levels of tight junction proteins in the peri-infarct area on day 7 after MCAO, respectively. Infarct size and neurological defects were assessed on day 7 after MCAO. Brain atrophy on day 30 and long-term sensorimotor abilities after MCAO were analyzed as well. The inhibitor of FASN, C75 and the virus-delivered FASN shRNA were used to evaluate the role of FASN-driven lipogenesis in GTA-improved BBB repair. Finally, the therapeutic potential of recombinant IL-33 on BBB repair and neurological recovery was evaluated. RESULTS: We found that treatment with GTA increased the lipogenesis as evidenced by lipid droplets level and lauric acid content, but not the FASN protein level. Treatment with GTA increased the IL-33 level in the peri-infarct area and decreased the BBB permeability after MCAO. However, infarct size and neurological defect score were unchanged on day 7 after MCAO, while the long-term recovery of sensorimotor function and brain atrophy were improved by GTA. Inhibition of lipogenesis using C75 or FASN shRNA reversed the beneficial effect of GTA. Finally, exogenous IL-33 improved BBB repair and long-term functional recovery after stroke. CONCLUSION: Collectively, we concluded that treatment with GTA improved the BBB repair and functional recovery after ischemic stroke, probably by the enhancement of lipogenesis and IL-33 expression.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Accidente Cerebrovascular Isquémico/patología , Barrera Hematoencefálica , Interleucina-33/farmacología , Lipogénesis , Ratones Endogámicos C57BL , Accidente Cerebrovascular/patología , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , ARN Interferente Pequeño/metabolismo , Atrofia/patología , Isquemia Encefálica/metabolismo
12.
Plant J ; 116(6): 1766-1783, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37699038

RESUMEN

Brassinosteroids (BRs) are a class of steroid phytohormones that control various aspects of plant growth and development. Several transcriptional factors (TFs) have been suggested to play roles in BR signaling. However, their possible relationship remains largely unknown. Here, we identified a rice mutant dwarf and low-tillering 2 (dlt2) with altered plant architecture, increased grain width, and reduced BR sensitivity. DLT2 encodes a GIBBERELLIN INSENSITIVE (GAI)-REPRESSOR OF GAI (RGA)-SCARECROW (GRAS) TF that is mainly localized in the nucleus and has weak transcriptional activity. Our further genetic and biochemical analyses indicate that DLT2 interacts with two BR-signaling-related TFs, DLT and BRASSINAZOLE-RESISTANT 1, and probably modulates their transcriptional activity. These findings imply that DLT2 is implicated in a potentially transcriptional complex that mediates BR signaling and rice development and suggests that DLT2 could be a potential target for improving rice architecture and grain morphology. This work also sheds light on the role of rice GRAS members in regulating numerous developmental processes.


Asunto(s)
Brasinoesteroides , Oryza , Proteínas de Plantas/metabolismo , Transducción de Señal/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
J Integr Neurosci ; 22(4): 103, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37519161

RESUMEN

BACKGROUND: Stroke is a major health concern and a leading cause of mortality and morbidity. We and other groups have documented that hyperbaric oxygen preconditioning could significantly alleviate neuronal damage in ischemia‒reperfusion models through various mechanisms. However, we found that some of the subjects did not benefit from preconditioning with hyperbaric oxygen. The preconditioning phenomenon is similar to vaccination, in which the endogenous survival system is activated to fight against further injuries. However, with vaccine inoculations, we could test for specific antibodies against the pathogens to determine if the vaccination was successful. Likewise, this experiment was carried out to explore a biomarker that can reveal the effectiveness of the preconditioning before neuronal injury occurs. METHODS: Middle cerebral artery occlusion (MCAO) was used to induce focal cerebral ischemia-reperfusion injury. 2D-DIGE-MALDI-TOF-MS/MS proteomic technique was employed to screen the differentially expressed proteins in the serum of rats among the control (Con) group (MCAO model without hyperbaric oxygen (HBO) preconditioning), hyperbaric oxygen protective (HBOP) group (in which the infarct volume decreased after HBO preconditioning vs. Con), and hyperbaric oxygen nonprotective (HBOU) group (in which the infarct volume remained the same or even larger after HBO preconditioning vs. Con). Candidate biomarkers were confirmed by western blot and enzyme linked immunosorbent assay (ELISA), and the relationship between the biomarkers and the prognosis of cerebral injury was further validated. RESULTS: Among the 15 differentially expressed protein spots detected in the HBOP group by Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), 3 spots corresponding to 3 different proteins (haptoglobin, serum albumin, and haemopexin) products were identified by MALDI-TOF-MS/MS. Serum albumin and haemopexin were upregulated, and haptoglobin was downregulated in the HBOP group (p < 0.05 vs. Con and HBOU groups). After the western blot study, only the changes in haemopexin were validated and exhibited similar changes in subjects from the HBOP group in accordance with MALDI-TOF-MS/MS proteomic analysis and enzyme linked immunosorbent assay (ELISA) analysis. The serum level of the hemopexin (HPX) at 2 h after HBO preconditioning was correlated with the infarct volume ratio after MCAO. CONCLUSIONS: Haemopexin may be developed as a predictive biomarker that indicated the effectiveness of a preconditioning strategy against cerebral ischaemic injury.


Asunto(s)
Lesiones Encefálicas , Oxigenoterapia Hiperbárica , Accidente Cerebrovascular , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Oxigenoterapia Hiperbárica/métodos , Hemopexina , Haptoglobinas , Proteómica , Espectrometría de Masas en Tándem , Accidente Cerebrovascular/terapia , Oxígeno , Infarto de la Arteria Cerebral Media/terapia , Pronóstico , Biomarcadores , Albúmina Sérica , Modelos Animales de Enfermedad
15.
Exp Brain Res ; 241(6): 1471-1488, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37081178

RESUMEN

Ischemic stroke is a common cause of morbidity and mortality worldwide. The current treatment fails to achieve satisfactory results, because interventional therapy as first-line treatment management has a strict time window. In recent years, a large number of studies have confirmed that adenosine, as an inhibitory neurotransmitter, has a protective effect on cerebral ischemic injury. Nevertheless, direct administration of adenosine has many side effects. Previous studies showed that adenosine exerted neuroprotective effects mainly through adenosine receptor A1 (A1 receptor). Therefore, further study on the mechanism of A 1 receptor induced neuroprotection may find new targets for stroke treament. Mitochondrial biogenesis (MB) is a therapeutic target for ischemic stroke, and the nuclear-encoded peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) is a major regulator of MB. However, the influence of A1 receptor on MB and PGC-1α is unclear. In this study, using the middle cerebral artery occlusion (MCAO) model of mice, we evaluated the temporal and spatial effects of A1 receptor after ischemic stroke and verified the neuroprotection of A1 receptor. Neurological scores were used to assess functional changes in mice. At the same time, we observed the effect of activating A1 receptor on MB and PGC-1α, and the effect of knockdown PGC-1α on A1 receptor induced MB in vitro. WB and immunofluorescence were used to detect relevant indicators of MB. In addition, we downregulated PGC-1α in vivo to observe the effects on A1 receptor induced MB and neuroprotection. The findings indicated that A1 receptor was increased and mainly expressed on neurons in the penumbra, further activated A1 receptor after stroke had neuroprotection. In vitro, activation of A1 promotes MB and increases the expression level of PGC-1α, while downregulation of PGC-1α partially reverses the effect of A1 receptor after OGD/R. Down regulation of PGC-1α in the penumbra neurons can reverse the effects of activation of A1 receptor on MB and neuroprotection. Taken together, these findings indicated that A1receptor promotes MB and improves neurological function after ischemic stroke via PGC-1α.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratones , Adenosina , Isquemia Encefálica/tratamiento farmacológico , Neuroprotección , Biogénesis de Organelos , Receptores Purinérgicos P1
16.
Plant Cell Environ ; 46(4): 1312-1326, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36624579

RESUMEN

Ubiquitin-specific proteases (UBPs) process deubiquitination in eukaryotic organisms and are widely involved in plant development and responses to environmental stress. However, their role in cell death and plant immunity remains largely unknown. Here, we identified a rice lesion mimic mutant (LMM) and cloned its causative gene, LMM22. Both dysfunction and overexpression of LMM22 gave rise to the hypersensitive response-like cell death, reactive oxygen species bursts, and activated defence responses. LMM22 encodes an active UBP that is localised to the endoplasmic reticulum (ER) and displays a constitutive expression pattern in rice. LMM22 interacts with SPOTTED LEAF 35 (SPL35), a coupling of ubiquitin conjugation to ER degradation domain-containing protein that is known to participate in ubiquitination and the regulation of cell death and disease response in rice. Additional analyses suggest that LMM22 can positively regulate and stabilise the abundance of SPL35 protein likely through its deubiquitination activity. These data therefore improve our understanding of the function of UBP in rice innate immune responses by demonstrating that LMM22 functions as a critical regulator of SPL35 in cell death and disease resistance.


Asunto(s)
Oryza , Proteasas Ubiquitina-Específicas , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Muerte Celular , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas
17.
Neurochem Res ; 48(2): 641-657, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36315369

RESUMEN

Newborn neurons from the subventricular zone (SVZ) are essential to functional recovery following ischemic stroke. However, the number of newly generated neurons after stroke is far from enough to support a potent recovery. Adiponectin could increase neurogenesis in the dentate gyrus of hippocampus in neurodegenerative diseases. However, the effect of adiponectin on the neurogenesis from SVZ and the functional recovery after ischemic stroke was unknown, and the underlying mechanism was not specified either. The middle cerebral artery occlusion model of mice was adopted and adiponectin was administrated once a day from day 3 to 7 of reperfusion. The levels of BDNF and p-STAT3 were detected by western blotting on day 7 of reperfusion. The virus-encoded BDNF shRNA with GFAP promoter and a STAT3 inhibitor Stattic were used, respectively. Neurogenesis was evidenced by the expression of doublecortin and 5-bromo-2'-deoxyuridine (BrdU) labelling and brain atrophy was revealed by Nissl staining on day 28 of reperfusion. Neurological functional recovery was assessed by the adhesive removal test and the forepaw grip strength. We found that adiponectin increased both the doublecortin-positive cells and NeuN/BrdU double-positive cells around the injured area on day 28 of reperfusion, along with the improved long-term neurological recovery. Mechanistically, adiponectin increased the protein levels of p-STAT3 and BDNF in astrocytes on day 7 of reperfusion, while silencing BDNF diminished the adiponectin-induced neurogenesis and functional recovery. Moreover, inhibition of STAT3 not only prevented the increase of BDNF but also the improved neurogenesis and functional recovery after stroke. In conclusion, adiponectin enhances neurogenesis and functional recovery after ischemic stroke via STAT3/BDNF pathway in astrocytes.


Asunto(s)
Isquemia Encefálica , Ataque Isquémico Transitorio , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Ataque Isquémico Transitorio/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Adiponectina/farmacología , Regulación hacia Arriba , Astrocitos/metabolismo , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacología , Accidente Cerebrovascular/metabolismo , Neurogénesis/fisiología , Infarto de la Arteria Cerebral Media/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Proteínas de Dominio Doblecortina , Isquemia Encefálica/metabolismo
18.
Brain Res Bull ; 193: 27-36, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36470555

RESUMEN

The mechanism of electroacupuncture (EA) pretreatment-induced neuroprotection remains unclear. In this study, we found that neuronal Triggering receptor expressed on myeloid cells 2 (TREM2) expression was increased and peaked at 48 h and 72 h after ischemia/reperfusion. After specific knockdown of TREM2 in excitatory neurons, neurological function was damaged, and the infarct volume was enlarged. Furthermore, the expression of LC3II/LC3I and Beclin1 was decreased, while the expression of p62 was increased. EA pretreatment enhanced TREM2, LC3II/LC3I and Beclin1 expression while reducing p62 in the ischemic penumbra area. The EA-induced neuroprotective effects and improvements in autophagic flux were abolished by specific knockdown of TREM2 in excitatory neurons. Taken together, our findings provide novel mechanistic insight into EA-induced ischemic tolerance and suggest a promising therapeutic strategy of targeting neuronal TREM2 to treat brain ischemia.


Asunto(s)
Isquemia Encefálica , Electroacupuntura , Glicoproteínas de Membrana , Receptores Inmunológicos , Daño por Reperfusión , Beclina-1/metabolismo , Isquemia Encefálica/metabolismo , Isquemia/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neuronas/metabolismo , Receptores Inmunológicos/metabolismo , Daño por Reperfusión/metabolismo , Animales
19.
Eur J Neurosci ; 56(6): 4948-4961, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945686

RESUMEN

Diabetes can cause vascular remodelling and is associated with worse outcome after ischaemic stroke. Pioglitazone is a commonly used anti-diabetic agent. However, it is not known whether pioglitazone use before ischaemia could reduce brain ischaemic injury. Pioglitazone was administered to 5-week-old db+ or db/db mice. Cerebral vascular remodelling was examined at the age of 9 weeks. Expression of peroxisome proliferator-activated receptor-γ (PPARγ), p-PPARγ (S112 and S273), nucleotide-binding domain (NOD)-like receptor protein 3 (Nlrp3), interleukin-1ß (IL-1ß) and tumour necrosis factor-α (TNF-α) was evaluated in the somatosensory cortex of mice. Neurological outcome was evaluated 24 h after brain ischaemia. Results showed that early pioglitazone treatment provided a long-lasting effect of euglycaemia but enhanced hyperlipidaemia in the db/db mice. Diabetic mice exhibited increased vascular tortuosity, narrower middle cerebral artery (MCA) width and IgG leakage in the brain. These changes were blocked by early pioglitazone treatment. In diabetic animals, PPARγ expression was reduced, and p-PPARγ at S273 but not S112, Nlrp3, IL-1ß and TNF-α were increased in the somatosensory cortex. PPARγ decrease and Nlrp3 increase were mainly in the neurons of the diabetic brain, which was reversed by early pioglitazone treatment. Pioglitazone attenuated the aggravated neurological outcome after stroke in diabetic mice. But this protective effect was abolished through restoring cerebral inflammation by intracerebroventricular administration of IL-1ß and TNF-α in pioglitazone-treated diabetic mice before MCAO. In summary, early pioglitazone treatment attenuates cerebral vascular remodelling and ischaemic brain injury possibly via blocking chronic neuroinflammation in the db/db mice.


Asunto(s)
Isquemia Encefálica , Diabetes Mellitus Experimental , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Isquemia Encefálica/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , PPAR gamma/metabolismo , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , Accidente Cerebrovascular/complicaciones , Factor de Necrosis Tumoral alfa , Remodelación Vascular
20.
Front Psychiatry ; 13: 933025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845458

RESUMEN

Schizophrenia is a severe mental disorder that is often comorbid with heart dysfunction and even sudden cardiac death (SCD). Clinical studies of SCD in schizophrenia have been largely reported, while there are limited autopsy studies that directly showed whole-scale information of such events. In this study, we present nine autopsy-based SCD cases in schizophrenia patients who died suddenly during hospitalization. Their medical records before and during hospitalization, and postmortem autopsy findings were summarized. These decedents had an average duration of schizophrenia for 6.83 ± 3.75 years with a male/female ratio of 4:5. They were all on intermittent antipsychotics medication before hospitalization and died within 15 days after hospitalization. Seven of the nine cases (77.8%) died of organic heart diseases such as severe coronary artery atherosclerosis (n = 4), myocarditis (n = 1), cardiomyopathy (n = 1), and pulmonary thromboembolism (n = 1). Two cases remained unexplained after systemic autopsy and toxicological examinations. Postmortem autopsy identified hepatic steatosis (n = 6) and respiratory inflammation (n = 3) as the most common associate extra-cardiac lesions. Our data provided autopsy-based data of SCD cases in schizophrenia and highlighted an intensive care of such patients during hospitalization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...