Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(1): e0296044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38170721

RESUMEN

In recent years, X-band phase array dual polarization weather radar technology has matured. The cooperative networking data from X-band phase array dual polarization weather radar have many advantages compared with traditional methods, namely, high spatial and temporal resolution (approximately 70 seconds in one scan, 30 m in radial distance resolution), wide coverages that can compensate for the observation blind spots, and data fusion technology that is used in the observation overlap area to ensure that the observed precipitation data have spatial continuity. Based on the above radar systems, this study proposes an improved hail and lightning weather disaster rapid identification and early warning algorithm. The improved thunderstorm identification, tracking, analysis, and nowcasting (TITAN) algorithm is used to quickly identify three-dimensional strong convective storm cells. Large sample observation experiment data are used to invert the localized hail index (HDR) to identify the hail position. The fuzzy logic method is used to comprehensively determine the probability of lightning occurrence. The comparative analysis experiment shows that, compared with the live observation data from the ground-based automatic station, the hail and lightning disaster weather warning algorithm developed by this study can increase warning times by approximately 7 minutes over the traditional algorithm, and its critical success index (CSI), false alarm ratio (FAR) and omission alarm ratio (OAR) scores are better than those of the traditional method. The average root mean square error (ARMSE) for identifying hail and lightning locations by this improved method is also significantly better than that of traditional methods. We show that our method can provide probabilistic predictions that improve hail and lightning identification, improve the precision of early warning and support operational utility at higher resolutions and with greater lead times that traditional methods struggle to achieve.


Asunto(s)
Desastres , Clima Extremo , Relámpago , Radar , Tiempo (Meteorología)
2.
J Environ Sci (China) ; 16(6): 994-5, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15900736

RESUMEN

One of the difficulties frequently encountered in water quality assessment is that there are many factors and they cannot be assessed according to one factor, all the effect factors associated with water quality must be used. In order to overcome this issues the projection pursuit principle is introduced into water quality assessment, and projection pursuit cluster (PPC) model is developed in this study. The PPC model makes the transition from high dimension to one-dimension. In other words, based on the PPC model, multifactor problem can be converted to one factor problem. The application of PPC model can be divided into four parts: (1) to estimate projection index function Q(a -->); (2) to find the right projection direction a -->; (3) to calculate projection characteristic value of the i th sample z(i), and (4) to draw comprehensive analysis on the basis of z(i). On the other hand, the empirical formula of cutoff radius R is developed, which is benefit for the model to be used in practice. Finally, a case study of water quality assessment is proposed in this paper. The results showed that the PPC model is reasonable, and it is more objective and less subjective in water quality assessment. It is a new method for multivariate problem comprehensive analysis.


Asunto(s)
Monitoreo del Ambiente/métodos , Modelos Teóricos , Contaminantes del Agua/análisis , Análisis Multivariante , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...