Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Transl Hepatol ; 12(5): 457-468, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38779518

RESUMEN

Background and Aims: Hepatitis B virus (HBV) reactivation is commonly observed in individuals with chronic HBV infection undergoing antineoplastic drug therapy. Paclitaxel (PTX) treatment has been identified as a potential trigger for HBV reactivation. This study aimed to uncover the mechanisms of PTX-induced HBV reactivation in vitro and in vivo, which may inform new strategies for HBV antiviral treatment. Methods: The impact of PTX on HBV replication was assessed through various methods including enzyme-linked immunosorbent assay, dual-luciferase reporter assay, quantitative real-time PCR, chromatin immunoprecipitation, and immunohistochemical staining. Transcriptome sequencing and 16S rRNA sequencing were employed to assess alterations in the transcriptome and microbial diversity in PTX-treated HBV transgenic mice. Results: PTX enhanced the levels of HBV 3.5-kb mRNA, HBV DNA, HBeAg, and HBsAg both in vitro and in vivo. PTX also promoted the activity of the HBV core promoter and transcription factor AP-1. Inhibition of AP-1 gene expression markedly suppressed PTX-induced HBV reactivation. Transcriptome sequencing revealed that PTX activated the immune-related signaling networks such as IL-17, NF-κB, and MAPK signaling pathways, with the pivotal common key molecule being AP-1. The 16S rRNA sequencing revealed that PTX induced dysbiosis of gut microbiota. Conclusions: PTX-induced HBV reactivation was likely a synergistic outcome of immune suppression and direct stimulation of HBV replication through the enhancement of HBV core promoter activity mediated by the transcription factor AP-1. These findings propose a novel molecular mechanism, underscoring the critical role of AP-1 in PTX-induced HBV reactivation.

2.
Front Med (Lausanne) ; 11: 1254467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38695016

RESUMEN

Background: Preeclampsia (PE) is a pregnancy complication defined by new onset hypertension and proteinuria or other maternal organ damage after 20 weeks of gestation. Although non-invasive prenatal testing (NIPT) has been widely used to detect fetal chromosomal abnormalities during pregnancy, its performance in combination with maternal risk factors to screen for PE has not been extensively validated. Our aim was to develop and validate classifiers that predict early- or late-onset PE using the maternal plasma cell-free DNA (cfDNA) profile and clinical risk factors. Methods: We retrospectively collected and analyzed NIPT data of 2,727 pregnant women aged 24-45 years from four hospitals in China, which had previously been used to screen for fetal aneuploidy at 12 + 0 ~ 22 + 6 weeks of gestation. According to the diagnostic criteria for PE and the time of diagnosis (34 weeks of gestation), a total of 143 early-, 580 late-onset PE samples and 2,004 healthy controls were included. The wilcoxon rank sum test was used to identify the cfDNA profile for PE prediction. The Fisher's exact test and Mann-Whitney U-test were used to compare categorical and continuous variables of clinical risk factors between PE samples and healthy controls, respectively. Machine learning methods were performed to develop and validate PE classifiers based on the cfDNA profile and clinical risk factors. Results: By using NIPT data to analyze cfDNA coverages in promoter regions, we found the cfDNA profile, which was differential cfDNA coverages in gene promoter regions between PE and healthy controls, could be used to predict early- and late-onset PE. Maternal age, body mass index, parity, past medical histories and method of conception were significantly differential between PE and healthy pregnant women. With a false positive rate of 10%, the classifiers based on the combination of the cfDNA profile and clinical risk factors predicted early- and late-onset PE in four datasets with an average accuracy of 89 and 80% and an average sensitivity of 63 and 48%, respectively. Conclusion: Incorporating cfDNA profiles in classifiers might reduce performance variations in PE models based only on clinical risk factors, potentially expanding the application of NIPT in PE screening in the future.

3.
BMC Genomics ; 25(1): 470, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745141

RESUMEN

BACKGROUND: The absence of heterozygosity (AOH) is a kind of genomic change characterized by a long contiguous region of homozygous alleles in a chromosome, which may cause human genetic disorders. However, no method of low-pass whole genome sequencing (LP-WGS) has been reported for the detection of AOH in a low-pass setting of less than onefold. We developed a method, termed CNVseq-AOH, for predicting the absence of heterozygosity using LP-WGS with ultra-low sequencing data, which overcomes the sparse nature of typical LP-WGS data by combing population-based haplotype information, adjustable sliding windows, and recurrent neural network (RNN). We tested the feasibility of CNVseq-AOH for the detection of AOH in 409 cases (11 AOH regions for model training and 863 AOH regions for validation) from the 1000 Genomes Project (1KGP). AOH detection using CNVseq-AOH was also performed on 6 clinical cases with previously ascertained AOHs by whole exome sequencing (WES). RESULTS: Using SNP-based microarray results as reference (AOHs detected by CNVseq-AOH with at least a 50% overlap with the AOHs detected by chromosomal microarray analysis), 409 samples (863 AOH regions) in the 1KGP were used for concordant analysis. For 784 AOHs on autosomes and 79 AOHs on the X chromosome, CNVseq-AOH can predict AOHs with a concordant rate of 96.23% and 59.49% respectively based on the analysis of 0.1-fold LP-WGS data, which is far lower than the current standard in the field. Using 0.1-fold LP-WGS data, CNVseq-AOH revealed 5 additional AOHs (larger than 10 Mb in size) in the 409 samples. We further analyzed AOHs larger than 10 Mb, which is recommended for reporting the possibility of UPD. For the 291 AOH regions larger than 10 Mb, CNVseq-AOH can predict AOHs with a concordant rate of 99.66% with only 0.1-fold LP-WGS data. In the 6 clinical cases, CNVseq-AOH revealed all 15 known AOH regions. CONCLUSIONS: Here we reported a method for analyzing LP-WGS data to accurately identify regions of AOH, which possesses great potential to improve genetic testing of AOH.


Asunto(s)
Pérdida de Heterocigocidad , Redes Neurales de la Computación , Secuenciación Completa del Genoma , Humanos , Secuenciación Completa del Genoma/métodos , Polimorfismo de Nucleótido Simple , Genoma Humano
4.
Pathogens ; 13(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38535561

RESUMEN

Between 7 December 2022 and 28 February 2023, China experienced a new wave of COVID-19 that swept across the entire country and resulted in an increasing amount of respiratory infections and hospitalizations. The purpose of this study is to reveal the intensity and composition of coinfecting microbial agents. In total, 196 inpatients were recruited from The Third People's Hospital of Shenzhen, and 169 respiratory and 73 blood samples were collected for metagenomic next-generation sequencing. The total "Infectome" was characterized and compared across different groups defined by the SARS-CoV-2 detection status, age groups, and severity of disease. Our results revealed a total of 22 species of pathogenic microbes (4 viruses, 13 bacteria, and 5 fungi), and more were discovered in the respiratory tract than in blood. The diversity of the total infectome was highly distinguished between respiratory and blood samples, and it was generally higher in patients that were SARS-CoV-2-positive, older in age, and with more severe disease. At the individual pathogen level, HSV-1 seemed to be the major contributor to these differences observed in the overall comparisons. Collectively, this study reveals the highly complex respiratory infectome and high-intensity coinfection in patients admitted to the hospital during the period of the 2023 COVID-19 pandemic in China.

5.
MethodsX ; 12: 102568, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38304391

RESUMEN

The variation of dynamic accuracy for press systems is the nonlinear phenomenon that results from the consideration of contact and impact on the deformation of transmission mechanism, usually revolute joint and translation joint. The influence is especially obvious in the ultra-precision mechanism, which can cause the vibration and unstabitily of position and machining accuracy would be failure. As usual, the dynamic accuracy is used to evaluate the ability of press systems, which is also the important design object. Due to the stronger nonlinear of dynamic accuracy, especially for the effect of coupling factors, the mathematical analysis method plays an important role in the study of dynamic behavior for press systems. This work proposes the new approach to conduct the simplified dynamic accuracy analysis based on the orthogonal design method, which optimize the reasonability of sample collection. The proposed method is compared with the traditional approach, which illustrates the advantage and efficiency for the dynamic accuracy analysis of press systems.•Developed dynamic accuracy analysis is observed to be effective for the stability evaluation of press systems.•The simplified model of coupling effect analysis is established based on orthogonal design method.•No need to collect a large amount of data for comparison and the reliable nonlinear analysis is conducted with simplified model.

6.
Sci Total Environ ; 914: 170034, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220015

RESUMEN

To better understand the potential adverse health effects of atmospheric fine particles in the Southeast Asian developing countries, PM2.5 samples were collected at two urban sites in Yangon and Mandalay, representing coastal and inland cities in Myanmar, in winter and summer during 2016 and 2017. The concentrations of 21 polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were determined using a gas chromatography-mass spectrometry (GC-MS). The concentrations of PAHs in PM2.5 in Yangon and Mandalay ranged from 7.6 to 180 ng m-3, with an average of 72 ng m-3. The PAHs were significantly higher in winter than in summer, and significantly higher in Mandalay than in Yangon. The health risk analysis of PAHs, based on the toxic equivalent quantity (TEQ) calculation, and the incremental lifetime cancer risk (ILCR) assessment indicated that PM2.5 in Myanmar has significant health risks with higher health risks in Mandalay compared to Yangon. Diagnostic ratios of PAHs, correlation of PAHs with other species in PM2.5 and the positive matrix factorization (PMF) analysis showed that TEQ is strongly affected by biomass burning and vehicular emissions in Myanmar. Additionally, it was found that the aging degree of aerosols and air mass trajectories had great influences on the concentration and composition of PAHs in PM2.5 in Myanmar, thereby affecting the toxicity of PM2.5.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Mianmar , Monitoreo del Ambiente/métodos , Medición de Riesgo , Estaciones del Año , China
7.
Sci Total Environ ; 912: 168736, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37996034

RESUMEN

There is growing evidence that the interactions between sulfur dioxide (SO2) and organic peroxides (POs) in aerosol and clouds play an important role in atmospheric sulfate formation and aerosol aging, yet the reactivity of POs arising from anthropogenic precursors toward SO2 remains unknown. In this study, we investigate the multiphase reactions of SO2 with secondary organic aerosol (SOA) formed from the photooxidation of toluene, a major type of anthropogenic SOA in the atmosphere. The reactive uptake coefficient of SO2 on toluene SOA was determined to be on the order of 10-4, depending strikingly on aerosol water content. POs contribute significantly to the multiphase reactivity of toluene SOA, but they can only explain a portion of the measured SO2 uptake, suggesting the presence of other reactive species in SOA that also contribute to the particle reactivity toward SO2. The second-order reaction rate constant (kII) between S(IV) and toluene-derived POs was estimated to be in the range of the kII values previously reported for commercially available POs (e.g., 2-butanone peroxide and 2-tert-butyl hydroperoxide) and the smallest (C1-C2) and biogenic POs. In addition, unlike commercial POs that can efficiently convert S(IV) into both inorganic sulfate and organosulfates, toluene-derived POs appear to mainly oxidize S(IV) to inorganic sulfate. Our study reveals the multiphase reactivity of typical anthropogenic SOA and POs toward SO2 and will help to develop a better understanding of the formation and evolution of atmospheric secondary aerosol.

8.
Environ Sci Technol ; 57(41): 15558-15570, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37797208

RESUMEN

Organic peroxides (POs) are ubiquitous in the atmosphere and particularly reactive toward dissolved sulfur dioxide (SO2), yet the reaction kinetics between POs and SO2, especially in complex inorganic-organic mixed particles, remain poorly constrained. Here, we report the first investigation of the multiphase reactions between SO2 and POs in monoterpene-derived secondary organic aerosol internally mixed with different inorganic salts (ammonium sulfate, ammonium bisulfate, or sodium nitrate). We find that when the particles are phase-separated, the PO-S(IV) reactivity is consistent with that measured in pure SOA and depends markedly on the water content in the organic shell. However, when the organic and inorganic phases are miscible, the PO-S(IV) reactivity varies substantially among different aerosol systems, mainly driven by their distinct acidities (not by ionic strength). The second-order PO-S(IV) rate constant decreases monotonically from 5 × 105 to 75 M-1 s-1 in the pH range of 0.1-5.6. Both proton catalysis and general acid catalysis contribute to S(IV) oxidation, with their corresponding third-order rate constants determined to be (6.4 ± 0.7) × 106 and (6.9 ± 4.6) × 104 M-2 s-1 at pH 2-6, respectively. The measured kinetics imply that the PO-S(IV) reaction in aerosol is an important sulfate formation pathway, with the reaction kinetics dominated by general acid catalysis at pH > 3 under typical continental atmospheric conditions.


Asunto(s)
Peróxidos , Dióxido de Azufre , Sulfatos/química , Atmósfera/química , Aerosoles
9.
Front Cell Infect Microbiol ; 13: 1227537, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680745

RESUMEN

In this report, we describe the first case of infective endocarditis caused by Mycobacterium kansasii in a 45-year-old male patient who presented with a 10-day fever and decompensated cirrhosis. Despite negative results in blood culture and pathology, we employed metagenomic next-generation sequencing (mNGS) to analyze the genome sequences of both the host and microbe. The copy number variation (CNV) indicated a high risk of liver disease in the patient, which correlated with biochemical examination findings. Notably, M. kansasii sequences were detected in peripheral blood samples and confirmed through Sanger sequencing. Unfortunately, the patient's condition deteriorated, leading to his demise prior to heart surgery. Nevertheless, we propose that mNGS could be a novel approach for diagnosing M. kansasii infection, particularly in cases where blood culture and pathology results are unavailable. It is important to consider M. kansasii infection as a potential cause of endocarditis and initiate appropriate anti-infection treatment.


Asunto(s)
Endocarditis Bacteriana , Endocarditis , Mycobacterium kansasii , Masculino , Humanos , Persona de Mediana Edad , Mycobacterium kansasii/genética , Variaciones en el Número de Copia de ADN , Endocarditis/diagnóstico , Endocarditis Bacteriana/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento
10.
Sci Total Environ ; 900: 165717, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37482358

RESUMEN

Nitrous acid (HONO) plays a significant role in radical cycling and atmospheric oxidative chemistry. While the source and evolution of HONO in the Yangtze River Delta (YRD) region of China after 2018 remains largely unknown, this work monitored HONO and other air pollutants throughout 2019 at an urban site (Pudong, PD) and a suburban site (Qingpu, QP) in Shanghai. Episodes with high HONO mixing ratios but different PM2.5 levels, namely haze and clean episodes, were chosen for HONO budget analysis. Using an observation-based photochemical box model, relative importance of different sources and sinks of HONO were evaluated. Gas-phase reaction of NO with OH was found to be one of the most important daytime HONO formation sources, especially during the QPhaze period (accounting for 40.3 % of daytime HONO formation). In particular, heterogeneous conversion of NO2 on ground and aerosol surface was found to be the dominant source for nocturnal HONO. Photo-enhanced NO2 conversion on ground surface plays an important role in daytime HONO production (19.4 % in PDhaze vs. 27.6 % in PDclean, and 19.8 % in QPhaze vs. 25.9 % in QPclean). In addition, photo-enhanced NO2 conversion at the aerosol surface during haze episodes made more significant contributions to HONO formation compared to the clean periods (20.9 % in PDhaze vs. 17.1 % in PDclean, and 19.7 % in QPhaze vs. 11.2 % in QPclean). The role of multiphase reactions was found to be increasingly important in HONO generation with enhanced relative humidity (RH) during daytime. Significant unknown HONO source was further analyzed and found to be positively related with photolytic as well as multiphase pathways. Overall, our study sheds light on the budget of HONO in one of the biggest megacities in east China, which would help developing future mitigation strategies for urban HONO and atmospheric oxidation capacity.

11.
Sci Total Environ ; 872: 162071, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36775179

RESUMEN

Biomass burning (BB) has significant impacts on air quality and climate change, especially during harvest seasons. In previous studies, levoglucosan was frequently used for the calculation of BB contribution to PM2.5, however, the degradation of levoglucosan (Lev) could lead to large uncertainties. To quantify the influence of the degradation of Lev on the contribution of BB to PM2.5, PM2.5-bound biomass burning-derived markers were measured in Changzhou from November 2020 to March 2021 using the thermal desorption aerosol gas chromatography-mass spectrometry (TAG-GC/MS) system. Temporal variations of three anhydro-sugar BB tracers (e.g., levoglucosan, mannosan (Man), and galactosan (Gal)) were obtained. During the sampling period, the degradation level of air mass (x) was 0.13, indicating that ~87 % of levoglucosan had degraded before sampling in Changzhou. Without considering the degradation of levoglucosan in the atmosphere, the contribution of BB to OC were 7.8 %, 10.2 %, and 9.3 % in the clean period, BB period, and whole period, respectively, which were 2.4-2.6 times lower than those (20.8 %-25.9 %) considered levoglucosan degradation. This illustrated that the relative contribution of BB to OC could be underestimated (~14.9 %) without considering degradation of levoglucosan. Compared to the traditional method (i.e., only using K+ as BB tracer), organic tracers (Lev, Man, Gal) were put into the Positive Matrix Factorization (PMF) model in this study. With the addition of BB organic tracers and replaced K+ with K+BB (the water-soluble potassium produced by biomass burning), the overall contribution of BB to PM2.5 was enhanced by 3.2 % after accounting for levoglucosan degradation based on the PMF analysis. This study provides useful information to better understand the effect of biomass burning on the air quality in the Yangtze River Delta region.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Biomasa , Monitoreo del Ambiente/métodos , China , Estaciones del Año , Aerosoles/análisis
12.
Micromachines (Basel) ; 14(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838169

RESUMEN

Network on chip (NoC) is the main solution to the communication bandwidth of a multi-processor system on chip (MPSoC). NoC also brings more route requirements and is highly prone to errors caused by crosstalk. Crosstalk has become a major design problem in deep-submicron NoC communication design. Hence, a crosstalk error model and corresponding reliable system with error correction code (ECC) are required to make NoC communication reliable. In this paper, a reliability system evaluation model (RSE) of NoC communication with analysis from backend to frontend has been proposed. In the backend, a crosstalk error rate model (CER) is established with a three-wire RLC coupling model and timing constraints. The CER is used to establish functional relations between interconnect spacing, length and signal frequency, and test system reliability. In the frontend, a reliability system performance model (RSP) is established with a CER, reliability method cost and bandwidth. The RSE summarizes the frontend and backend model. In order to verify the RSE model, we propose a reliability system with a hybrid automatic repeat request technique (RSHARQ). Simulation demonstrates that the CER model is close to real circuit design. Through the CER and RSP model, the performance of RSHARQ could be simulated.

13.
Environ Sci Technol ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36630690

RESUMEN

Wildfires are a major source of biomass burning aerosol to the atmosphere, with their incidence and intensity expected to increase in a warmer future climate. However, the toxicity evolution of biomass burning organic aerosol (BBOA) during atmospheric aging remains poorly understood. In this study, we report a unique set of chemical and toxicological metrics of BBOA from pine wood smoldering during multiphase aging by gas-phase hydroxyl radicals (OH). Both the fresh and OH-aged BBOA show activity relevant to adverse health outcomes. The results from two acellular assays (DTT and DCFH) show significant oxidative potential (OP) and reactive oxygen species (ROS) formation in OH-aged BBOA. Also, radical concentrations in the aerosol assessed by electron paramagnetic resonance (EPR) spectroscopy increased by 50% following heterogeneous aging. This enhancement was accompanied by a transition from predominantly carbon-centered radicals (85%) in the fresh aerosol to predominantly oxygen-centered radicals (76%) following aging. Both the fresh and aged biomass burning aerosols trigger prominent antioxidant defense during the in vitro exposure, indicating the induction of oxidative stress by BBOA in the atmosphere. By connecting chemical composition and toxicity using an integrated approach, we show that short-term aging initiated by OH radicals can produce biomass burning particles with a higher particle-bound ROS generation capacity, which are therefore a more relevant exposure hazard for residents in large population centers close to wildfire regions than previously studied fresh biomass burning emissions.

14.
Chem Rev ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36630720

RESUMEN

Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.

15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(10): 1053-1057, 2022 Oct 10.
Artículo en Chino | MEDLINE | ID: mdl-36184082

RESUMEN

The ongoing development of high-throughput sequencing technology and continuous decline of sequencing cost have made it possible to carry out large-scale screening for genetic diseases, which are the main component of birth defects. The screening of genetic diseases is expected to significantly reduce the rate of birth defects and the burden of genetic diseases to the affected families and the society. Taking Down syndrome as an example, through the analysis of the cost-benefit ratio of relevant screening programs, this article has summarized the socio-economic indicators to be considered during the design and development of genetic disease screening.


Asunto(s)
Síndrome de Down , Análisis Costo-Beneficio , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Pruebas Genéticas , Humanos
16.
Sci Total Environ ; 853: 158450, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36058329

RESUMEN

The temporal variation, sources, and health risks of elemental composition in fine particles (PM2.5) were explored using online measurements of 19 elements with a time resolution of 1 h at an urban location in Changzhou, China, from December 10, 2020 to March 31, 2021. The mass concentration of PM2.5 was 50.1 ±â€¯32.6 µg m-3, with a range of 3-218 µg m-3. The total concentration of 19 elements (2568 ±â€¯1839 ng m-3) accounted for 5.1 % of PM2.5 mass concentration. S, Cl, Si, and Fe were the dominant elementary species, accounting for 90 % of total element mass concentrations during the whole campaign. Positive matrix factorization (PMF) model was applied to identify the major emission sources of elements in PM2.5. Seven factors, named secondary sulfate mixed with coal combustion, Cl-rich, traffic, iron and steel industry, soil dust, fireworks, and shipping, were identified. The major sources for elements were iron and steel industry, followed by soil dust and secondary sulfate mixed with coal combustion, explaining 32.0 %, 23.5 % and 16.7 % of the total source contribution, respectively. The total hazard index (HI) of elements was 3.01 for children and 1.18 for adults, much greater than the admissible level (HI = 1). The total carcinogenic risk (CR) in Changzhou was estimated to be 5.87 × 10-5, which was above the acceptable CR level (1 × 10-6). Among the calculated metal elements, Cr, Co and As have higher carcinogenic risk, and Co was found to trigger the highest noncarcinogenic risk to Children. Our results indicate that industrial emission is the dominant CR contributor, emphasizing the necessity for stringent regulation of industry sources. Overall, our study provides useful information for policymakers to reduce emissions and health risks from elements in the Yangtze River Delta region.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Niño , Adulto , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Polvo/análisis , Carbón Mineral , China , Acero , Suelo , Hierro , Sulfatos , Estaciones del Año , Emisiones de Vehículos/análisis
17.
Environ Sci Technol ; 56(20): 14249-14261, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36178682

RESUMEN

High molecular weight dimeric compounds constitute a significant fraction of secondary organic aerosol (SOA) and have profound impacts on the properties and lifecycle of particles in the atmosphere. Although different formation mechanisms involving reactive intermediates and/or closed-shell monomeric species have been proposed for the particle-phase dimers, their relative importance remains in debate. Here, we report unambiguous experimental evidence of the important role of acyl organic peroxy radicals (RO2) and a small but non-negligible contribution from stabilized Criegee intermediates (SCIs) in the formation of particle-phase dimers during ozonolysis of α-pinene, one of the most important precursors for biogenic SOA. Specifically, we find that acyl RO2-involved reactions explain 50-80% of total oxygenated dimer signals (C15-C20, O/C ≥ 0.4) and 20-30% of the total less oxygenated (O/C < 0.4) dimer signals. In particular, they contribute to 70% of C15-C19 dimer ester formation, likely mainly via the decarboxylation of diacyl peroxides arising from acyl RO2 cross-reactions. In comparison, SCIs play a minor role in the formation of C15-C19 dimer esters but react noticeably with the most abundant C9 and C10 carboxylic acids and/or carbonyl products to form C19 and C20 dimeric peroxides, which are prone to particle-phase transformation to form more stable dimers without the peroxide functionality. This work provides a clearer view of the formation pathways of particle-phase dimers from α-pinene oxidation and would help reduce the uncertainties in future atmospheric modeling of the budget, properties, and health and climate impacts of SOA.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Aerosoles , Monoterpenos Bicíclicos , Ácidos Carboxílicos , Ésteres , Monoterpenos , Peróxidos
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(8): 803-808, 2022 Aug 10.
Artículo en Chino | MEDLINE | ID: mdl-35929926

RESUMEN

OBJECTIVE: To compare the clinical application and health economic values of non-invasive prenatal testing (NIPT) and second trimester serum screening (STSS). METHODS: A retrospective analysis was carried out on 54 026 singleton pregnant women undergoing NIPT and STSS from March 1, 2018 to December 31, 2019 in Changsha Maternal and Child Health Care Hospital. For pregnant women with high-risk results of NIPT, prenatal diagnosis and follow-up of pregnancy outcomes were conducted. The data was grouped to 4 screening models, and their cost-benefit was analyzed. RESULTS: The sensitivity, specificity and positive predictive value of NIPT were all higher than STSS. Screening models 1 to 4 have prevented the birth of 71, 29, 52 and 54 patients with Down syndrome, respectively. The safety index of screening models 1 to 4 were 0.0036, 0.3944, 02215 and 0.1281, respectively. When the price of NIPT was decreased to 600 RMB, the cost-benefit of the screening models 1 to 4 was 0.46, 0.65, 0.44 and 0.40 million RMB, respectively. CONCLUSION: NIPT has a better detection performance than STSS. When the price of NIPT is 600 RMB, screening model 1 has the best screening effect and the highest accuracy, safety index and health economical value.


Asunto(s)
Síndrome de Down , Niño , China , Análisis Costo-Beneficio , Síndrome de Down/diagnóstico , Femenino , Humanos , Embarazo , Diagnóstico Prenatal/métodos , Estudios Retrospectivos
19.
Sci Total Environ ; 839: 156280, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35644399

RESUMEN

Black carbon (BC) and brown carbon (BrC) have intensive impacts on atmospheric visibility and global climate change. In this study, PM2.5 samples were collected at Pudong (PD) and Qingpu (QP) of Shanghai in 2017, and characterized typical organic molecular tracers by gas chromatography-mass spectrometer. The light absorption (Abs) of carbonaceous aerosol and water-soluble organic matter was analyzed by a multi-wavelength thermal/optical carbon analyzer and a long-range ultraviolet-visible spectrophotometer. An improved two-component model integrated with both optical and chemical fingerprints of carbonaceous aerosol was applied to analyze the Abs of BC, water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WISOC), with which the potential influencing factors including emission source and atmospheric aging were investigated. Results indicated that BrC contributed 19% at PD and 16% at QP of the total light absorption of the carbonaceous aerosol at 405 nm wavelength. Meanwhile, AbsWSOC(405)/AbsBrC(405) showed significant seasonal variations (27-50%) at both sites. Positive matrix factorization (PMF) analysis showed that vehicle emissions (60-61%) and biomass combustion (38-39%) were the major contributors to AbsBC(405), while biomass burning (34-40%), nitrate-relevant secondary processes (22-23%), vehicle emissions (18-19%) and biogenic SOA (13-19%) were major contributors to AbsWSOC(405). Hybrid combustion source (94-96%) had a predominant contribution to AbsWISOC(405). Statistical analysis showed that biomass burning had a great impact on the enhancement of AbsWISOC. Absorption Ångström exponent (AAE) and mass absorption efficiency (MAE) of each factor (source) using PMF analysis indicated that WSOC from combustion sources had higher AAEWSOC(350-550) values (8.11 and 8.29 for coal and biomass burning, respectively) and MAEWSOC(365) values (0.63-0.99) compared to other sources. Atmospheric aging process can lower the MAEWSOC(365) value (0.24-0.52). Overall, our study facilitates a better understanding of the relationships among source, optical properties, and atmospheric transformation processes of the carbonaceous aerosols in Shanghai.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , China , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Hollín/análisis , Emisiones de Vehículos/análisis , Agua/química
20.
Environ Sci Technol ; 56(8): 4882-4893, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35357822

RESUMEN

Organic peroxides play a vital role in the formation, evolution, and health impacts of atmospheric aerosols, yet their molecular composition and fate in the particle phase remain poorly understood. Here, we identified, using iodometry-assisted liquid chromatography mass spectrometry, a large suite of isomer-resolved peroxide monomers (C8-10H12-18O5-8) and dimers (C15-20H22-34O5-14) in secondary organic aerosol formed from ozonolysis of the most abundant monoterpene (α-pinene). Combining aerosol isothermal evaporation experiments and multilayer kinetic modeling, bulk peroxides were found to undergo rapid particle-phase chemical transformation with an average lifetime of several hours under humid conditions, while the individual peroxides decompose on timescales of half an hour to a few days. Meanwhile, the majority of isomeric peroxides exhibit distinct particle-phase behaviors, highlighting the importance of the characterization of isomer-resolved peroxide reactivity. Furthermore, the reactivity of most peroxides increases with aerosol water content faster in a low relative humidity (RH) range than in a high RH range. Such non-uniform water effects imply a more important role of water as a plasticizer than as a reactant in influencing the peroxide reactivity. The high particle-phase reactivity of organic peroxides and its striking dependence on RH should be considered in atmospheric modeling of their fate and impacts on aerosol chemistry and health effects.


Asunto(s)
Monoterpenos , Ozono , Aerosoles/química , Monoterpenos/química , Ozono/química , Peróxidos/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA