RESUMEN
Significance: Near-infrared autofluorescence (NIRAF) utilizes the natural autofluorescence of parathyroid glands (PGs) to improve their identification during thyroid surgeries, reducing the risk of inadvertent removal and subsequent complications such as hypoparathyroidism. This study evaluates NIRAF's effectiveness in real-world surgical settings, highlighting its potential to enhance surgical outcomes and patient safety. Aim: We evaluate the effectiveness of NIRAF in detecting PGs during thyroidectomy and central neck dissection and investigate autofluorescence characteristics in both fresh and paraffin-embedded tissues. Approach: We included 101 patients diagnosed with papillary thyroid cancer who underwent surgeries in 2022 and 2023. We assessed NIRAF's ability to locate PGs, confirmed via parathyroid hormone assays, and involved both junior and senior surgeons. We measured the accuracy, speed, and agreement levels of each method and analyzed autofluorescence persistence and variation over 10 years, alongside the expression of calcium-sensing receptor (CaSR) and vitamin D. Results: NIRAF demonstrated a sensitivity of 89.5% and a negative predictive value of 89.1%. However, its specificity and positive predictive value (PPV) were 61.2% and 62.3%, respectively, which are considered lower. The kappa statistic indicated moderate to substantial agreement (kappa = 0.478; P < 0.001 ). Senior surgeons achieved high specificity (86.2%) and PPV (85.3%), with substantial agreement (kappa = 0.847; P < 0.001 ). In contrast, junior surgeons displayed the lowest kappa statistic among the groups, indicating minimal agreement (kappa = 0.381; P < 0.001 ). Common errors in NIRAF included interference from brown fat and eschar. In addition, paraffin-embedded samples retained stable autofluorescence over 10 years, showing no significant correlation with CaSR and vitamin D levels. Conclusions: NIRAF is useful for PG identification in thyroid and neck surgeries, enhancing efficiency and reducing inadvertent PG removals. The stability of autofluorescence in paraffin samples suggests its long-term viability, with false positives providing insights for further improvements in NIRAF technology.
Asunto(s)
Imagen Óptica , Glándulas Paratiroides , Espectroscopía Infrarroja Corta , Tiroidectomía , Humanos , Glándulas Paratiroides/cirugía , Glándulas Paratiroides/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Imagen Óptica/métodos , Adulto , Espectroscopía Infrarroja Corta/métodos , Adhesión en Parafina/métodos , Anciano , Cáncer Papilar Tiroideo/cirugía , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/análisisRESUMEN
BACKGROUND: Thyroid surgery has undergone significant transformation with the introduction of minimally invasive techniques, particularly robotic and endoscopic thyroidectomy. These advancements offer improved precision and faster recovery but also present unique challenges. This study aims to compare the learning curves, operational efficiencies, and patient outcomes of robotic versus endoscopic thyroidectomy. METHODS: A retrospective cohort study was conducted, analyzing 258 robotic (da Vinci) and 214 endoscopic thyroidectomy cases. Key metrics such as operation duration, drainage volume, lymph node dissection outcomes, and hypoparathyroidism incidence were assessed to understand surgical learning curves and efficiency. RESULTS: Robotic thyroidectomy showed a longer learning curve with initially longer operation times and higher drainage volumes but superior lymph node dissection outcomes. Both techniques were safe, with no permanent hypoparathyroidism or recurrent laryngeal nerve damage reported. The study delineated four distinct stages in the robotic and endoscopic surgery learning curve, each marked by specific improvements in proficiency. Endoscopic thyroidectomy displayed a shorter learning curve, leading to quicker operational efficiency gains. CONCLUSION: Robotic and endoscopic thyroidectomies are viable minimally invasive approaches, each with its learning curves and efficiency metrics. Despite initial challenges and a longer learning period for robotic surgery, its benefits in complex dissections may justify specialized training. Structured training programs tailored to each technique are crucial for improving outcomes and efficiency. Future research should focus on optimizing training protocols and increasing accessibility to these technologies, enhancing patient care in thyroid surgery.
Asunto(s)
Endoscopía , Curva de Aprendizaje , Procedimientos Quirúrgicos Robotizados , Tiroidectomía , Humanos , Tiroidectomía/métodos , Tiroidectomía/educación , Estudios Retrospectivos , Procedimientos Quirúrgicos Robotizados/educación , Procedimientos Quirúrgicos Robotizados/métodos , Masculino , Endoscopía/educación , Endoscopía/métodos , Femenino , Persona de Mediana Edad , Adulto , Tempo Operativo , Resultado del Tratamiento , Escisión del Ganglio Linfático/métodosRESUMEN
KANNO is a new human blood group that was recently discovered. The KANNO antigen shares the PRNP gene with the prion protein and the prion protein E219K polymorphism determines the presence or absence of the KANNO antigen and the development of anti-KANNO alloantibodies. These alloantibodies specifically react with prion proteins, which serve as substrates for conversion into pathological isoforms in some prion diseases and may serve as effective targets for resisting prion infection. These findings establish a potential link between the KANNO blood group and human prion disease via the prion protein E219K polymorphism. We reviewed the interesting correlation between the human PRNP gene's E219K polymorphism and the prion proteins it expresses, as well as human red blood cell antigens. Based on the immune serological principles of human blood cells, the prion protein E219K polymorphism may serve as a foundation for earlier molecular diagnosis and future drug development for prion diseases.
RESUMEN
Purpose: Papillary thyroid cancer (PTC) stands as one of the most prevalent types of thyroid cancers, characterized by a propensity for in-situ recurrence and distant metastasis. The high mobility group protein (HMGB1), a conserved nuclear protein, plays a pivotal role in carcinogenesis by stimulating tumor cell growth and migration. Nevertheless, the underlying mechanism driving aberrant HMGB1 expression in PTC necessitates further elucidation. Materials and methods: Our study unraveled the impact of low and overexpression of USP15 on the proliferation, invasion, and metastasis of PTC cells. Through a comprehensive array of molecular techniques, we uncovered the intricate relationship between HMGB1 and USP15 in the progression of PTC. Results: In this study, we identified USP15, a deubiquitinase in the ubiquitin-specific proteases family, as a true deubiquitylase of HMGB1 in PTC. USP15 was shown to interact with HMGB1 in a deubiquitination activity-dependent manner, deubiquitinating and stabilizing HMGB1. USP15 depletion significantly decreased PTC cell proliferation, migration, and invasion. In addition, the effects induced by USP15 depletion could be rescued by further HMGB1 overexpression. But when HMGB1 is knocked down, even overexpression of USP15 could not promote the progression of PTC cells. Conclusion: In essence, our discoveries shed light on the previously uncharted catalytic role of USP15 as a deubiquitinating enzyme targeting HMGB1, offering a promising avenue for potential therapeutic interventions in the management of PTC.
RESUMEN
OBJECTIVE: To enhance the accuracy in predicting lymph node metastasis (LNM) preoperatively in patients with papillary thyroid microcarcinoma (PTMC), refining the "low-risk" classification for tailored treatment strategies. METHODS: This study involves the development and validation of a predictive model using a cohort of 1004 patients with PTMC undergoing thyroidectomy along with central neck dissection. The data was divided into a training cohort (n = 702) and a validation cohort (n = 302). Multivariate logistic regression identified independent LNM predictors in PTMC, leading to the construction of a predictive nomogram model. The model's performance was assessed through ROC analysis, calibration curve analysis, and decision curve analysis. RESULTS: Identified LNM predictors in PTMC included age, tumor maximum diameter, nodule-capsule distance, capsular contact length, bilateral suspicious lesions, absence of the lymphatic hilum, microcalcification, and sex. Especially, tumors larger than 7 mm, nodules closer to the capsule (less than 3 mm), and longer capsular contact lengths (more than 1 mm) showed higher LNM rates. The model exhibited AUCs of 0.733 and 0.771 in the training and validation cohorts respectively, alongside superior calibration and clinical utility. CONCLUSION: This study proposes and substantiates a preoperative predictive model for LNM in patients with PTMC, honing the precision of "low-risk" categorization. This model furnishes clinicians with an invaluable tool for individualized treatment approach, ensuring better management of patients who might be proposed observation or ablative options in the absence of such predictive information.
Asunto(s)
Carcinoma Papilar , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/cirugía , Neoplasias de la Tiroides/patología , Carcinoma Papilar/cirugía , Carcinoma Papilar/patología , Disección del Cuello , Tiroidectomía , Metástasis Linfática/patología , Estudios Retrospectivos , Ganglios Linfáticos/patología , Factores de RiesgoRESUMEN
BACKGROUND: The preservation of parathyroid glands is crucial in endoscopic thyroid surgery to prevent hypocalcemia and related complications. However, current methods for identifying and protecting these glands have limitations. We propose a novel technique that has the potential to improve the safety and efficacy of endoscopic thyroid surgery. PURPOSE: Our study aims to develop a deep learning model called PTAIR 2.0 (Parathyroid gland Artificial Intelligence Recognition) to enhance parathyroid gland recognition during endoscopic thyroidectomy. We compare its performance against traditional surgeon-based identification methods. MATERIALS AND METHODS: Parathyroid tissues were annotated in 32 428 images extracted from 838 endoscopic thyroidectomy videos, forming the internal training cohort. An external validation cohort comprised 54 full-length videos. Six candidate algorithms were evaluated to select the optimal one. We assessed the model's performance in terms of initial recognition time, identification duration, and recognition rate and compared it with the performance of surgeons. RESULTS: Utilizing the YOLOX algorithm, we developed PTAIR 2.0, which demonstrated superior performance with an AP50 score of 92.1%. The YOLOX algorithm achieved a frame rate of 25.14 Hz, meeting real-time requirements. In the internal training cohort, PTAIR 2.0 achieved AP50 values of 94.1%, 98.9%, and 92.1% for parathyroid gland early prediction, identification, and ischemia alert, respectively. Additionally, in the external validation cohort, PTAIR outperformed both junior and senior surgeons in identifying and tracking parathyroid glands (p < 0.001). CONCLUSION: The AI-driven PTAIR 2.0 model significantly outperforms both senior and junior surgeons in parathyroid gland identification and ischemia alert during endoscopic thyroid surgery, offering potential for enhanced surgical precision and patient outcomes.
Asunto(s)
Endoscopía , Glándulas Paratiroides , Tiroidectomía , Humanos , Tiroidectomía/efectos adversos , Tiroidectomía/métodos , Endoscopía/métodos , Endoscopía/efectos adversos , Glándulas Paratiroides/cirugía , Algoritmos , Aprendizaje Profundo , Inteligencia Artificial , Hipocalcemia/prevención & control , Hipocalcemia/etiología , Femenino , MasculinoRESUMEN
Background: Robotic assistance in thyroidectomy is a developing field that promises enhanced surgical precision and improved patient outcomes. This study investigates the impact of the da Vinci Surgical System on operative efficiency, learning curve, and postoperative outcomes in thyroid surgery. Methods: We conducted a retrospective cohort study of 104 patients who underwent robotic thyroidectomy between March 2018 and January 2022. We evaluated the learning curve using the Cumulative Sum (CUSUM) analysis and analyzed operative times, complication rates, and postoperative recovery metrics. Results: The cohort had a mean age of 36 years, predominantly female (68.3%). The average body mass index (BMI) was within the normal range. A significant reduction in operative times was observed as the series progressed, with no permanent hypoparathyroidism or recurrent laryngeal nerve injuries reported. The learning curve plateaued after the 37th case. Postoperative recovery was consistent, with no significant difference in hospital stay duration. Complications were minimal, with a noted decrease in transient vocal cord palsy as experience with the robotic system increased. Conclusion: Robotic thyroidectomy using the da Vinci system has demonstrated a significant improvement in operative efficiency without compromising safety. The learning curve is steep but manageable, and once overcome, it leads to improved surgical outcomes and high patient satisfaction. Further research with larger datasets and longer follow-up is necessary to establish the long-term benefits of robotic thyroidectomy.
Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Neoplasias de la Tiroides , Humanos , Femenino , Adulto , Masculino , Estudios Retrospectivos , Neoplasias de la Tiroides/cirugíaRESUMEN
We investigate the effects of disorder and shielding on quantum transports in a two dimensional system with all-to-all long range hopping. In the weak disorder, cooperative shielding manifests itself as perfect conducting channels identical to those of the short range model, as if the long range hopping does not exist. With increasing disorder, the average and fluctuation of conductance are larger than those in the short range model, since the shielding is effectively broken and therefore long range hopping starts to take effect. Over several orders of disorder strength (until [Formula: see text] times of nearest hopping), although the wavefunctions are not fully extended, they are also robustly prevented from being completely localized into a single site. Each wavefunction has several localization centers around the whole sample, thus leading to a fractal dimension remarkably smaller than 2 and also remarkably larger than 0, exhibiting a hybrid feature of localization and delocalization. The size scaling shows that for sufficiently large size and disorder strength, the conductance tends to saturate to a fixed value with the scaling function [Formula: see text], which is also a marginal phase between the typical metal ([Formula: see text]) and insulating phase ([Formula: see text]). The all-to-all coupling expels one isolated but extended state far out of the band, whose transport is extremely robust against disorder due to absence of backscattering. The bond current picture of this isolated state shows a quantum version of short circuit through long hopping.
RESUMEN
Six new phloroglucinol derivatives, xanchryones I-N (1-6), were isolated from the leaves of Xanthostemon chrysanthus. Compounds 1-6 are unusual phloroglucinol-amino acid hybrids constructed through C2 -N and O-C1 ' bonds forming a peculiar oxazole ring. The structures and absolute configurations of compounds 1-6 were determined by MS, NMR, and single-crystal X-ray diffraction. Moreover, the anti-inflammatory and antibacterial activities of these compounds were evaluated.
Asunto(s)
Myrtaceae , Floroglucinol , Estructura Molecular , Floroglucinol/química , Aminoácidos/análisis , Myrtaceae/química , Antibacterianos/química , Hojas de la Planta/químicaRESUMEN
OBJECTIVES: To study the protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism. METHODS: A preterm rat model of brain injury caused by intrauterine inflammation was prepared by intraperitoneal injections of lipopolysaccharide in pregnant rats. The pregnant rats and preterm rats were respectively randomly divided into 5 groups: control, model, low-dose breviscapine (45 mg/kg), high-dose breviscapine (90 mg/kg), and high-dose breviscapine (90 mg/kg)+ML385 [a nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, 30 mg/kg] (n=10 each). The number and body weight of the live offspring rats were measured for each group. Hematoxylin-eosin staining was used to observe the pathological morphology of the uterus and placenta of pregnant rats and the pathological morphology of the brain tissue of offspring rats. Immunofluorescent staining was used to measure the co-expression of ionized calcium binding adaptor molecule-1 (IBA-1) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex of offspring rats. ELISA was used to measure the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1ß (IL-1ß) in the brain tissue of offspring rats. Western blotting was used to measure the expression of Nrf2 pathway-related proteins in the brain tissue of offspring rats. RESULTS: Pathological injury was found in the uterus, and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, and severe microglia pyroptosis occurred in the cerebral cortex of the offspring rats in the model group. Compared with the control group, the model group had significant reductions in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the brain tissue of the offspring rats (P<0.05), but significant increases in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1ß, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). Compared with the model group, the breviscapine administration groups showed alleviated pathological injury of the uterus and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, significant increases in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and HO-1 in the brain tissue of the offspring rats (P<0.05), and significant reductions in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1ß, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). The high-dose breviscapine group had a significantly better effect than the low-dose breviscapine (P<0.05). ML385 significantly inhibited the intervention effect of high-dose breviscapine (P<0.05). CONCLUSIONS: Breviscapine can inhibit inflammatory response in brain tissue of preterm rats caused by intrauterine inflammation by activating the Nrf2 pathway, and it can also inhibit microglial pyroptosis and alleviate brain injury.
Asunto(s)
Lesiones Encefálicas , Flavonoides , Inflamación , Animales , Femenino , Embarazo , Ratas , Peso Corporal , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/etiología , Lesiones Encefálicas/prevención & control , Caspasa 1 , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Interleucina-6 , Interleucina-8 , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Flavonoides/uso terapéuticoRESUMEN
A one-dimensional lattice model with mosaic quasiperiodic potential is found to exhibit interesting localization properties, e.g. clear mobility edges (Wanget al2020Phys. Rev. Lett.125196604). We generalize this mosaic quasiperiodic model to a two-dimensional version, and numerically investigate its localization properties: the phase diagram from the fractal dimension of the wavefunction, the statistical and scaling properties of the conductance. Compared with disordered systems, our model shares many common features but also exhibits some different characteristics in the same dimensionality and the same universality class. For example, the sharp peak atgâ¼0of the critical distribution and the largeglimit of the universal scaling functionßresemble those behaviors of three-dimensional disordered systems.
RESUMEN
OBJECTIVE: We aimed to establish an artificial intelligence (AI) model to identify parathyroid glands during endoscopic approaches and compare it with senior and junior surgeons' visual estimation. METHODS: A total of 1,700 images of parathyroid glands from 166 endoscopic thyroidectomy videos were labeled. Data from 20 additional full-length videos were used as an independent external cohort. The YOLO V3, Faster R-CNN, and Cascade algorithms were used for deep learning, and the optimal algorithm was selected for independent external cohort analysis. Finally, the identification rate, initial recognition time, and tracking periods of PTAIR (Artificial Intelligence model for Parathyroid gland Recognition), junior surgeons, and senior surgeons were compared. RESULTS: The Faster R-CNN algorithm showed the best balance after optimizing the hyperparameters of each algorithm and was updated as PTAIR. The precision, recall rate, and F1 score of the PTAIR were 88.7%, 92.3%, and 90.5%, respectively. In the independent external cohort, the parathyroid identification rates of PTAIR, senior surgeons, and junior surgeons were 96.9%, 87.5%, and 71.9%, respectively. In addition, PTAIR recognized parathyroid glands 3.83 s ahead of the senior surgeons (p = 0.008), with a tracking period 62.82 s longer than the senior surgeons (p = 0.006). CONCLUSIONS: PTAIR can achieve earlier identification and full-time tracing under a particular training strategy. The identification rate of PTAIR is higher than that of junior surgeons and similar to that of senior surgeons. Such systems may have utility in improving surgical outcomes and also in accelerating the education of junior surgeons. LEVEL OF EVIDENCE: 3 Laryngoscope, 132:2516-2523, 2022.
Asunto(s)
Glándulas Paratiroides , Glándula Tiroides , Humanos , Glándulas Paratiroides/diagnóstico por imagen , Glándulas Paratiroides/cirugía , Glándula Tiroides/cirugía , Inteligencia Artificial , Tiroidectomía , EndoscopíaRESUMEN
BACKGROUND: Metarhizium rileyi is an entomopathogenic fungus with promising potential for controlling agricultural pests, including Spodoptera frugiperda. Following penetration of the host through the cuticle, M. rileyi cells transform into in vivo blastospores or hyphal bodies, propagating within the hemocoel. However, the strategies and molecular mechanisms by which M. rileyi survives upon exposure to the powerful insect immune system remain unclear. RESULTS: We determined the pathogenicity of M. rileyi and found that either conidial immersion or blastospore injection significantly decreased S. frugiperda survival in a dose-dependent manner. Injection of M. rileyi blastospores decreased the number of S. frugiperda hemocytes and impaired host cellular reactions such as nodulation, encapsulation and phagocytosis. Blastospore injection led to increased antibacterial activity in plasma at 48 h post-injection (hpi). RNA-sequencing analyses identified a large number of antimicrobial peptide genes upregulated in the fat body of M. rileyi-infected larvae at 48 hpi, which may be attributable to the activation of Toll and IMD signaling pathway. CONCLUSION: This study demonstrates that the compromised cellular immunity of the insect host is due to the marked decrease in hemocytes and impaired cellular cytoskeletons, which may facilitate early infection by M. rileyi. Late in the course of infection, the enhanced antibacterial activity of plasma, which may be in response to intestinal evading bacteria, cannot inhibit hyphal growth in hemolymph. Our data provide a comprehensive resource for exploring the molecular mechanism employed by M. rileyi to overcome S. frugiperda immunity. © 2022 Society of Chemical Industry.
Asunto(s)
Metarhizium , Animales , Antibacterianos , Inmunidad Celular , Insectos , SpodopteraRESUMEN
BACKGROUND: Early biomarkers allowing effective treatment stratification in adult T-cell acute lymphoblastic leukemia (T-ALL) patients remain elusive. MATERIALS AND METHODS: The mutation spectrum of 116T-ALL adult patients enrolled in the Shanghai Institute of Hematology (SIH)-based hospital network or Multicenter Hematology-Oncology Protocols Evaluation System (M-HOPES) in China were studied by using RNA-sequencing or targeted next generation sequencing. A comprehensive survival analysis based on clinical characteristics, immunophenotype and oncogenetic classifier was performed. RESULTS: Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) has higher mutation rates of N/K-RAS and lower mutation rates of FBXW7 compared to non-ETP ALL, but the survival probability of ETP-ALL patients is similar to that of non-ETP ALL patients. T-ALLs with a NOTCH1/FBXW7 (N/F) mutation in the absence of RAS or PTEN abnormalities (NFRP class I) show a more favorable outcome compared to T-ALLs with no N/F mutation and/or with the presence of RAS/PTEN alterations (NFRP class II). A survival analysis of T-ALL, taking into account both the ETP-ALL/non-ETP T-ALL groups and the NFRP oncogenetic classifier, demonstrates that, within the non-ETP T-ALL subtype, NFRP class II identifies a group with poor prognosis and significant decreases of both OS (14.8% versus 50.9%, P = 0.019) and EFS (11.4% versus 42.4%, P = 0.001). In contrast, no survival difference is observed within ETP-ALL between the NFRP class I or class II (OS: 37.9% versus 33%, P = 0.876; EFS: 39.8% versus 33.7%, P = 0.969). CONCLUSION: In summary, the oncogenetic classifier based on the NFRP classes is particularly useful to improve the stratification of non-ETP ALL.
Asunto(s)
Células Precursoras de Linfocitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , China , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Humanos , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , PronósticoRESUMEN
BACKGROUND: Lymphocytic hypophysitis (LYH) is an important condition to consider in the differential diagnosis of patients with a pituitary mass. The main clinical manifestations of LYH include headache, symptoms related to sellar compression, hypopituitarism, diabetes insipidus and hyperprolactinemia. Headache, which is a frequent complaint of patients with LYH, is thought to be related to the occupying effect of the pituitary mass and is rapidly resolved with a good outcome after timely and adequate glucocorticoid treatment or surgery. CASE SUMMARY: Here, we report a patient with LYH whose initial symptom was headache and whose pituitary function assessment showed the presence of secondary hypoadrenalism, central hypothyroidism and hypogonadotropic hypogonadism. Pituitary magnetic resonance imaging showed symmetrical enlargement of the pituitary gland with suprasellar extension in a dumbbell shape with significant homogeneous enhancement after gadolinium enhancement. The size of the gland was approximately 17.7 mm × 14.3 mm × 13.8 mm. The pituitary stalk was thickened without deviation, and there was an elevation of the optimal crossing. The lesion grew bilaterally toward the cavernous sinuses, and the parasternal dural caudal sign was visible. The patient presented with repeatedly worsening and prolonged headaches three times even though the hypopituitarism had fully resolved after glucocorticoid treatment during this course. CONCLUSION: This rare headache regression suggests that patients with chronic headaches should also be alerted to the possibility of LYH.
RESUMEN
Short-term intermittent fasting (IF) is beneficial to weight control in patients with nonalcoholic fatty liver disease, but the impact of long-term IF is not clear. In this study, healthy C57BL/6N mice with 4-month alternate day fasting (ADF) were used to study the effects of long-term IF on systemic and liver lipid metabolism. The results showed that, compared with the Ad Libitum group, the weight and food conversion rate of mice in the ADF group were markedly decreased and increased respectively, and the liver index and the liver content of triglyceride were significantly increased by pathological examination. qRT-PCR analysis revealed that the mRNA expression of the lipogenesis gene Pparγ and lipolysis gene Atgl was up-regulated in the ADF group (P < 0.05). Western blot analysis showed that the ratio of microtubule associated protein LC3-II/LC3-I was increased, while the abundance of autophagy adaptor protein p62 was decreased in the ADF group. In addition, autophagy signal positive regulation key factor AMPK phosphorylation was increased (P < 0.05), and negative regulation factor mTOR phosphorylation was decreased (P < 0.05) in the ADF group, indicating that hepatocyte autophagy activity was elevated. Taken together, ADF for 4 months results in an excessive liver triglyceride accumulation, accompanied by a marked decrease in liver mTOR phosphorylation and a significant increase in hepatic autophagy.
Asunto(s)
Ayuno Intermitente , Hígado , Ratones , Animales , Ratones Endogámicos C57BL , Hígado/patología , Serina-Treonina Quinasas TOR , Metabolismo de los Lípidos , Autofagia , TriglicéridosRESUMEN
Chronic pain easily leads to concomitant mood disorders, and the excitability of anterior cingulate cortex (ACC) pyramidal neurons (PNs) is involved in chronic pain-related anxiety. However, the mechanism by which PNs regulate pain-related anxiety is still unknown. The GABAergic system plays an important role in modulating neuronal activity. In this paper, we aimed to study how the GABAergic system participates in regulating the excitability of ACC PNs, consequently affecting chronic inflammatory pain-related anxiety. A rat model of CFA-induced chronic inflammatory pain displayed anxiety-like behaviors, increased the excitability of ACC PNs, and reduced inhibitory presynaptic transmission; however, the number of GAD65/67 was not altered. Interestingly, intra-ACC injection of the GABAAR agonist muscimol relieved anxiety-like behaviors but had no effect on chronic inflammatory pain. Intra-ACC injection of the GABAAR antagonist picrotoxin induced anxiety-like behaviors but had no effect on pain in normal rats. Notably, chemogenetic activation of GABAergic neurons in the ACC alleviated chronic inflammatory pain and pain-induced anxiety-like behaviors, enhanced inhibitory presynaptic transmission, and reduced the excitability of ACC PNs. Chemogenetic inhibition of GABAergic neurons in the ACC led to pain-induced anxiety-like behaviors, reduced inhibitory presynaptic transmission, and enhanced the excitability of ACC PNs but had no effect on pain in normal rats. We demonstrate that the GABAergic system mediates a reduction in inhibitory presynaptic transmission in the ACC, which leads to enhanced excitability of pyramidal neurons in the ACC and is associated with chronic inflammatory pain-related anxiety.
Asunto(s)
Ansiedad/fisiopatología , Dolor Crónico/fisiopatología , Neuronas GABAérgicas/fisiología , Giro del Cíngulo/fisiopatología , Inflamación/psicología , Células Piramidales/fisiología , Animales , Ansiolíticos/administración & dosificación , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Sensibilización del Sistema Nervioso Central/efectos de los fármacos , Dolor Crónico/psicología , Clozapina/uso terapéutico , Adyuvante de Freund/toxicidad , Agonistas de Receptores de GABA-A/administración & dosificación , Agonistas de Receptores de GABA-A/farmacología , Agonistas de Receptores de GABA-A/uso terapéutico , Antagonistas de Receptores de GABA-A/administración & dosificación , Antagonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/toxicidad , Neuronas GABAérgicas/enzimología , Vectores Genéticos/farmacología , Inflamación/inducido químicamente , Inflamación/fisiopatología , Inyecciones , Interneuronas/efectos de los fármacos , Masculino , Muscimol/administración & dosificación , Muscimol/farmacología , Muscimol/uso terapéutico , Prueba de Campo Abierto , Umbral del Dolor/efectos de los fármacos , Técnicas de Placa-Clamp , Picrotoxina/toxicidad , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Células Piramidales/enzimología , Ratas , Ratas Sprague-DawleyRESUMEN
BACKGROUND/AIMS: Diabetic nephropathy (DN) is one of the main causes of end-stage kidney disease worldwide. Emerging studies have suggested that its pathogenesis is distinct from nondiabetic renal diseases in many aspects. However, it still lacks a comprehensive understanding of the unique molecular mechanism of DN. METHODS: A total of 255 Affymetrix U133 microarray datasets (Affymetrix, Santa Calra, CA, USA) of human glomerular and tubulointerstitial tissues were collected. The 22 215 Affymetrix identifiers shared by the Human Genome U133 Plus 2.0 and U133A Array were extracted to facilitate dataset pooling. Next, a linear model was constructed and the empirical Bayes method was used to select the differentially expressed genes (DEGs) of each kidney disease. Based on these DEG sets, the unique DEGs of DN were identified and further analyzed using gene ontology and pathway enrichment analysis. Finally, the protein-protein interaction networks (PINs) were constructed and hub genes were selected to further refine the results. RESULTS: A total of 129 and 1251 unique DEGs were identified in the diabetic glomerulus (upregulated n = 83 and downregulated n = 203) and the diabetic tubulointerstitium (upregulated n = 399 and downregulated n = 874), respectively. Enrichment analysis revealed that the DEGs in the diabetic glomerulus were significantly associated with the extracellular matrix, cell growth, regulation of blood coagulation, cholesterol homeostasis, intrinsic apoptotic signaling pathway and renal filtration cell differentiation. In the diabetic tubulointerstitium, the significantly enriched biological processes and pathways included metabolism, the advanced glycation end products-receptor for advanced glycation end products signaling pathway in diabetic complications, the epidermal growth factor receptor (EGFR) signaling pathway, the FoxO signaling pathway, autophagy and ferroptosis. By constructing PINs, several nodes, such as AGR2, CSNK2A1, EGFR and HSPD1, were identified as hub genes, which might play key roles in regulating the development of DN. CONCLUSIONS: Our study not only reveals the unique molecular mechanism of DN but also provides a valuable resource for biomarker and therapeutic target discovery. Some of our findings are promising and should be explored in future work.
RESUMEN
Anti-human globulin (AHG) reagents are widely applied in pretransfusion compatibility tests. The accuracy of detection with AHG reagents is mainly affected by irregular antibodies or cold agglutinins in blood samples, which are related to the human complement system. Although much has been written about various types and applications of AHG reagents, their characteristics, interference factors and optimal selection in pretransfusion compatibility tests still need to be further clarified. Here, we review clinical practice and basic studies that describe each AHG reagent, summarize the advantages and disadvantages of using different AHG reagents in the presence of cold agglutinins or complement-fixing antibodies, explore the potential mechanisms by which the complement system influences detection with AHG reagents and address the question of how to optimally select AHG reagents for clinically significant antibody detection.
Asunto(s)
Tipificación y Pruebas Cruzadas Sanguíneas/métodos , Indicadores y Reactivos , Seroglobulinas/inmunología , Aglutininas , Prueba de Coombs , Humanos , Inmunoglobulina G/inmunologíaRESUMEN
Colorectal cancer is one of the most common malignant tumors of the digestive tract. In this study, we had examined the biological role of USP43 in colorectal cancer. USP43 protein and mRNA abundance in clinical tissues and five cell lines were analyzed with quantitative real-time PCR test (qRT-PCR) and western blot. USP43 overexpression treated DLD1 cells and USP43 knockdown treated SW480 cells were used to study cell proliferation, migration, colony formation, invasion, and the expression of epithelial-mesenchymal transformation (EMT) biomarkers. Moreover, ubiquitination related ZEB1 degradation was studied with qRT-PCR and western blot. The relationships between USP43 and ZEB1 were investigated with western blot, co-immunoprecipitation, migration, and invasion. USP43 was highly expressed in colorectal cancer tissues. USP43 overexpression and knockdown treatments could affect cell proliferation, colony formation, migration, invasion, and the expression of EMT associated biomarkers. Moreover, USP43 can regulate ZEB1 degradation through ubiquitination pathway. USP43 could promote the proliferation, migration, and invasion of colorectal cancer. Meanwhile, USP43 can deubiquitinate and stabilize the ZEB1 protein, which plays an important role in the function of colorectal cancer.